Predicting the Pillar Stability of Underground Mines with Random Trees and C4.5 Decision Trees
Abstract
:1. Introduction
2. Description of Database
3. Methodology
3.1. Random Tree
3.2. C4.5 Decision Tree
4. Development of Prediction Models
5. Results and Discussion
6. Conclusions and Recommendations for Future Work
- Unlike most soft computing techniques, the developed models are very simple to use and do not require exhaustive training. The proposed models present an explicit relationship between explanatory (input) and target (output) variables. Study results reveal that relationships obtained are compatible with engineering judgments and intuitions.
- The classification accuracy of the random tree and C4.5 DT is 100% and 95.65%, respectively during the training and testing phases, which indicates that both models are efficient and reliable for practical applications.
- Compared to the SVM model, the developed random tree model shows at par results and the random tree model application is easier due to a simple graphical outcome, while the information gained by the SVM algorithm during the training phase is implicitly processed that make it very difficult to explain well the overall structure of the network. So, it may be argued that the SVM model has little insight into the fundamental mechanism of the current problem.
- The comparison of the developed models’ performances showed that the random tree model achieved more reliable predictions than the C4.5 DT model.
- It is evident that the proposed models are open to further development in the future and that the acquisition of more data will improve the capacity for prediction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coates, D.F. Rock mechanics principles. In Geoscience Abstracts; American Society Photogrammetry: Bethesda, MD, USA, 1966. [Google Scholar]
- Brady, B.H.; Brown, E.T. Rock Mechanics: For Underground Mining; Springer Science & Business Media: Berlin, Germany, 1993. [Google Scholar]
- Tesarik, D.; Seymour, J.; Yanske, T. Long-Term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA. Int. J. Rock Mech. Min. Sci. 2009, 46, 1182–1196. [Google Scholar] [CrossRef]
- Najafi, M.; Jalali, S.; Bafghi, A.Y.; Sereshki, F. Prediction of the confidence interval for stability analysis of chain pillars in coal mines. Saf. Sci. 2011, 49, 651–657. [Google Scholar] [CrossRef]
- Salamon, M. Stability, instability and design of pillar workings. Proc. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1970, 7, 613–631. [Google Scholar] [CrossRef]
- Košťák, B. Pillar strength prediction from representative sample of hard rock. Proc. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1971, 8, 523–526. [Google Scholar] [CrossRef]
- Deng, J.; Yue, Z.; Tham, L.; Zhu, H. Pillar design by combining finite element methods, neural networks and reliability: A case study of the Feng Huangshan copper mine, China. Int. J. Rock Mech. Min. Sci. 2003, 40, 585–599. [Google Scholar] [CrossRef]
- Wang, J.-A.; Shang, X.; Ma, H. Investigation of catastrophic ground collapse in Xingtai gypsum mines in China. Int. J. Rock Mech. Min. Sci. 2008, 45, 1480–1499. [Google Scholar] [CrossRef]
- Wattimena, R. Predicting the stability of hard rock pillars using multinomial logistic regression. Int. J. Rock Mech. Min. Sci. (1997) 2014, 71, 33–40. [Google Scholar] [CrossRef]
- Shnorhokian, S.; Mitri, H.S.; Moreau-Verlaan, L. Stability assessment of stope sequence scenarios in a diminishing ore pillar. Int. J. Rock Mech. Min. Sci. 2015, 74, 103–118. [Google Scholar] [CrossRef]
- Griffiths, D.; Fenton, G.A.; Lemons, C.B. Probabilistic analysis of underground pillar stability. Int. J. Numer. Anal. Methods Geomech. 2002, 26, 775–791. [Google Scholar] [CrossRef]
