Evaluation of Forest Industry Scenarios to Increase Sustainable Forest Mobilization in Regions of Low Biomass Demand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Approach and Model Development
- (i)
- Supply, or how much and where the resource (forest biomass) is available in the region;
- (ii)
- Demand, or what characteristics of the resource are of interest to the users (forest industry);
- (iii)
- The interactions between supply and demand in the study area.
2.3. Supply Assessment
2.3.1. Quantity Model
2.3.2. General Model Restrictions
- (i)
- Forest spatial units are even-aged maritime pine stands;
- (ii)
- Species composition in a particular Uij is constant in time;
- (iii)
- Site Index (SI) for a particular Uij is constant in time;
- (iv)
- The Density Factor (FN) for a particular Uij is constant in time;
- (v)
- When a unit is harvested, Density is reset to 2000 trees/ha the following year.
- (vi)
- When thinning is applied, no other operation (either thinning or felling) can be applied again in less than 6 years.
- (vii)
- No spatial restrictions apply to thinning or felling.
2.4. Demand Assessment
2.4.1. Demand Scenarios
- Biomass I (B1): an existing pellets production plant located just west the study area (Chaves);
- Biomass II (B2) and Sawmill (S1): a plant with two divisions, a biomass-fired power plant and a sawmill, located in Bragança, the largest city in the region;
- Biomass III (B3): a biomass-fired power plant located in Vimioso, in the east of the region, where forests, although young, are relatively abundant.
2.4.2. Value and Price Models
2.5. Supply–Demand Interaction: Development of Competition Scenarios
- (1)
- Maximizing value: maximization of the value (maximum resource suitability) for each spatial unit; it was assumed that all industries seek the highest resource value and are willing to pay the price corresponding to its value. Due to the large number of spatial units in the study area, we established an automatic routine in C# to formalize the problem following the Integer Linear Programming (ILP) scheme in Equation (1)
- (2)
- Solving the problem: solving the ILP scheme in (1) using an approximation of optimal solution by the B&B method applied with the open source tool lp_solve 5.5 IDE [62]; B&B was restricted to a threshold (GAP) of 10% and stopped when the first solution was found;
- (3)
- Writing the solution: production of a new forest spatial distribution considering changes in each Uij in time when a solution in (2) was found.
- (i)
- The value of the resource is established based on its demand through a set of criteria representing the valuation of demand according to each industry;
- (ii)
- The price of the resource is related to its value (maximum value, maximum price; minimum value, minimum price;
- (iii)
- Forests can be harvested when three conditions are simultaneously met:
- a.
- Availability—the resource is available when it can be exploited according to economic, social and environmental conditions and local national legal frameworks;
- b.
- Price—the price of the resource satisfies the two parts involved in the process: the buyer and the seller;
- c.
- Quantity—there is enough resource for the sustainable operation of an industry;
- (iv)
- Forest resources can only be extracted (through thinning or harvesting) by one of the competing industries. When a land unit meets all the rules above, it will be used (harvested or thinned) by the industry that pays the highest price.
3. Results
3.1. Initialization Model
3.2. Goals Adjustment
4. Discussion
4.1. Scenario Selection
4.1.1. The Selection Process Based on Objectives
4.1.2. Best Scenario Analysis
4.2. Final Considerations
4.2.1. Behaviour of the Modelling Framework
4.2.2. Limitations
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Forest Stochastic Distribution Statistics (FSD) | ||||||
---|---|---|---|---|---|---|
Indicator | FSD0 | FSD1 | FSD2 | FSD3 | FSD4 | FSD5 |
