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Abstract: Forest management based on sustainability and multifunctionality requires reliable and
user-friendly tools to address several objectives simultaneously. In this work we present FlorNExT
Pro®, a multiple-criteria landscape-scale forest planning and management computer tool, and
apply it in a region in the north of Portugal to find optimized management solutions according
to objectives such as maximization of net present value (NPV), volume growth, and carbon storage,
and minimization of losses due to fire. Comparisons made among single- and multi-objective
solutions were made to explore the range of possible indicators provided by the tool such as carbon
sequestered, volume growth, probability of fire occurrence, volume of wood extracted, and evenness
of harvesting in the management period. Results show that FlorNExT Pro® is a reliable, flexible, and
useful tool to incorporate multiple criteria and objectives into spatially explicit complex management
problems and to prepare sustainable and multifunctional forest management plans at the landscape
level. FlorNExT Pro® is also suited to guiding and adapting forest management for uncertainty
scenarios for the assessment of ecosystem services and fire risk, therefore playing an important role
in the maintenance of sustainable landscapes in the south of Europe.

Keywords: operational research; optimization; carbon sequestration; spatially explicit forest
management planning; decision support systems; Portugal

1. Introduction

Forests support many ecological functions that contribute to the supply of diverse high-value
ecosystem services (ESs), thus directly and indirectly benefiting human societies [1]. Many of these
ecosystem services are synergic and they can be supplied and used simultaneously. Examples include
timber—carbon sequestration [2], or water regulation/supply—carbon sequestration [3]. In other cases,
the supply of one or several ESs implies a reduction in the supply of others (e.g., [3,4]). Tradeoffs and
synergies among ESs (or classes or bundles of ESs) are therefore significant management challenges
considering that the potential conflicting supply of ESs needs to be taken into account in sustainable
forestry planning. The integration of tradeoffs and synergies of ESs into forest decision support
systems is a response to that need and is a growing research topic [5–7]. Observed advances in this
field are foreseen as fundamental to supporting sound decision making at the site and landscape levels
as well as to allow the integration of stakeholders with interests related to particular forest ESs in the
areas of game, fisheries, tourism, timber, or water, in decision making processes.

The implementation of the ES concept and ES tradeoff analysis in forestry requires technology
to simultaneously address diverse management criteria and indicators. There is a long tradition in
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forestry of looking at management from multiple perspectives based on concepts such as multiple-use
management [8], multifunctional forest management [9], landscape forestry [10], and ecosystem
management and adaptive management [11] that involve management of forests considering multiple
goals and objectives. This multiple approach to forest management is not always easy to plan and
apply due to uncertainty (environmental, social, economic) but also to the general lack of knowledge
in modeling and programing in the forest sector (particularly at the practice level) and to the lack of
available tools that respond adequately to the needs of individual owners and managers, consultants,
communities, and institutions in terms of planning and managing forests on a multiple-criteria
multiple-objective basis.

Decision support systems (DSSs) are well established in forestry [12,13] and reviews of tools and
resources concerning them are abundant (e.g., the ForestDSS web page at http://www.forestdss.org/,
Forsys wiki [13], or FORSYS (Cost Action FP 0804 Forest Management Decision Support Systems)).
DSSs help to detect optimal (or satisfactory if optimal is not reachable) solutions for specific goals
and contribute to forest management focused on sustainability. The field of operational research
(OR), originating during the Second World War and growing quickly in the last decades [14,15],
provides fundamental tools to help find solutions for complex problems that are not possible to solve
directly [16]. In OR, the use of optimization to support decision making approaches in sustainable
forest management is an established field producing numerous methodologies and applications related
to the topic [17–20], namely for species abundant in the Iberian Peninsula such as Pinus sylvestris [21],
P. pinaster [22], Quercus suber and Q. rotundifolia [23], and Eucalyptus globulus [24].

Based on established programing and optimization methods and the long experience of
development of DSSs in forestry, harvest scheduling models are a particular type of tool currently
available with the purpose of supporting decision making based on the multiple-criteria approach.
Examples include the model to address forest production and biodiversity conservation [25], the forest
management scheduling model for timber and old forest production [26], spatial forest planning
processes for volume, carbon, and spatial aggregation of management activities [27], and the planning
method addressing wood production and hydrologic functions [28], among many others. Until recently,
forest models had very limited transferability. There is, however, a trend of making forest planning
and management computer models and tools simple, efficient, user friendly, open, and accessible to
not just scientists but managers and owners as part of shared and transferable modeling and DSS
technology development [29–31].

In the case of maritime pine, Pinus pinaster, there has been a substantial amount of research
conducted in Portugal over recent years addressing decision support systems development based on
multiple-criteria approaches [32–39]. However, the applicability of these models and approaches in the
management of maritime pine landscapes requires further promotion. The objective of this research
was to develop an accessible and easy to use multiple-criteria landscape scale forest planning and
management computer tool (FlorNExT Pro®) to optimize forest management based on a combination
of criteria and objectives as a response to the increasing need to put into practice forest management in
a multifunctional, multi-objective, spatially explicit way. One of the components of the multi-objective
problem is carbon sequestration in standing biomass that can be maximized at the landscape level
through the application of FlorNExT Pro® within a climate change mitigation framework. Also, the
probability of fire is a component of the objective function in the tool that can be used to minimize
fire risk through planning and management of forest landscapes. Other components are net present
value (NPV) and volume growth rate. The tool was applied in a region in northeastern Portugal
with the goal of demonstrating the definition of optimized management plans for combinations and
weights of management objectives, restrictions, and constraints, as well as prices of wood and discount
rates. The development and application of FlorNExT Pro® is part of a regional strategy to increase
technology transfer in forestry in northeastern Portugal.

http://www.forestdss.org/
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2. Materials and Methods

In this section, we first present and describe the management tool developed in this research
(FlorNExT Pro®) and then apply it to an area in the north of Portugal to demonstrate the establishment
of forest management plans according to particular objectives or groups of objectives, restrictions,
and constraints.