- Jaiswal, A.; Sharma, S.; Shrivastva, B. Numerical modeling study of asymmetry in the induced stresses over coal mine pillars with advancement of the goaf line. Int. J. Rock Mech. Min. Sci. (1997) 2004, 41, 859–864. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Wang, S.; Yu, J. A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar. Tunn. Undergr. Space Technol. 2013, 34, 38–53. [Google Scholar] [CrossRef]
- Mortazavi, A.; Hassani, F.; Shabani, M. A numerical investigation of rock pillar failure mechanism in underground openings. Comput. Geotech. 2009, 36, 691–697. [Google Scholar] [CrossRef]
- Tawadrous, A.; Katsabanis, P. Prediction of surface crown pillar stability using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 2007, 31, 917–931. [Google Scholar] [CrossRef]
- Ding, H.; Li, G.; Dong, X.; Lin, Y. Prediction of pillar stability for underground mines using the stochastic gradient boosting technique. IEEE Access 2018, 6, 69253–69264. [Google Scholar] [CrossRef]
- Ghasemi, E.; Kalhori, H.; Bagherpour, R. Stability assessment of hard rock pillars using two intelligent classification techniques: A comparative study. Tunn. Undergr. Space Technol. 2017, 68, 32–37. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.-B.; Shi, X.-Z.; Wei, W.; Wu, B.-B. Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods. Trans. Nonferr. Met. Soc. China 2011, 21, 2734–2743. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat. Hazards 2015, 79, 291–316. [Google Scholar] [CrossRef]
- Javadi, A.A.; Ahangar-Asr, A.; Johari, A.; Faramarzi, A.; Toll, D. Modelling stress-strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Eng. Appl. Artif. Intell. 2012, 25, 926–933. [Google Scholar] [CrossRef]
- Ahmad, M.; Tang, X.-W.; Qiu, J.-N.; Ahmad, F. Evaluating seismic soil liquefaction potential using Bayesian belief network and C4. 5 Decision Tree Approaches. Appl. Sci. 2019, 9, 4226. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Tang, X.-W.; Qiu, J.-N.; Gu, W.-J.; Ahmad, F. A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks. J. Cent. South Univ. 2020, 27, 500–516. [Google Scholar] [CrossRef]
- Bui, D.T.; Ho, T.C.; Revhaug, I.; Pradhan, B.; Nguyen, D.B. Landslide susceptibility mapping along the national road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles. In Cartography from Pole to Pole; Springer: Cham, Switzerland, 2014; pp. 303–317. [Google Scholar]
- Kiranmai, S.A.; Laxmi, A.J. Data mining for classification of power quality problems using WEKA and the effect of attributes on classification accuracy. Prot. Control Mod. Power Syst. 2018, 3, 29. [Google Scholar] [CrossRef]
- Dindarloo, S.R.; Siami-Irdemoosa, E. Maximum surface settlement based classification of shallow tunnels in soft ground. Tunn. Undergr. Space Technol. 2015, 49, 320–327. [Google Scholar] [CrossRef]
- Jaiswal, A.; Shrivastva, B. Numerical simulation of coal pillar strength. Int. J. Rock Mech. Min. Sci. 2009, 46, 779–788. [Google Scholar] [CrossRef]
- Mohan, G.M.; Sheorey, P.; Kushwaha, A. Numerical estimation of pillar strength in coal mines. Int. J. Rock Mech. Min. Sci. 2001, 38, 1185–1192. [Google Scholar] [CrossRef]
- Esterhuizen, G.; Dolinar, D.; Ellenberger, J. Pillar strength in underground stone mines in the United States. Int. J. Rock Mech. Min. Sci. 2011, 48, 42–50. [Google Scholar] [CrossRef]
- Goodman, R.E. Introduction to Rock Mechanics; Wiley: New York, NY, USA, 1989; Volume 2. [Google Scholar]
- Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms. Mathematics 2020, 8, 765. [Google Scholar] [CrossRef]
- Nordlund, E.; Radberg, G.; Jing, L. Determination of failure modes in jointed pillars by numerical modelling. In Proceedings of the Conference on Fractured and Jointed Rock Masses, Lake Tahoe, CA, USA, 3 June 1992; pp. 345–350. [Google Scholar]
- Shang, J.; West, L.; Hencher, S.; Zhao, Z. Geological discontinuity persistence: Implications and quantification. Eng. Geol. 2018, 241, 41–54. [Google Scholar] [CrossRef]