Area (ha) | 28041 | 27918 | 27971 | 27765 | 27853 | 27906 |
Total Volume (m3) | 1.54M | 1.49M | 1.60M | 1.53M | 1.51M | 1.50M |
AVG Age (yrs) | 17.01 | 16.5 | 17.24 | 16.86 | 16.77 | 16.95 |
AVG Volume per land unit (m3/ha) | 55.02 | 53.55 | 57.31 | 55.14 | 54.34 | 54.00 |
AVG density (trees/ha) | 414.09 | 414.21 | 412.47 | 413.06 | 413.45 | 414.17 |
Managed area (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Appendix B
Scenario | Type | Variable | B1 | B2 | B3 | S1 |
---|---|---|---|---|---|---|
1 | Thinning | Age [Min, Max] (years) | [12, 30] | - | - | - |
Vol. restriction (m3) | ≥25 | - | - | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | - | - | - | |
Min volume (m3) | ≥100 | - | - | - | ||
[Min, Max] (cm) | [0, 65] | - | - | - | ||
2 | Thinning | Age [Min, Max] (years) | [12, 30] | [12, 30] | - | - |
Vol. restriction (m3) | ≥25 | ≥25 | - | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | [30, 65] | - | - | |
Vol. restriction (m3) | ≥100 | ≥100 | - | - | ||
[Min, Max] (cm) | [0, 65] | [0, 65] | - | - | ||
3 | Thinning | Age [Min, Max] (years) | [12, 30] | [12, 30] | [12, 30] | - |
Vol. restriction (m3) | ≥25 | ≥35 | ≥25 | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | [30, 65] | [30, 65] | - | |
Vol. restriction (m3) | ≥100 | ≥100 | ≥100 | - | ||
[Min, Max] (cm) | [0, 65] | [0, 65] | [0, 65] | - | ||
4 | Thinning | Age [Min, Max] (years) | [12, 30] | - | [12, 30] | - |
Vol. restriction (m3) | ≥25 | - | ≥25 | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | - | [30, 65] | - | |
Vol. restriction (m3) | ≥100 | - | ≥100 | - | ||
[Min, Max] (cm) | [0, 65] | - | [0, 65] | - | ||
5 | Thinning | Age [Min, Max] (years) | [12, 35] | [12, 35] | - | - |
Vol. restriction (m3) | ≥25 | ≥25 | - | - | ||
Final cut | Age [Min, Max] (years) | - | - | - | [35, 65] | |
Vol. restriction (m3) | - | - | - | ≥100 | ||
[Min, Max] (cm) | - | - | - | [30, 65] | ||
6 | Thinning | Age [Min, Max] (years) | [12, 30] | [12, 30] | -- | - |
Vol. restriction (m3) | ≥25 | ≥25 | - | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | [30, 65] | - | [35, 65] | |
Vol. restriction (m3) | ≥100 | ≥100 | - | ≥100 | ||
[Min, Max] (cm) | [0, 25] | [0, 25] | - | [30, 65] | ||
7 | Thinning | Age [Min, Max] (years) | [12, 35] | [12, 35] | [12, 35] | - |
Vol. restriction (m3) | ≥25 | ≥25 | ≥25 | - | ||
Final cut | Age [Min, Max] (years) | - | - | - | [35, 65] | |
Vol. restriction (m3) | - | - | - | ≥100 | ||
[Min, Max] (cm) | - | - | - | [30, 65] | ||
8 | Thinning | Age [Min, Max] (years) | [12, 30] | [12, 30] | [12, 30] | - |
Vol. restriction (m3) | ≥25 | ≥25 | ≥25 | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | [30, 65] | [30, 65] | [35, 65] | |
Vol. restriction (m3) | ≥100 | ≥100 | ≥100 | ≥100 | ||
[Min, Max] (cm) | [0, 25] | [0, 25] | [0, 25] | [30, 65] | ||
9 | Thinning | Age [Min, Max] (years) | [12, 30] | - | - | - |
Vol. restriction (m3) | ≥25 | - | - | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | - | - | [35, 65] | |
Vol. restriction (m3) | ≥100 | - | - | ≥100 | ||
[Min, Max] (cm) | [0, 25] | - | - | [30, 65] | ||
10 | Thinning | Age [Min, Max] (years) | [12, 30] | [12, 30] | - | - |
Vol. restriction (m3) | ≥25 | ≥25 | - | - | ||
Final cut | Age [Min, Max] (years) | [30, 65] | [30, 65] | - | [35, 65] | |
Vol. restriction (m3) | ≥100 | ≥100 | - | ≥100 | ||
[Min, Max] (cm) | [0, 25] | [0, 25] | - | [30, 65] |
Price €/m3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario | Period | Harvest Type | B1 | B2 | B3 | S1 | ||||
min | max | min | max | min | max | min | max | |||
1 | t0 | Thinning | 5.00 | 12.00 | - | - | - | - | - | - |
t20 | Thinning | 6.00 | 14.00 | - | - | - | - | - | - | |
t0 | Felling | 12.00 | 20.00 | - | - | - | - | - | - | |
t20 | Felling | 14.00 | 22.00 | - | - | - | - | - | - | |
2 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | - | - | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | - | - | - | - | |
t0 | Felling | 12.00 | 20.00 | 12.00 | 20.00 | - | - | - | - | |
t20 | Felling | 14.00 | 22.00 | 14.00 | 22.00 | - | - | - | - | |
3 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | 5.00 | 12.00 | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | 6.00 | 14.00 | - | - | |
t0 | Felling | 12.00 | 20.00 | 12.00 | 20.00 | 12.00 | 20.00 | - | - | |
t20 | Felling | 14.00 | 22.00 | 14.00 | 22.00 | 14.00 | 22.00 | - | - | |
4 | t0 | Thinning | 5.00 | 12.00 | - | - | 5.00 | 12.00 | - | - |
t20 | Thinning | 6.00 | 14.00 | - | - | 6.00 | 14.00 | - | - | |
t0 | Felling | 12.00 | 20.00 | - | - | 12.00 | 20.00 | - | - | |
t20 | Felling | 14.00 | 22.00 | - | - | 14.00 | 22.00 | - | - | |
5 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | - | - | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | - | - | - | - | |
t0 | Felling | - | - | - | - | - | - | 25.00 | 35.00 | |
t20 | Felling | - | - | - | - | - | - | 27.00 | 40.00 | |
6 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | - | - | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | - | - | - | - | |
t0 | Felling | 12.00 | 20.00 | 12.00 | 20.00 | - | - | 25.00 | 35.00 | |
t20 | Felling | 14.00 | 22.00 | 14.00 | 22.00 | - | - | 27.00 | 40.00 | |
7 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | 5.00 | 12.00 | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | 6.00 | 14.00 | - | - | |
t0 | Felling | - | - | - | - | - | - | 25.00 | 35.00 | |
t20 | Felling | - | - | - | - | - | - | 27.00 | 40.00 | |
8 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | 5.00 | 12.00 | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | 6.00 | 14.00 | - | - | |
t0 | Felling | 12.00 | 20.00 | 12.00 | 20.00 | 12.00 | 20.00 | 25.00 | 35.00 | |
t20 | Felling | 14.00 | 22.00 | 14.00 | 22.00 | 14.00 | 22.00 | 27.00 | 40.00 | |
9 | t0 | Thinning | 5.00 | 12.00 | - | - | - | - | - | - |
t20 | Thinning | 6.00 | 14.00 | - | - | - | - | - | - | |
t0 | Felling | 12.00 | 20.00 | - | - | - | 25.00 | 35.00 | ||
t20 | Felling | 14.00 | 22.00 | - | - | - | - | 27.00 | 40.00 | |
10 | t0 | Thinning | 5.00 | 12.00 | 5.00 | 12.00 | - | - | - | - |
t20 | Thinning | 6.00 | 14.00 | 6.00 | 14.00 | - | - | - | - | |
t0 | Felling | 12.00 | 20.00 | 12.00 | 20.00 | - | - | 25.00 | 35.00 | |
t20 | Felling | 14.00 | 22.00 | 14.00 | 22.00 | - | - | 27.00 | 40.00 |
Appendix C
Volume Goals (m3) Per Industry | |||||||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Period | B1 | B2 | B3 | S1 | ||||
min | max | min | max | min | max | min | max | ||
1 | t0 | - | 40,000 | - | - | - | - | - | - |
t20 | - | 50,000 | - | - | - | - | - | - | |
2 | t0 | - | 40,000 | - | 40,000 | - | - | - | - |
t20 | - | 45,000 | - | 45,000 | - | - | - | - | |
3 | t0 | - | 40,000 | - | 40,000 | - | 12,000 | - | - |
t20 | - | 45,000 | - | 45,000 | - | 15,000 | - | - | |
4 | t0 | - | 40,000 | - | - | - | 12,000 | - | - |
t20 | - | 45,000 | - | - | - | 15,000 | - | - | |
5 | t0 | - | 20,000 | - | 30,000 | - | - | - | 30,000 |
t20 | - | 30,000 | - | 40,000 | - | - | - | 40,000 | |
6 | t0 | - | 20,000 | - | 30,000 | - | - | - | 30,000 |
t20 | - | 30,000 | - | 40,000 | - | - | - | 40,000 | |
7 | t0 | - | 20,000 | - | 30,000 | - | 12,000 | - | 30,000 |
t20 | - | 30,000 | - | 40,000 | - | 15,000 | - | 40,000 | |
8 | t0 | - | 20,000 | - | 30,000 | - | 12,000 | - | 30,000 |
t20 | - | 30,000 | - | 40,000 | - | 15,000 | - | 40,000 | |
9 | t0 | - | 20,000 | - | - | - | - | - | 30,000 |
t20 | - | 20,000 | - | - | - | - | - | 30,000 | |
10 | t0 | - | 20,000 | - | 5000 | - | - | - | 30,000 |
t20 | - | 20,000 | - | 5000 | - | - | - | 30,000 |
Volume Goals (m3) Per Industry | |||||||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Period | B1 | B2 | B3 | S1 | ||||
Min | Max | Min | Max | Min | Max | Min | Max | ||
1 | t0 | 10,000 | 25,000 | - | - | - | - | - | - |
t20 | 10,000 | 25,000 | - | - | - | - | - | - | |
2 | t0 | 10,000 | 20000 | 10,000 | 30,000 | - | - | - | - |
t20 | 10,000 | 25,000 | 10,000 | 35,000 | - | - | - | - | |