2.1. FlorNExT Pro®

FlorNExT Pro® is a computer tool developed with the aim of defining optimized management
plans addressing simultaneously several (from a few to several hundred) maritime pine stands in
northeastern Portugal, growing in heterogeneous conditions and according to several objectives,
restrictions, and constraints (Figure 1). The tool is suited to combine a high diversity of stand
conditions (slope, productivity, age, stocking) and several criteria and indicators in multi-objective and
multifunctional forest management for a particular ecological region for which the same set of stand
growth and yield models can be applied. Although FlorNExT Pro® was developed specifically for the
northeast of Portugal using growth and yield models validated locally [31], it can be adjusted to any
other region in the world as long as growth and yield models are available.
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Figure 1. Simplification of the general management optimization procedure of FlorNExT Pro®.

The management plans outputted by FlorNExT Pro® consist of a sequence of spatially explicit
forest operations to be applied within a specific period of time according to the management criteria
and objectives as well as restrictions and constrains imposed. The tool finds an optimal management
solution among all the possible combinations of management practices (thinning, felling, and no
treatment) to which stands are subjected to according to the number and amplitude of management
intervals, delay between periods, and starting year, defined by the user. The following settings
(Figure 2) are defined as:

• Number of periods: number of management periods (moments in time in which management
operations—thinning, felling, or no-treatment—are applied);

• Maximum number of thinnings: maximum number of thinnings in each management unit
or stand;

• Interval between operations: number of periods without management operations in each
management unit or stand;

• Starting: year at which optimization starts;
• Amplitude: length of a management period, in years.

In the optimization process, all possible combinations of management operations at the stand level
(management alternatives) are simulated and tested at the landscape level. The number of alternatives
depends strongly on the number of periods and management practices prescribed. To reduce their
number and make the process simpler and faster, some restrictions can be applied, such as the
establishment of a minimum harvesting age and minimum and maximum thinning ages (Figure 2).
The alternatives generated in this step will then be tested in all stands looking for an overall optimized
management solution.
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Figure 2. FlorNExT Pro® interface (in Portuguese) of the general restrictions (a) and management
alternatives generator (b). General restrictions (Restrições gerais) include: minimum age for felling
(Corte final: Idade mínima), minimum and maximum age for thinning (Desbastes: Idade mínima; Idade
máxima), and number of days with more than 1 mm of rain for thinning (Desbastes: Dias com mais de
1mm de chuva ao ano). The management alternatives generator (Configuração de alternativas) requires
definition of: number of periods (Número de períodos), maximum number of thinnings (Número máximo
de desbastes), interval between operations (Intervalo entre operações), starting year (Início), and amplitude.

The tool operates based on two types of input data: spatial data and alphanumeric data. Spatial
data consists of the geographical representation (location, area, topology) of all units or stands
(represented as polygons) within a certain management area. It remains unchanged throughout
the optimization process. Spatial data can be imported from conventional commercial or open source
Geographic Information System (GIS) software or libraries like Gmap.Net linked with Google Maps,
Bing, or OpenStreetMap. FlorNExT Pro® also gives the user the possibility to create, delete and edit
polygons based on data from different map providers (Figure 3). This is particularly important in
regions where no cadastral or detailed land use/land cover data is available. New/edited data can
be saved as a FlorNExT Pro® project or exported in shapefile format. When edited, the geometry of
each polygon is automatically recalculated and its area correspondently updated. Each polygon is
described according to a series of attributes managed by the user who can add/edit/delete fields in
a table which can also be used for querying and selection of management units of interest.

Alphanumeric forest inventory data is used to describe quantitatively forest stands within the
management area at the beginning of the management period. FlorNExT Pro® uses the following input
inventory variables: year of the inventory; species; age (years); dominant height (m); density (trees/ha);
basal area (m2/ha); site index (40 years; m); average slope (%); and percentage of the stand covered by
trees (%), if applicable. This data is required not just to define the condition of management units at
year 0 of the optimization period but also to feed the forest growth and yield models coupled to the
tool that will be used to project the condition of the stands over time. In its default version, FlorNExT
Pro® applies models validated for the northeast of Portugal [31] for which it was originally designed.
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Figure 3. Example of spatial data manipulation capacities in FlorNExT Pro®: polygon editing based
on photointerpretation of an aerial photograph in the region showing the location of polygon vertices
that can be moved or deleted by the user (above) and tabular identification of these vertices (below).
Translation: Pontos do polígono em edição—points of the edited polygon.