- Jessu, K.; Spearing, A. Performance of inclined pillars with a major discontinuity. Int. J. Min. Sci. Technol. 2019, 29, 437–443. [Google Scholar] [CrossRef]
- Shang, J.; Hencher, S.; West, L. Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mech. Rock Eng. 2016, 49, 4213–4225. [Google Scholar] [CrossRef] [Green Version]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgen Kaufmann: San Francisco, CA, USA, 2005. [Google Scholar]
- Kalmegh, S. Analysis of weka data mining algorithm reptree, simple cart and randomtree for classification of indian news. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 438–446. [Google Scholar]
- Hamsagayathri, P.; Sampath, P. Performance analysis of breast cancer classification using decision tree classifiers. Int. J. Curr. Pharm. Res. 2017, 9, 19–25. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programming for Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Hobart, Australia, 4–8 December 2006; pp. 1015–1021. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Zaki, M.J.; Meira, W. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
S. No. | Mine | Country | W (m) | H (m) | W/H | σucs (MPa) | σp (MPa) | Pillar Stability |
---|---|---|---|---|---|---|---|---|
1 | Nega Jamehari (Amritnagar) | India | 3.6 | 4.5 | 0.8 | 45 | 5.01 | Failed |
2 * | Nega Jamehari (Amritnagar) | India | 3.6 | 6 | 0.6 | 45 | 4.68 | Failed |
3 | Begonia (Begonia) | India | 3.9 | 3 | 1.3 | 26 | 5.8 | Failed |
4 | Bushar (Amlai) | India | 4.5 | 5.4 | 0.83 | 25 | 3.61 | Failed |
5 | Sendra Bansjora (X) | India | 4.65 | 8.1 | 0.57 | 24 | 2.77 | Failed |
6 | W. Chirimiri (Main) | India | 5.4 | 3.75 | 1.44 | 45 | 8.12 | Failed |
7 | Johilla top (Birsingpur) | India | 7.5 | 3.6 | 2.08 | 38 | 10.45 | Failed |
8 | Lower Kajora (Pure Kajora) | India | 5.4 | 3.6 | 1.5 | 33 | 6.02 | Failed |
9 * | Lower Kajora (Pure Kajora | India | 4.95 | 3.6 | 1.38 | 33 | 7.43 | Failed |
10 | Jambad bottom (Shankarpur) | India | 4.5 | 4.8 | 0.94 | 47 | 4.2 | Failed |
11 | Begunia (Ramnagar) | India | 2.85 | 1.8 | 1.58 | 26 | 7.76 | Failed |
12 | Begunia (Ramnagar) | India | 3 | 1.8 | 1.67 | 26 | 6.17 | Failed |
13 | Kankanee (XIII) | India | 19.8 | 6.6 | 3 | 27 | 5.88 | Failed |
14 | Kankanee (XIV) | India | 18.6 | 8.4 | 2.2 | 27 | 5.83 | Failed |
15 | Ross (Bellampalli) | India | 5.4 | 3 | 1.8 | 48 | 4.01 | Stable |
16 | Nega (Nimcha) | India | 9.9 | 6 | 1.7 | 50 | 3.09 | Stable |
17 | Salarjung (Morganpit) | India | 8.1 | 3 | 2.7 | 46 | 14.08 | Stable |
18 | Ramnagar (Ramnagar) | India | 9.9 | 2.7 | 3.7 | 28 | 5.2 | Stable |
19 * | Lower Kajora (Lachhipur) | India | 7.2 | 5.1 | 1.4 | 33 | 2.25 | Stable |
20 | N. Salanpur (X), | India | 9 | 5.1 | 1.8 | 21 | 2.08 | Stable |
21 * | Jambad top (Bankola) | India | 10.1 | 4.8 | 2.1 | 35 | 3.09 | Stable |
22 | Jambad top (Bankola)) | India | 6.3 | 3 | 2.1 | 35 | 5.2 | Stable |
23 | G-I (Suraka cchar) | India | 16 | 3.5 | 4.6 | 29 | 4.14 | Stable |
24 | Lower Kajora (Lachhipur) | India | 18.3 | 5.1 | 3.6 | 33 | 1.4 | Stable |
25 | E. Angarapatra (XII) | India | 6 | 2.1 | 2.9 | 19 | 3 | Stable |
26 | Kathara (Kargali Incline) | India | 9.3 | 3.6 | 2.6 | 40 | 2.34 | Stable |
27 | Jamadoba 6 and 7 Pits (XVI) | India | 5.8 | 2 | 2.9 | 29 | 7.59 | Stable |
28 | Singharan (Topsi) | India | 7 | 1.8 | 3.9 | 41 | 5.15 | Stable |
29 | Stone mines | USA | 10.7 | 18.3 | 0.58 | 215 | 9 | Failed |
30 | Stone mines | USA | 10.7 | 18.3 | 0.58 | 215 | 9.4 | Failed |
31 | Stone mines | USA | 10.7 | 18.3 | 0.58 | 215 | 10.3 | Failed |
32 | Stone mines | USA | 15.2 | 27.4 | 0.56 | 153 | 12.6 | Failed |
33 * | Stone mines | USA | 10.7 | 18.3 | 0.58 | 215 | 12.8 | Failed |
34 | Stone mines | USA | 12.2 | 27.4 | 0.44 | 150 | 17.2 | Failed |