3 | t0 | 10,000 | 20,000 | 15000 | 30,000 | 5000 | 10,000 | - | - |
t20 | 10,000 | 20,000 | 15000 | 35,000 | 5000 | 12500 | - | - | |
4 | t0 | 10,000 | 20,000 | - | - | 5000 | 10,000 | - | - |
t20 | 10,000 | 20,000 | - | - | 5000 | 12,500 | - | - | |
5 | t0 | 10,000 | 20,000 | 10,000 | 20,000 | - | - | 10,000 | 30,000 |
t20 | 10,000 | 20,000 | 10,000 | 20,000 | - | - | 10,000 | 30,000 | |
6 | t0 | 10,000 | 20,000 | 10,000 | 20,000 | - | - | 10,000 | 30,000 |
t20 | 10,000 | 20,000 | 10,000 | 20,000 | - | - | 10,000 | 30,000 | |
7 | t0 | 10,000 | 20,000 | 10,000 | 20,000 | 5000 | 10,000 | 10,000 | 30,000 |
t20 | 10,000 | 25,000 | 10,000 | 20,000 | 5000 | 10,000 | 10,000 | 30,000 | |
8 | t0 | 2000 | 10,000 | 5000 | 15,000 | 1000 | 3000 | 25,000 | 40,000 |
t20 | 2000 | 10,000 | 5000 | 15,000 | 1000 | 3000 | 25,000 | 40,000 | |
9 | t0 | 0 | 20,000 | - | - | - | - | 25,000 | 40,000 |
t20 | 0 | 20,000 | - | - | - | - | 25,000 | 40,000 | |
10 | t0 | 0 | 20,000 | 0 | 5000 | - | - | 15,000 | 30,000 |
t20 | 0 | 20,000 | 0 | 5000 | - | - | 15,000 | 30,000 |
Appendix D
Appendix E
References
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left—How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial distribution of the potential forest biomass availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- European Commission. Sustainable and Optimal Use of Biomass for Energy in the EU beayond 2020; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sikkema, R.; Steiner, M.; Junginger, M.; Hiegl, W.; Hansen, M.T.; Faaij, A. The European wood pellet markets: Current status and prospects for 2020. Biofuels Bioprod. Biorefining 2011, 5, 250–278. [Google Scholar] [CrossRef]
- Lindstad, B.H.; Pistorius, T.; Ferranti, F.; Dominguez, G.; Gorriz-Mifsud, E.; Kurttila, M.; Leban, V.; Navarro, P.; Peters, D.M.; Pezdevsek Malovrh, S.; et al. Forest-based bioenergy policies in five European countries: An explorative study of interactions with national and EU policies. Biomass Bioenergy 2015, 80, 102–113. [Google Scholar] [CrossRef]
- Mubareka, S.; Jonsson, R.; Rinaldi, F.; Azevedo, J.C.; de Rigo, D.; Sikkema, R. Forest bio-based economy in Europe. In European Atlas of Forest Tree Species; Publication Office of the EU: Luxemburg, 2016; pp. 20–23. [Google Scholar]
- De Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Cristina, C.; Martin, C. Bioenergy Europe Pellet Report 2019; Bioenergy Europe: Brussels, Belgium; The European Pellet Council: Brussels, Belgium, 2019. [Google Scholar]
- Valente, S.; Coelho, C.; Ribeiro, C.; Marsh, G. Sustainable Forest Management in Portugal: Transition from Global Policies to Local Participatory Strategies. Int. For. Rev. 2015, 17, 368–383. [Google Scholar] [CrossRef]
- Azevedo, J.C.; Ferreira, M.C.; Nunes, L.F.; Feliciano, M. What Drives Consumption of Wood Energy in the Residential Sector of Small Cities in Europe and How that Can Affect Forest Resources Locally? The Case of Bragança, Portugal. Int. For. Rev. 2016, 18, 1–12. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Koh, L.P.; Ghazoul, J. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biol. Conserv. 2008, 141, 2450–2460. [Google Scholar] [CrossRef]
- Crandall, M.S.; Adams, D.M.; Montgomery, C.A.; Smith, D. The potential rural development impacts of utilizing non-merchantable forest biomass. For. Policy Econ. 2017, 74, 20–29. [Google Scholar] [CrossRef] [Green Version]
- OTI; Castro Rego, F.; Fernandes, P.; Sande Silva, J.; Azevedo, J.; Moura, J.M.; Oliveira, E.; Cortes, R.; Viegas, D.X.; Caldeira, D.; et al. Redução do Risco de Incêndio Através da Utilização de Biomassa Lenhosa Para Energia; Assembleia da República: Lisboa, Portugal, 2020. [Google Scholar]
- Cambero, C.; Sowlati, T. Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives—A review of literature. Renew. Sustain. Energy Rev. 2014, 36, 62–73. [Google Scholar] [CrossRef]