FlorNExT Pro® explores several criteria of sustainable multifunctional forestry based on
indicators computed by the software throughout the optimization process following a multi-objective
approach [40]. Inspired in [24], the tool combines the indicators net present value (NPV), volume
growth, carbon sequestration, and losses due to fire to, after normalization, search for optimal
management solutions meeting these objectives (Figure 4). NPV is a conventional financial indicator
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of value or net benefit over a period of time related to an investment allowing converting benefits to
current value units. In FlorNExT Pro®, it is calculated as the summation of discount factors over time
(calculated based on discount rate and time) for all the stands harvested during the simulations period.
Since costs are difficult to measure, we considered only the benefits of harvesting in the calculations
based on the price of wood extracted through thinning and felling. Volume growth is an indicator
of productivity referring to the average volume accumulated per ha and year. Carbon sequestration
is the amount of atmospheric carbon captured by live trees in the forest stand and it is calculated as
0.479 times the standing biomass [41]. Losses due to fire are an indicator of the probability of a stand to
be burned and are is calculated considering both a wildfire occurrence probability given by a logistic
model based on stand structure and slope [42] and a wildfire ignition model [43]. Both models were
established based on data from Portugal and combined as recommended in [42]. Additional criteria
and indicators can be added to the tool after modifications in the code.
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Figure 4. Section of the FlorNExT Pro® interface (in Portuguese) showing the choices of criteria
available to be addressed in the multi-objective problem formulation. In this example, the objectives
“maximize volume growth in stands”, “maximize carbon fixation” and “minimize losses due to
fire” have been selected with associated weights of 1, 0.9, and 1, respectively. Translations (in the
main folder): Otimização—optimization; Maximizar o VAL—maximize net present value (NPV); Preço
médio em desbastes—mean price from thinning; Preço médio em corte final—mean price from felling;
Taxa de desconto—discount rate; Maximizar o crescimento de volume nas parcelas—maximize volume
growth in stands; Maximizar a fixação de carbono—maximize carbon fixation; Minimizar perdas por
incêndios—minimize losses due to fire.
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In the optimization process, following [44], the indicators above were converted into objectives,
weighted by scores, and combined in an objective function (1), defined generally as:

Max∑
(
λi · βi · Wi · ∑ Gi(Uj)

)
(1)

where λ is equal to 1 when objective function Gi(x) is taken into account or 0 when the same objective
is not taken into account; β is equal to 1 when a positive value of the objective Gi(x) indicates the best
solution or equal to −1 when a negative value is the best solution; Wi is the weight (1–10) given by
the user to objective Gi(x); Gi(x) is a normalized objective function Gi; and Uj is the management unit
under consideration.

The weight of individual indicators in the optimization process is defined by the user in relative
terms using a score of 1–10, providing the opportunity to directly establish forest management plans for
an area towards one or several management objectives, from maximization of financial aspects (NPV),
production (growth rate), provision of ecosystem services (carbon sequestration), and minimization of
risks (fire occurrence).

In addition, constraints such as the total forest area that can be thinned or harvested or the
minimum and maximum volume that can be extracted in one single period, can be considered.
The definition of objectives and constraints are of the most importance in the linear programming
process followed to build the problem for which the solution will be found. In this procedure, all the
possible alternatives will be considered. FlorNExT Pro® uses the Branch and Bound [45] procedure
to solve iteratively the algebraic problem generated that ends when the minimum value is obtained.
Each linear programing problem is a particular problem resulting from choices made by the user on
constraints, restrictions, criteria and weights. The user can see the formulation of each individual
problem in a file generated by the program (*.lp), also accessible from the “Optimization results” folder
in the program’s interface. The general structure of FlorNExT Pro® is presented in Figure 5.
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FlorNExT Pro® was conceived and designed as a transfer tool to support sustainable
multi-functional forest management in practice in the northeast of Portugal. The profile of the end-user
was therefore fundamental for the definition of the type of product and the capabilities of the tool as
well as its graphical interface. Although forest management is directly and indirectly related to several
types of actors in different roles (from forest owners to tourists and policy-makers) we conceived
FlorNExT Pro® with scientific and technical agents in mind, more specifically forest consultants,
and foresters in companies and associations, who have knowledge and skills in forestry and basic
knowledge in forest modeling. The development of the tool also involved end-users who participated
in meetings in several steps of the process as well as in training sessions.

FlorNExT Pro® was developed in the Visual Studio 2017 Community, with technology. NET
Framework 4.5. Programing was done mostly in C# and XML languages. External applications
used included GMap.NET.Core (v 1.7.0), open source; GMap.NET.WindowsForms (v 1.7.0), open
source; Catfood.Shapefile (v 1.51.0); Microsoft Public License (Ms-PL); and LPSolve (v 5.5) open source.
FlorNExT Pro® is a registered Intellectual Property (software) [46] available to download from the web
(http://florestasdonordeste.esa.ipb.pt).

2.2. Application

FlorNExT Pro® was applied in a forest area in the Northeast of Portugal with the goal of
establishing multi-objective management planning according to different criteria, restrictions and
constraints, individually and in combination. Tradeoffs among criteria and indicators of provisioning
services (wood extraction) and regulating services (carbon sequestration) were particularly addressed.
Climate change mitigation scenarios were foreseen specifically based on the carbon sequestration
criterion and indicator, isolated and in combination with others. The study area for this application
was comprised of 48 maritime pine stands over a total area of 612 ha. Initial age of the stands (reported
to 2016) ranged from 18 to 42 years, tree density from 400 to more than 1600 trees per ha, site index
(40 years) from 14 to 20 m, and stand area from 0.6 to 142.4 ha. The study area is part of the Lomba ZIF
(Forest Intervention Zone), located in the Vilar de Lomba and São Jumil parishes, Vinhais Municipality,
northeast Portugal. The Lomba ZIF is a 2142 ha forest area dominated by maritime pine (Pinus
pinaster) plantations established in late 20th century. The forest land is owned by multiple private
owners and a part of it is communal land. Forest management in the ZIF is of the responsibility
of a forest association (Arborea) based on a management plan approved in 2008 at the time of its
establishment. This area, including the stands part of the study, is under pressure for thinning and
felling from a pellets plant in the neighboring municipality of Chaves which might bias and precipitate
management decisions, threatening sustainable forestry. The area is also fire prone given the generally
Mediterranean climate with some Atlantic influence (warm-summer Mediterranean climate—Csb)
and wildfires occur on a regular basis during summer months.

The application of FlorNExT Pro® consisted in:

• Data gathering and input;
• Definition of management restrictions, constraints and alternatives;
• Optimization; and
• Analysis of outputs.