35 | Stone mines | USA | 8.50 | 15.80 | 0.54 | 150 | 17.2 | Failed |
36 | Stone mines | USA | 12.2 | 27.4 | 0.44 | 150 | 17.3 | Failed |
37 | Stone mines | USA | 7.9 | 9.8 | 0.81 | 160 | 19 | Failed |
38 | Stone mines | USA | 12.8 | 7.3 | 1.73 | 160 | 17.4 | Failed |
39 | Stone mines | USA | 12.5 | 15.2 | 0.82 | 160 | 17.8 | Failed |
40 | Stone mines | USA | 6.1 | 12.2 | 0.49 | 160 | 19 | Failed |
41 * | Stone mines | USA | 6.7 | 12.2 | 0.54 | 160 | 20 | Failed |
42 | Stone mines | USA | 3.7 | 8.5 | 0.43 | 215 | 24.1 | Failed |
43 | Stone mines | USA | 8.2 | 9.1 | 0.9 | 160 | 25 | Failed |
44 | Stone mines | USA | 5.5 | 7.3 | 0.75 | 160 | 27 | Failed |
45 | Stone mines | USA | 12.2 | 15.8 | 0.77 | 165 | 8.4 | Failed |
46 | Stone mines | USA | 12.2 | 15.8 | 0.77 | 165 | 7.6 | Failed |
Statistical Parameters | W (m) | H (m) | W/H | σucs (MPa) | σp (MPa) |
---|---|---|---|---|---|
Minimum | 2.85 | 1.8 | 0.43 | 19 | 1.4 |
Maximum | 19.8 | 27.4 | 4.6 | 215 | 27 |
Mean | 8.68 | 8.70 | 1.52 | 88.74 | 9.51 |
Standard deviation | 4.28 | 7.17 | 1.07 | 71.20 | 6.83 |
Properties | Random Tree (RT) | C4.5 Decision Tree (DT) |
---|---|---|
Attributes available at each decision node | Random subset | All |
Attributes selected at each decision node | Best among a random subset | Highest information gain among all |
Trees count | One | One |
Samples of data used for the training | All | All |
Classification final result | Based on the leaf node reached | Based on the leaf node reached |
Predicted Class | |||
---|---|---|---|
Failed | Stable | ||
Actual class | Failed | TP | FN |
Stable | FP | TN |
Dataset | Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
RT | C4.5 DT | FDA [18] | SVM [18] | ||||||
True | Predicted | ||||||||
Failed | Stable | Failed | Stable | Failed | Stable | Failed | Stable | ||
Training | Failed | 28 | 0 | 27 | 1 | 28 | 0 | 28 | 0 |
Stable | 0 | 12 | 0 | 12 | 2 | 10 | 0 | 12 | |
Testing | Failed | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 |
Stable | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 2 |
Model | Dataset | ACC (%) | MCC | Failed | Stable | ||||
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F-Measure | Precision | Recall | F-Measure | ||||
RT | Training | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Testing | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
C4.5 DT | Training | 97.500 | 0.943 | 1.000 | 0.964 | 0.982 | 0.923 | 1.000 | 0.960 |
Testing | 83.333 | 0.632 | 0.800 | 1.000 | 0.889 | 1.000 | 0.500 | 0.667 | |
FDA [18] | Training | 95.000 | 0.882 | 0.933 | 1.000 | 0.966 | 1.000 | 0.833 | 0.909 |
Testing | 83.333 | 0.632 | 0.800 | 1.000 | 0.889 | 1.000 | 0.500 | 0.667 | |
SVM [18] | Training | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Testing | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Al-Shayea, N.A.; Tang, X.-W.; Jamal, A.; M. Al-Ahmadi, H.; Ahmad, F. Predicting the Pillar Stability of Underground Mines with Random Trees and C4.5 Decision Trees. Appl. Sci. 2020, 10, 6486. https://doi.org/10.3390/app10186486
Ahmad M, Al-Shayea NA, Tang X-W, Jamal A, M. Al-Ahmadi H, Ahmad F. Predicting the Pillar Stability of Underground Mines with Random Trees and C4.5 Decision Trees. Applied Sciences. 2020; 10(18):6486. https://doi.org/10.3390/app10186486
Chicago/Turabian StyleAhmad, Mahmood, Naser A. Al-Shayea, Xiao-Wei Tang, Arshad Jamal, Hasan M. Al-Ahmadi, and Feezan Ahmad. 2020. "Predicting the Pillar Stability of Underground Mines with Random Trees and C4.5 Decision Trees" Applied Sciences 10, no. 18: 6486. https://doi.org/10.3390/app10186486
APA StyleAhmad, M., Al-Shayea, N. A., Tang, X.-W., Jamal, A., M. Al-Ahmadi, H., & Ahmad, F. (2020). Predicting the Pillar Stability of Underground Mines with Random Trees and C4.5 Decision Trees. Applied Sciences, 10(18), 6486. https://doi.org/10.3390/app10186486