- Valente, C.; Hillring, B.G.; Solberg, B. Bioenergy from mountain forest: A life cycle assessment of the Norwegian woody biomass supply chain. Scand. J. For. Res. 2011, 26, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Zeithaml, V.A. Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Wicke, B.; van der Hilst, F.; Daioglou, V.; Banse, M.; Beringer, T.; Gerssen-Gondelach, S.; Heijnen, S.; Karssenberg, D.; Laborde, D.; Lippe, M.; et al. Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy 2015, 7, 422–437. [Google Scholar] [CrossRef] [Green Version]
- Nobre, S.; Eriksson, L.-O.; Trubins, R. The Use of Decision Support Systems in Forest Management: Analysis of FORSYS Country Reports. Forests 2016, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Hujala, T.; Khadka, C.; Wolfslehner, B.; Vacik, H. Review. Supporting problem structuring with computer-based tools in participatory forest planning. For. Syst. 2013, 22, 270–281. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield from Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-88306-7. [Google Scholar]
- Pommerening, A.; Muszta, A. Methods of modelling relative growth rate. For. Ecosyst. 2015, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Baskent, E.Z.; Keles, S. Spatial forest planning: A review. Ecol. Model. 2005, 188, 145–173. [Google Scholar] [CrossRef]
- Uhde, B.; Andreas Hahn, W.; Griess, V.C.; Knoke, T. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environ. Manag. 2015, 56, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.O.; Backéus, S.; Garcia, F. Implications of growth uncertainties associated with climate change for stand management. Eur. J. For. Res. 2012, 131, 1199–1209. [Google Scholar] [CrossRef]
- Segura, M.; Ray, D.; Maroto, C. Decision support systems for forest management: A comparative analysis and assessment. Comput. Electron. Agric. 2014, 101, 55–67. [Google Scholar] [CrossRef]
- Korosuo, A.; Wikström, P.; Öhman, K.; Eriksson, L.O. An integrated MCDA software application for forest planning: A case study in southwestern Sweden. Math. Comput. For. Nat. Resour Sci. (MCFNS) 2011, 3, 75–86. [Google Scholar]
- Barreiro, S.; Garcia-Gonzalo, J.; Borges, J.G.; Tomé, M.; Marques, S. SADfLOR Tutorial—A Web-Based Forest and Natural Resources Decision Support System (Work in Progress); FORCHANGE, ISA.: Lisboa, Portugal, 2013. [Google Scholar]
- Pérez-Rodríguez, F.; Nunes, L.; Azevedo, J.C. Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate 2018, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- DGT. Carta de Uso e Ocupação do Solo de Portugal Continental Para 2007 (COS2007); Direcção-Geral do Território: Lisboa, Portugal, 2007. [Google Scholar]
- Sil, Â.; Fernandes, P.M.; Rodrigues, A.P.; Alonso, J.M.; Honrado, J.P.; Perera, A.; Azevedo, J.C. Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosyst. Serv. 2019, 36, 100908. [Google Scholar] [CrossRef] [Green Version]
- Gigerenzer, G.; Gaissmaier, W. Heuristic Decision Making. Annu. Rev. Psychol. 2011, 62, 451–482. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Pukkala, T.; Li, F. Fine-tuning heuristic methods for combinatorial optimization in forest planning. Eur. J. For. Res. 2016, 135, 765–779. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Nunes, L.; Azevedo, J.C. AppTitude: Integration of different ecosystem services in forest optimization approaches. In Proceedings of the I International Conference on Research for Sustainable Development in Mountain Regions, Bragança, Portugal, 5–7 October 2016; IPB: Bragança, Portugal, 2016; p. 129. [Google Scholar]
- Boston, K. Forestry Raw Materials Supply Chain Management. In The Management of Industrial Forest Plantations: Theoretical Foundations and Applications; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2014; Volume 33, pp. 467–487. ISBN 978-94-017-8898-4. [Google Scholar]
- ICNF Inventário Florestal Nacional. Available online: http://www.icnf.pt/portal/florestas/ifn (accessed on 10 January 2019).