Spatial data (shapefile) relative to land parcels in the Lomba ZIF was provided by Arborea-Forest
Association. Alphanumeric forest inventory data at the stand level was partially collected in 18 plots
located in the area and visited in several occasions during 2016. The variables measured in these plots
included quadratic mean DBH (cm), dominant height (m), dominant diameter (cm), stand density (live
trees/ha), age (years), basal area (m2/ha), and mean slope (%). Site index (40 years) was estimated
for each plot. For the remaining stands, we assigned the variables above based on the comparison of
the measured stands and the observed stand condition using aerial photography. Considering the
objectives of this work, we assumed as acceptable the error resulting from this process of assigning

http://florestasdonordeste.esa.ipb.pt
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stand variables to stands not measured. Data relative to each of the 48 stands considered in this
exercise was input in association with the spatial information of each stand.

Restrictions for thinning and felling parameters were established based on silvicultural models
for maritime pine in Portugal [47]: Minimum felling age = 35 years; minimum thinning age = 15 years;
maximum thinning age = 35 years. Number of days of rain per year (126 days) was based on 30 years
observation data for the region. Management alternatives were established considering: number
of periods = 10; maximum number of thinnings = 3; interval between operations = 1; starting = 0;
and amplitude = 5. This resulted in 1312 unique management alternatives accounted for in the
optimization process.

Forest management scenarios were established based on the levels (0 to 10) of the four objectives
described above (maximization of NPV, maximization of volume growth, maximization of carbon
sequestered and minimization of losses due to fire), summarized in Table 1. The combination of
management objectives in scenarios was established to observe the effect of the choice of objectives and
weights in the management plans and also expected outcomes of the forest management plan, namely
total volume of wood extracted through thinning and harvesting, NPV, carbon sequestered on site and
fire risk at the landscape level. For that we summed/averaged indicators calculated throughout the
optimization calculations.

The analysis of outputs was performed based on the indicators above, both numerically and
visually (graphically). For scenarios maximizing NPV, prices of wood extracted in thinning and
harvesting operations were established based on indicative values published by the Portuguese Forest
Service (ICNF) in 2018 [48]. A discount rate of 2% was considered as adequate to express average
interest rates in Portugal in recent years. In some cases other prices of wood and a discount rate of 4%
were used to test the sensitivity of the tool.
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Table 1. Combinations of management objectives in scenarios tested with FlorNExT Pro® in the Lomba ZIF (Forest Intervention Zone), Portugal. NO: particular
objective not considered in the optimization process; YES: particular objective considered in the optimization process. The number within brackets indicates the
weight given to objective in the objective function (1–10 scale). * indicates a minimum 2500 m3 extraction per period (5 years) restriction.

Scenario

Management
Objective 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * 21 * 22 * 23 24 25 * 26 27 * 28

Maximization of
NPV NO NO NO YES

(10)
YES
(10)

YES
(5)

YES
(2)

YES
(8)

YES
(4) NO NO YES

(10) NO YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10) NO YES

(10)
YES
(10) NO YES

(10)
YES
(10)

YES
(10)

Average wood
price (€)

—Thinning 15 15 15 15 15 15 15 15 30 30 50 15 15 15 15 50 30 15 15 15

—Felling 26 26 26 26 26 26 26 26 50 50 30 26 26 26 26 30 50 26 26 26

Discount rate (%) 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2

Maximization of
volume growth NO NO YES

(10)
YES
(10) NO YES

(5)
YES
(2)

YES
(8)

YES
(4)

YES
(10) NO NO YES

(10) NO YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10) NO NO NO NO NO YES YES

Maximization of
carbon sequestered NO YES

(10)
YES
(10)

YES
(10) NO YES

(5)
YES
(8)

YES
(8)

YES
(6) NO YES

(10) NO YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10)

YES
(10) NO NO YES

(10) NO NO YES
(10)

YES
(10)

YES
(10) NO

Minimization of
losses due to fire

YES
(10)

YES
(10)

YES
(10)

YES
(10) NO YES

(5)
YES
(8)

YES
(1)

YES
(6) NO NO YES

(10) NO NO YES
(10)

YES
(10)

YES
(10) NO NO NO NO NO NO NO NO YES

(10)
YES
(10)

YES
(10)
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3. Results and Discussion

The application of FlorNExT Pro® in a subset of maritime pine stands in the Lomba ZIF area
for individual or combinations of management objectives and weights scenarios (Table 1) resulted
in very variable forest management plans. Scenarios targeting one single objective resulted in the
highest (lowest in the case minimization objectives) values of the indicator relative to that objective.
For example, Scenario 1, minimizing losses due to fire, presented the lowest fire probability (Pfire)
among all scenarios tested (Figure 6). The same holds for Scenario 5, targeting maximization of NPV
(Figure 7 for comparable prices of wood and discount rate), Scenario 10, targeting maximization
of volume growth rate (Figure 8), and Scenario 11, targeting maximization of carbon sequestered
(Figure 9). The scenarios combining more than one management objective resulted in solutions that do
not maximize or minimize any of the 4 particular objectives but optimize the objective function.

In forestry, the potential amount of wood that can be extracted from the forest is of utmost
importance. Therefore, evaluating scenarios based on the extraction of wood is relevant for the
sector and important to compare computer-optimized solutions. The maximum volume of wood
extracted within the 50-year management period (Figure 6), both through thinning and harvesting
(above 300,000 m3), was obtained for Scenario 14 (maximization of NPV and carbon), Scenario 12
(maximization of NPV and minimization of fire losses), Scenario 26 (maximization of NPV and carbon
and minimization of losses due to fire), and Scenario 1 (minimization of losses due to fire). In all these
scenarios, extraction of wood took place mainly in a single period at the end of the management period.
Scenarios where a 2500 m3 minimum extraction per 5-year period was imposed were able to perform
relatively well in terms of wood extracted. Scenario 21, for example, was similar to Scenario 14 but
with this restriction also showed a high volume of wood extracted (295,781 m3), although with a better
distribution of wood extracted throughout time (Figure 10).
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Figure 8. Mean volume growth rate (m3/ha/year) for maritime pine stands in the overall area
under management according to each of the 28 management objective scenarios tested in the Lomba
ZIF, Portugal.
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the 28 management objective scenarios tested.



Climate 2018, 6, 81 14 of 20

Climate 2018, 6, x FOR PEER REVIEW  14 of 20 

 

presented lower levels of wood extraction had only one objective that did not include maximization 
of NPV (Scenarios 1, 10, 11) or the maximization of growth and carbon sequestered (Scenario 3).  

Fire risk (Figure 6) was generally lower in scenarios where minimization of losses due to fire 
was part of the objective function (Scenarios 1, 2, 4, 6, 7, 9, 12, 23, 26). Scenario 17, however, showed 
the second highest fire probability. This scenario was established for wood prices higher than the 
reference prices, in particular wood from thinnings, and addressing all the objectives simultaneously. 
Scenario 23 showed the highest Pfire (Figure 6). This scenario targeted only maximization of NPV 
based on the same prices used in Scenario 17 with a 2500 m3 minimum extraction. Prices higher than 
standard for wood coming from thinnings was used to analyze the effect of this factor on the 
management of the area. Higher fire probabilities can be explained by the fact that the losses due to 
fire indicator is a function of the G/dg ratio (basal area/quadratic mean diameter) which increases 
with aging of stands [42]. The scenarios where a minimum extraction of 2500 m3 per period was 
imposed (Scenarios 20–22) resulted in a reasonable to high wood extraction level and medium to low 
Pfire (Figure 6).  

(a) 

  

 

(b) 

 

 

(c) 

 

 
(d)  

 

 

(e) 

 

 

(f) 

 

 
Figure 10. Temporal patterns of wood extraction for contrasting scenarios: (a) Scenario 1; (b) Scenario 
14; (c) Scenario 17; (d) Scenario 20; (e) Scenario 23; and (f) Scenario 27. Bars indicate level of extraction 
in m3 for time intervals 0 to 10. 

Figure 10. Temporal patterns of wood extraction for contrasting scenarios: (a) Scenario 1; (b) Scenario
14; (c) Scenario 17; (d) Scenario 20; (e) Scenario 23; and (f) Scenario 27. Bars indicate level of extraction
in m3 for time intervals 0 to 10.

Scenarios addressing simultaneously the four criteria for the reference prices of wood (Scenarios 4
and 6–9) tended to result in the extraction of considerable amounts of wood (from 232,473 to
294,215 m3), mainly from harvesting (Figure 6), although extraction occurring preponderantly in
one single time period (Figure 10). Scenarios under the same conditions but for higher prices of wood
or discount rate (Scenarios 15–17) tended to show intermediate to high levels of wood extraction,
above 200,000 m3, also with a concentrate temporal pattern of extraction (Figure 10). The scenarios that
presented lower levels of wood extraction had only one objective that did not include maximization of
NPV (Scenarios 1, 10, 11) or the maximization of growth and carbon sequestered (Scenario 3).

Fire risk (Figure 6) was generally lower in scenarios where minimization of losses due to fire
was part of the objective function (Scenarios 1, 2, 4, 6, 7, 9, 12, 23, 26). Scenario 17, however, showed
the second highest fire probability. This scenario was established for wood prices higher than the
reference prices, in particular wood from thinnings, and addressing all the objectives simultaneously.
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Scenario 23 showed the highest Pfire (Figure 6). This scenario targeted only maximization of NPV
based on the same prices used in Scenario 17 with a 2500 m3 minimum extraction. Prices higher
than standard for wood coming from thinnings was used to analyze the effect of this factor on the
management of the area. Higher fire probabilities can be explained by the fact that the losses due to fire
indicator is a function of the G/dg ratio (basal area/quadratic mean diameter) which increases with
aging of stands [42]. The scenarios where a minimum extraction of 2500 m3 per period was imposed
(Scenarios 20–22) resulted in a reasonable to high wood extraction level and medium to low Pfire
(Figure 6).

The economic indicator used in FlorNExT Pro® provided also useful information for analyzing
the alternatives under consideration (Figure 7). Among the scenarios using optimization based on
NPV alone or together with other objectives (Scenarios 4–9, 12, 14, 18, 19, 26), Scenario 5 presented the
highest average NPV, 4.2 million Euro (M€), followed by Scenario 14 (3.4 M€), and Scenarios 18 and
19 the lowest (2.5 M€). Scenario 24 that showed the highest average NPV (8.1 M€) was established
with the objective of maximizing NPV with prices of wood higher than standard prices. The scenarios
imposing a minimum extraction of 2500 m3 per period (Scenario 20 and 21) presented reasonably high
values of the indicator (Figure 7).

The scenarios tested also indicated a high variability in terms of the other two indicators. Growth
rate (Figure 8) was the highest for scenarios addressing maximization of this indicator, as expected
(Scenarios 3, 8, 10, 13). Scenario 11, however, optimized for carbon sequestration only, showed relatively
high growth rates (Figure 8). The scenarios with the lowest growth rates were those optimized not
taking this indicator into account and correspond usually to scenarios of very low levels of wood
extraction (Figure 6). Although growth rates are averages corresponding to forest management
optimization where growth was one of the objectives conducting the process in many of the scenarios,
the values are apparently higher than expected. According to the 5th National Forest Inventory in
the northern region, the mean annual increment (MAI) is only 4.41 m3/ha/year. As reported in [49],
previous inventory data indicate the MAI for the country as usually below 4 m3/ha/year. However,
also based on data from inventory plots, the authors of [50] observed a MAI up to 9.9 m3/ha/year in
higher productivity sites just considering final volume harvested. Values of up to 9.5 m3/ha/year are
also expectable in the center of Portugal (Site Index (50 years) = 21 m) [51].