- Páscoa, F. Estrutura, Crescimento e Produção em Povoamentos de Pinheiro Bravo. Um Modelo de Simulação. Ph.D. Thesis, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal, 1987. [Google Scholar]
- Luis, J.F.; Fonseca, T.F. Fonseca The allometric model in the stand density management of Pinus pinaster Ait. In Portugal. Ann. For. Sci. 2004, 61, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Tomé, M. Tabela de Produção Geral Para o Pinheiro Bravo Desenvolvida no Âmbito do Projecto PAMAF 8165 “Regeneração, Condução e Crescimento do Pinhal Bravo das Regiões Litoral e Interior Centro”; Relatórios Técnico-Científicos do GIMREF RT9/2001; Centro de Estudos Florestais, Instituto Superior de Agronomia: Lisboa, Portugal, 2001. [Google Scholar]
- Pérez-Rodríguez, F.; Nunes, L.; Sil, Â.; Azevedo, J. FlorNExT®, a cloud computing application to estimate growth and yield of maritime pine (Pinus pinaster Ait.) stands in Northeastern Portugal. For. Syst. 2016, 25, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J.G.; Tome, M.; Oliveira, M.M. Assessing wildfire occurrence probability in Pinus pinaster Ait. Stands in Portugal. For. Syst. 2012, 21, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980; ISBN 978-0-07-054371-3. [Google Scholar]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Wiley Series in Probability and Mathematical Statistics; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Russo, R.d.F.S.M.; Camanho, R. Criteria in AHP: A Systematic Review of Literature. Procedia Comput. Sci. 2015, 55, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Schmoldt, D.; Kangas, J.; Mendoza, G.A.; Pesonen, M. (Eds.) The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2001; Volume 3, ISBN 978-0-7923-7076-5. [Google Scholar]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—The approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Saaty, T.L. Ratio Scales are Fundamental in Decision Making. In Proceedings of the 1996 International Symposium on the Analytic Hierarchy Process (ISAHP), Vancouver, BC, Canada, 12–15 July 1996; pp. 146–156. [Google Scholar]
- Gass, S.I. Model World: The Great Debate: MAUT versus AHP. Interfaces 2005, 35, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Ogle, R.A.; Dee, S.J.; Cox, B.L. Resolving inherently safer design conflicts with decision analysis and multi-attribute utility theory. Process Saf. Environ. Prot. 2015, 97, 61–69. [Google Scholar] [CrossRef]
- Howard, A.F.; Nelson, J.D. Area-based harvest scheduling and allocation of forest land using methods for multiple-criteria decision making. Can. J. For. Res. 1993, 23, 151–158. [Google Scholar] [CrossRef]
- Heinonen, T.; Pukkala, T. A comparison of one- and two-compartment neighbourhoods in heuristic search with spatial forest management goals. Silva Fenn. 2004, 38, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J. Wood pellets as a sustainable energy alternative in Portugal. Renew. Energy 2016, 85, 1011–1016. [Google Scholar] [CrossRef]
- Eliasson, L.; Eriksson, A.; Mohtashami, S. Analysis of factors affecting productivity and costs for a high-performance chip supply system. Appl. Energy 2017, 185, 497–505. [Google Scholar] [CrossRef]
- Navalho, I.; Alegria, C.; Quinta-Nova, L.; Fernandez, P. Integrated planning for landscape diversity enhancement, fire hazard mitigation and forest production regulation: A case study in central Portugal. Land Use Policy 2017, 61, 398–412. [Google Scholar] [CrossRef]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Havlíčková, K.; Weger, J.; Knápek, J. Modelling of biomass prices for bio-energy market in the Czech Republic. Simul. Model. Pract. Theory 2011, 19, 1946–1956. [Google Scholar] [CrossRef]
- Sessions, J.; Tuers, K.; Boston, K.; Zamora, R.; Anderson, R. Pricing Forest Biomass for Power Generation. West. J. Appl. For. 2013, 28, 51–56. [Google Scholar] [CrossRef]
- Thomas, J.; Ashok, S.; Jose, T.L. A Pricing Model for Biomass-based Electricity. Energy Sources Part B Econ. Plan Policy 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Lawler, E.L.; Wood, D.E. Branch-and-Bound Methods: A Survey. Oper. Res. 1966, 14, 699–719. [Google Scholar] [CrossRef]
- Berkelaar, M. lpSolve: Interface to Lp Solve v. 5.5 to Solve Linear/Integer Programs; R Package Version 2005. Available online: http://lpsolve.sourceforge.net/5.5/ (accessed on 10 January 2019).