Carbon storage, representing the average amount of carbon in all stands of the study area during
the management periods, showed values that were also relatively high. Considering that in many
cases this is due to retention of biomass in stands that become relatively old, the results seem within
expected values for live trees of the same species in the Iberian peninsula [52]. The indicator showed
that some scenarios favor the storage of higher quantities of carbon than others (Figure 9) in a pattern
very similar to that observed for the growth rate indicator. There is, therefore, a strong relationship
between these two indicators which might indicate some level of redundancy and a possible bias
towards productivity in the optimization process when the two indicators are used together. It can be
seen, for example, that the outcomes for Scenarios 10 (maximization of growth) and 11 (maximization
of carbon) are similar and that for Scenarios 10 and 13 (maximization of both growth and carbon) they
are exactly the same for all the indicators and wood extraction. The same was observed for Scenarios 18
and 19.

The choice of a particular management scenario depends on the objectives established for the
management plan and the importance (weight) given to each of them. From a sustainable forestry
point of view we tend to favor scenarios for which productivity, contribution to carbon mitigation and
the value of wood are balanced but also for which risks (fire) are low. Additionally, an even distribution
of felling (and the corresponding revenues) in time can be considered a key factor in forestry where
time intervals between periods of income are long. This leads to the scenarios optimizing management
for the four objectives considered in FlorNExT Pro®, namely those presented in Table 2. Although
all these are optimal solutions, Scenario 27 seems to be a realistic choice considering all the factors
above in addition to the prices and discount rate in use. It is the only among these where harvests take
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place throughout the management period (Figure 10). Discarding evenness, Scenarios 7 and 9 seem
balanced solutions (Table 2). Removing the redundancy between growth and carbon sequestration, i.e.,
considering the scenarios for three objectives optimized solutions at the bottom of Table 2, any of the
solutions seems good and the choice of one depends more on the importance given to the indicators
and factors describing these management plan alternatives.

Table 2. Selection of scenarios meeting sustainable forestry goals and associated indicators, wood
extraction level and evenness of fellings.

Scenario Extracted
Volume (m3) Pfire NPV (M€) C (Mg/ha) Growth

(m3/ha/Year)

Evenness of
Harvest
Volumes

Wood
Prices/Discount

Rate

Four objectives (NPV, growth, C, Pfire)

4 235,314.2 0.00697 2.511 141.1 9.121 No Standard
6 235,314.2 0.00697 2.511 141.1 9.121 No Standard
7 294,214.6 0.00664 3.138 126.6 8.530 No Standard
8 232,473.4 0.00742 2.484 142.0 9.288 No Standard
9 242,438.3 0.00691 2.587 139.6 9.056 No Standard
27 193,862.4 0.00775 2.781 126.8 8.612 Yes Standard
15 203,823.8 0.00701 1.761 142.6 9.179 No Above standard
16 235,314.2 0.00697 4.830 141.1 9.121 No Above standard
17 238,715.9 0.04554 3.012 140.7 9.108 No Above standard

Three objectives

26 (NPV, C, Pfire) 310,697.7 0.00661 3.315 123.6 8.403 No Standard
28 (NPV, growth, Pfire) 243,418.5 0.00695 2.598 140.3 9.089 No Standard

Pfire: Probability of fire occurrence; NPV: Net present value.

From stricter optimization perspectives, other alternatives are preferable. Considering fire risk
only, for example, a major concern in the south of Europe, Scenario 1 is the best management choice
since it presents on average the lowest probability of fire occurrence (Figure 6). In general, this is
a good choice considering that besides Pfire, the remaining indicators (Figures 8 and 9) are reasonable,
although wood extraction is concentrated in a single period during the simulations.

Considering climate regulation and the importance of forest management for climate mitigation,
several scenarios allow the maintenance of large amounts of carbon in live standing trees, near the
maximum observed in the study area, such as Scenarios 3, 4, 10, 11, 13, 15–19 and 28. From these
scenarios, other factors need to be taken into account in the selection of a particular management plan.
The combination of carbon storage with other objectives will increase the amount of wood mobilized
in the area and the corresponding revenue. Scenarios 14 and 26, combining carbon sequestration, NPV,
and losses due to fire, seem to be good options in this sense, since the amount of wood to be extracted
is high and the carbon sequestered is medium to high. At the same time, losses due to fire are low to
moderate. FlorNExT Pro® provides not just a friendly way of selecting the best scenarios based on
carbon stored in stands but also outputs quantitative data that can be used in the assessment of the
supply and value of the climate regulation ecosystem service and its spatial and temporal dynamics
in the area of interest. The tool can be combined with others designed with the purpose of assessing
ecosystem services, such as InVEST (e.g., [53]), providing forest owners, managers, and policy-makers
with a powerful tool, for example, to support schemes for payment of ecosystem services.