- Hanewinkel, M.; Hummel, S.; Albrecht, A. Assessing natural hazards in forestry for risk management: A review. Eur. J. For. Res. 2011, 130, 329–351. [Google Scholar] [CrossRef]
- Fernandes, P.M. On the socioeconomic drivers of municipal-level fire incidence in Portugal. For. Policy Econ. 2016, 62, 187–188. [Google Scholar] [CrossRef]
- Sil, Â.; Rodrigues, A.P.; Carvalho-Santos, C.; Nunes, J.P.; Honrado, J.; Alonso, J.; Marta-Pedroso, C.; Azevedo, J.C. Trade-offs and Synergies Between Provisioning and Regulating Ecosystem Services in a Mountain Area in Portugal Affected by Landscape Change. Mt. Res. Dev. 2016, 36, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Borges, J.G. A Decision Support System for Assessing Trade-Offs between Ecosystem Management Goals: An Application in Portugal. Forests 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Abt, K.L.; Abt, R.C.; Galik, C. Effect of Bioenergy Demands and Supply Response on Markets, Carbon, and Land Use. For. Sci. 2012, 58, 523–539. [Google Scholar] [CrossRef]
- Shi, X.; Elmore, A.; Li, X.; Gorence, N.J.; Jin, H.; Zhang, X.; Wang, F. Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong Province, China. Biomass Bioenergy 2008, 32, 35–43. [Google Scholar] [CrossRef]
- Stephen, J.D.; Mabee, W.E.; Saddler, J.N. Biomass logistics as a determinant of second-generation biofuel facility scale, location and technology selection. Biofuels Bioprod. Biorefining 2010, 4, 503–518. [Google Scholar] [CrossRef]
Objective | Description | Component Directed to | Type |
---|---|---|---|
1 | Assure resilience of the region to absorb the operations of all industries | Supply | Necessary |
2 | Assure continuity in the operations of each industry throughout the simulation period | Demand | Necessary |
3 | Maximize volume harvest with respect to control scenario | Demand | Priority |
4 | Maximize resource valorisation with respect to control scenario | Demand | Priority |
5 | Maximize managed area in the study region | Supply–demand Interaction | Priority |
6 | Minimize competition among industries | Supply–demand Interaction | Priority |
7 | Minimize effects of forest fires | Supply–demand Interaction | Priority |
Name | Description |
---|---|
Scenario 1 (Control) | Corresponds to Biomass I (B1), where demand comes from an already existing pellets production plant located outside (Chaves) but consuming biomass from the study area; all the available pine biomass in the region can be used by this plant only; this is the control scenario and it will be used as reference for other scenarios |
Scenario 2 | Scenario 1 + Biomass II (B2), a bioenergy plant located in Bragança; no supply restrictions |
Scenario 3 | Scenario 2 + Biomass III (B3), a bioenergy plant located in Vimioso; no supply restrictions |
Scenario 4 | Scenario 1 + Biomass III (B3); no supply restrictions |
Scenario 5 | Scenario 1 + Biomass II (B2) and Sawmill (S1); supply in B1 and B2 restricted to biomass extracted by thinning |
Scenario 6 | Scenario 5; biomass supply to B1 and B2 from thinning and felling when average dbh < 25 cm at stand age 30 years |
Scenario 7 | Scenario 5 + Biomass III (B3); supply in B1, B2 and B3 from thinning and felling when average dbh < 25 cm at stand age 30 years |
Scenario 8 | Scenario 7 + Sawmill (S1); supply in B1 limited to thinning and felling in stands of average dbh < 25 cm) |
Scenario 9 | Scenario 1 + Sawmill (S1); supply in B1 limited to thinning and felling in stands of average dbh < 25 cm) |
Scenario 10 | Scenario9 + Biomass II (B2); in B2 maximum annual volume of 5000 m3 |
Score | Description |
---|---|
Null | The criterion is not important, or it is not evaluated (out of the function) |
0 | The criterion is not available for the tree hierarchy (for technical or legal limitations) |
1 to 10 | 1: minimum weight; 10: maximum weight |
Obj. 1 | Obj. 2 | Obj. 3 | Obj. 4 | Obj. 5 | Obj. 6 | Obj. 7 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario | Id 1 (m3/yr) | Id 2 (m3/yr) | Id 3 (Y/N) | Id 4 (m3) | Id 5 (€/m3) | Id 6 (€/m3) | Id 7 (ha) | Id 8 (m3) | Id 9 (ha) | Id 10 (m3) |
1 | 32,170 | 50,485 | Yes | 730,686 | 8.42 | 16.40 | 2647 | 0 | 5040 | 358,792 |
2 | −9635 | 1157 | Yes | 1,548,762 | 9.81 | 16.87 | 1815 | 497 | 4921 | 261,518 |
3 | −16,587 | 22,114 | Yes | 1,604,465 | 9.02 | 17.42 | 1650 | 91,071 | 4976 | 246,817 |
4 | 21,355 | 43,034 | Yes | 1,412,117 | 8.26 | 17.16 | 2765 | 11,029 | 5130 | 346,312 |
5 | 24,792 | 22,173 | Yes | 1,000,087 | 10.41 | 30.82 | 4194 | 151,260 | 5136 | 354,205 |
6 | 12,973 | 7729 | Yes | 1,208,860 | 10.41 | 21.80 | 2685 | 166,175 | 5068 | 324,538 |
7 | 25,408 | 22,980 | Yes | 1,011,611 | 10.34 | 30.75 | 4338 | 225,035 | 4996 | 338,116 |
8 | 13,018 | 6495 | Yes | 1,227,226 | 9.99 | 21.25 | 2811 | 251,117 | 5024 | 316,945 |
9 | 29,147 | 26,521 | Yes | 873,077 | 8.42 | 23.78 | 2476 | 2382 | 5063 | 365,358 |
10 | 27,857 | 27,002 | Yes | 898,211 | 10.28 | 23.70 | 2959 | 25,730 | 4957 | 357,653 |
Obj. 1 | Obj. 2 | Obj. 3 | Obj. 4 | Obj. 5 | Obj. 6 | Obj.7 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario | Id 1 (m3/y) | Id 2 (m3/y) | Id 3 (Y/N) | Id 4 (m3) | Id 5 (€/m3) | Id 6 (€/m3) | Id 7 (ha) | Id 8 (m3) | Id 9 (ha) | Id 10 (m3) |
1 | 45,350 | 46,470 | Yes | 524,588 | 8.39 | 16.56 | 2717 | 0 | 5056 | 396,398 |
2 | 10,838 | 7225 | Yes | 1,154,367 | 10.36 | 16.87 | 1879 | 632 | 4945 | 323,078 |
3 | 3607 | - | No | - | - | - | - | - | - | - |
4 | 37,135 | - | No | - | - | - | - | - | - | - |
5 | −3570 | - | No | - | - | - | - | - | - | - |
6 | −3496 | - | No | - | - | - | - | - | - | - |
7 | −13,024 | - | No | - | - | - | - | - | - | - |
8 | 6542 | 4031 | Yes | 1,308,383 | 9.97 | 21.14 | 2718 | 45,600 | 4949 | 304,874 |
9 | 17,544 | 19,280 | Yes | 1,088,890 | 8.40 | 23.64 | 2442 | 2232 | 5107 | 334,255 |
10 | 27,090 | 27,506 | Yes | 902,343 | 10.35 | 23.72 | 2826 | 4851 | 5063 | 358,871 |
Obj. 1 | Obj. 2 | Obj. 3 | Obj. 4 | Obj. 5 | Obj. 6 | Obj.7 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario | R 1 | R 2 | R 3 | R 4 | R 5 | R 6 | R 7 | R 8 | R 9 | R 10 |
2 | 0.24 | 0.16 | Yes | 2.20 | 1.23 | 1.02 | 0.69 | 0.0005 | 0.98 | 0.82 |
8 | 0.14 | 0.09 | Yes | 2.49 | 1.19 | 1.28 | 1.00 | 0.0349 | 0.98 | 0.77 |
9 | 0.39 | 0.41 | Yes | 2.08 | 1.00 | 1.43 | 0.90 | 0.0020 | 1.01 | 0.84 |
10 | 0.60 | 0.59 | Yes | 1.72 | 1.23 | 1.43 | 1.04 | 0.0054 | 1.00 | 0.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Rodríguez, F.; Azevedo, J.C. Evaluation of Forest Industry Scenarios to Increase Sustainable Forest Mobilization in Regions of Low Biomass Demand. Appl. Sci. 2020, 10, 6297. https://doi.org/10.3390/app10186297
Pérez-Rodríguez F, Azevedo JC. Evaluation of Forest Industry Scenarios to Increase Sustainable Forest Mobilization in Regions of Low Biomass Demand. Applied Sciences. 2020; 10(18):6297. https://doi.org/10.3390/app10186297
Chicago/Turabian StylePérez-Rodríguez, Fernando, and João C. Azevedo. 2020. "Evaluation of Forest Industry Scenarios to Increase Sustainable Forest Mobilization in Regions of Low Biomass Demand" Applied Sciences 10, no. 18: 6297. https://doi.org/10.3390/app10186297
APA StylePérez-Rodríguez, F., & Azevedo, J. C. (2020). Evaluation of Forest Industry Scenarios to Increase Sustainable Forest Mobilization in Regions of Low Biomass Demand. Applied Sciences, 10(18), 6297. https://doi.org/10.3390/app10186297