Different barriers contribute to low wood mobilization, many of which are related to lack
of demand at local and other scales but also to lack of interest from owners, lack of knowledge
and tradition, ownership fragmentation and risks and uncertainties. Tools such as FlorNExT
Pro® contribute to create knowledge and to promote forest management, particularly based on
a multifunctional perspective, tackling several of the barriers above. FlorNExT Pro® is therefore
a potential promoter of forest management. Its major attributes (simplicity, accessibility, easiness
of use, friendly GIS module) make it particularly appealing for users not familiar with forest
modeling or computer programing. The combination of these characteristics with optimization
capabilities gives additional attractiveness to the tool. Other tools currently available in Portugal [54]
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and other parts of Europe, such as SILVA [55] or BWINPro [56], tend to be more complex and
difficult to operate, requiring substantial efforts in modeling and parameterization, and do not have
optimization capabilities available directly. FlorNExT Pro® is part of an integrated approach to
promote forest modeling tools to support management at several scales based on an online platform
(http://florestasdonordeste.esa.ipb.pt/Tools/Index) where several modeling tools are accessible for
users in this region. Like in other platforms (e.g., CAPSIS [57]) most tools in this platform are available
for modification by the users.

The assessment of carbon sequestration alternatives is one of the most relevant characteristics of
FlorNExT Pro® since it provides the means for the calculation of payments of this ecosystem service at
the overall landscape scale but also at the level of individual parcels. The fact that the tool addresses
fire risk, alone or combined with other objectives, makes it extremely important for creating economic
and social opportunities in areas such as the one studied here.

4. Conclusions

FlorNExT Pro® is a versatile, easy to use, and powerful computer tool to support sustainable
forestry providing optimized solutions for the management of complex and heterogeneous forest
areas. The tool has a series of data (spatial and alphanumeric) management, optimization, and
output capabilities that provide the user with the means to implement sustainable forest management
addressing maximization of financial (NPV), productive (volume growth rate), and environmental
(carbon storage) indicators as well as minimization of risks (fire). FlorNExT Pro® is, therefore,
suited to explore the best management scenarios for forest landscapes where different criteria can
be of importance. The application of the tool in the northeast of Portugal revealed its potential to
find optimized management plans testing a series of scenarios built based on diverse management
objectives, costs of wood (thinning and harvest), discount rate, restrictions, and constraints. This
application of FlorNExT Pro® also highlighted its usefulness to address the climate regulation
ecosystem service through carbon stored in live trees and the probability of fire occurrence, individually
or in combination with other indicators.

5. Patents

FlorNExT Pro® has Intellectual Property Rights Registration no. 03/2016/571 (Spain).
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scheduling in multifunctional planning of forests for longterm water yield optimization. Nat. Resour. Model.
2015, 28, 59–85. [CrossRef]

29. Gómez-García, E.; Azevedo, J.C.; Pérez-Rodríguez, F. A compiled project and open-source code to generate
web-based forest modelling simulators. Comput. Electron. Agric. 2018, 147, 1–5. [CrossRef]

30. Pérez-Rodríguez, F.; Azevedo, J.C.; Menéndez-Miguélez, M. Resource communication: Apkfor©, an android
open-source project for research and technology transfer in forest management. For. Syst. 2018, 26. [CrossRef]

31. Pérez, F.; Nunes, L.; Sil, A.; Azevedo, J. Flornext®, a cloud computing application to estimate growth and
yield of maritime maritime pine (Pinus pinaster Ait.) in north-eastern Portugal. For. Syst. 2016, 25. [CrossRef]

32. Borges, J.G.; Falcão, A.; Miragaia, C.; Marques, P.; Marques, M. A decision support system for forest resources
management in Portugal. In System Analysis in Forest Resources; Arthaud, G.J., Barrett, T.M., Eds.; Springer:
Dordrecht, The Netherlands, 2003; pp. 155–163.

33. Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.;
Nordström, E.-M. A multiple criteria approach for negotiating ecosystem services supply targets and forest
owners’ programs. For. Sci. 2017, 63, 49–61. [CrossRef]

34. Botequim, B.; Fernandes, P.M.; Garcia-Gonzalo, J.; Silva, A.; Borges, J.G. Coupling fire behaviour modelling
and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. Eur. J.
For. Res. 2017, 136, 527–542. [CrossRef]

35. Ferreira, L.; Constantino, M.F.; Borges, J.G.; Garcia-Gonzalo, J. Addressing wildfire risk in a landscape-level
scheduling model: An application in Portugal. For. Sci. 2015, 61, 266–277. [CrossRef]

36. Ferreira, L.; Constantino, M.; Borges, J.G. A stochastic approach to optimize maritime pine (Pinus pinaster
Ait.) stand management scheduling under fire risk. An application in Portugal. Ann. Oper. Res. 2014, 219,
359–377. [CrossRef]

37. Fonseca, T.F.; Cerveira, A.; Mota, A. An integer programming model for a forest harvest problem in Pinus
pinaster stands. For. Syst. 2012, 21, 272–283. [CrossRef]

38. Garcia-Gonzalo, J.; Palma, J.; Freire, J.; Tomé, M.; Mateus, R.; Rodriguez, L.C.E.; Bushenkov, V.; Borges, J.G.
A decision support system for a multi stakeholder’s decision process in a Portuguese national forest. For.
Syst. 2013, 22, 359–373. [CrossRef]

39. Garcia-Gonzalo, J.; Pukkala, T.; Borges, J.G. Integrating fire risk in stand management scheduling.
An application to maritime pine stands in Portugal. Ann. Oper. Res. 2014, 219, 379–395. [CrossRef]

40. Borges, J.G.; Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Marques, S.; Oliveira, M.M. Addressing
multicriteria forest management with pareto frontier methods: An application in Portugal. For. Sci. 2014, 60,
63–72. [CrossRef]

41. Diéguez-Aranda, U.; Rojo Alboreca, A.; Castedo-Dorado, F.; Álvarez González, J.G.; Barrio-Anta, M.;
Crecente-Campo, F.; González González, J.M.; Pérez-Cruzado, C.; Rodríguez Soalleiro, R.; López-Sánchez, C.A.;
et al. Herramientas Selvícolas Para la Gestión Forestal Sostenible en Galicia; Xunta de Galicia: Santiago de
Compostela, Spain, 2009.

42. Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J.G.; Tome, M.; Oliveira, M.M. Assessing
wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. For. Syst. 2012, 21, 111–120.
[CrossRef]

43. Catry, F.X.; Rego, F.C.; Bacao, F.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J.
Wildland Fire 2009, 18, 921–931. [CrossRef]

44. Diaz-Balteiro, L.; Alfranca, O.; Bertomeu, M.; Ezquerro, M.; Giménez, J.C.; González-Pachón, J.; Romero, C.
Using quantitative techniques to evaluate and explain the sustainability of forest plantations. Can. J. For. Res.
2016, 46, 1157–1166. [CrossRef]

45. Lawler, E.L.; Wood, D.E. Branch-and-bound methods: A survey. Oper. Res. 1966, 14, 699–719. [CrossRef]
46. Pérez-Rodríguez, F.; Nunes, L.; Sil, A.; Azevedo, J.C. Flornext Pro. Intellectual Property Rights registration

no. 03/2016/571. 2016. Available online: http://hdl.handle.net/10198/13070 (accessed on 15 October 2018).
47. Oliveira, A.; Pereira, J.S.; Correia, A.V. A Silvicultura do Pinheiro Bravo; Centro Pinus: Porto, Portugal, 2000;

p. 111.

http://dx.doi.org/10.3390/f6041362
http://dx.doi.org/10.1111/nrm.12057
http://dx.doi.org/10.1016/j.compag.2018.02.010
http://dx.doi.org/10.5424/fs/2017263-12047
http://dx.doi.org/10.5424/fs/2016252-08975
http://dx.doi.org/10.5849/FS-2016-035
http://dx.doi.org/10.1007/s10342-017-1050-7
http://dx.doi.org/10.5849/forsci.13-104
http://dx.doi.org/10.1007/s10479-011-0845-z
http://dx.doi.org/10.5424/fs/2012212-02879
http://dx.doi.org/10.5424/fs/2013222-03793
http://dx.doi.org/10.1007/s10479-011-0908-1
http://dx.doi.org/10.5849/forsci.12-100
http://dx.doi.org/10.5424/fs/2112211-11374
http://dx.doi.org/10.1071/WF07123
http://dx.doi.org/10.1139/cjfr-2015-0508
http://dx.doi.org/10.1287/opre.14.4.699
http://hdl.handle.net/10198/13070


Climate 2018, 6, 81 20 of 20

48. ICNF. Tabela de Taxas e Preços Bens e Serviços. Available online: http://www2.icnf.pt/portal/icnf/serv/
resource/doc/tax-serv/20180920-Tabela-precos.pdf (accessed on 31 May 2018).

49. Tomé, M.; Ribeiro, F.; Páscoa, F.; Silva, R.; Tavares, M.; Palma, A.; Paulo, M.J.C. Growth trends in Portuguese
forests: An exploratory analysis. In Growth Trends in European Forests: Studies from 12 Countries; Spiecker, H.,
Mielikäinen, K., Köhl, M., Skovsgaard, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 329–353.

50. Luis, J.F.S.; Fonseca, T.F. The allometric model in the stand density management of Pinus pinaster Ait. Ann. For.
Sci. 2004, 61, 807–814. (In Portugal) [CrossRef]

51. Alegria, C. Simulation of silvicultural scenarios and economic efficiency. For. Syst. 2011, 20, 361–378.
[CrossRef]

52. Del Río, M.; Barbeito, I.; Bravo-Oviedo, A.; Calama, R.; Cañellas, I.; Herrero, C.; Montero, G.;
Moreno-Fernández, D.; Ruiz-Peinado, R.; Bravo, F. Mediterranean pine forests: Management effects on
carbon stocks. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R.,
Eds.; Springer: Cham, Switzerland, 2017; pp. 301–327.

53. Sil, Â.; Fonseca, F.; Gonçalves, J.; Honrado, J.; Marta-Pedroso, C.; Alonso, J.; Ramos, M.; Azevedo, J.C.
Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal:
Insights for management and planning. Int. J. Biodivers. Sci. Ecol. Serv. Manag. 2017, 13, 82–104. [CrossRef]

54. Barreiro, S.; Rua, J.; Tomé, M. StandsSIM-MD: A Management Driven forest SIMulator. For. Syst. 2016, 25.
[CrossRef]

55. Pretzsch, H. Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates
and large regions. Forstwiss. Cent. 2002, 121, 28–51.

56. Nagel, J.; Schmidt, M. The silvicultural decision support system BWINPro. In Sustainable Forest Management:
Growth Models for Europe; Hasenauer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 59–63.

57. Dufour-Kowalski, S.; Courbaud, B.; Dreyfus, P.; Meredieu, C.; de Coligny, F. Capsis: An open software
framework and community for forest growth modelling. Ann. For. Sci. 2012, 69, 221–233. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www2.icnf.pt/portal/icnf/serv/resource/doc/tax-serv/20180920-Tabela-precos.pdf
http://www2.icnf.pt/portal/icnf/serv/resource/doc/tax-serv/20180920-Tabela-precos.pdf
http://dx.doi.org/10.1051/forest:2004077
http://dx.doi.org/10.5424/fs/20112003-11070
http://dx.doi.org/10.1080/21513732.2017.1297331
http://dx.doi.org/10.5424/fs/2016252-08916
http://dx.doi.org/10.1007/s13595-011-0140-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	FlorNExT Pro® 
	Application 

	Results and Discussion 
	Conclusions 
	Patents 
	References

