Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Kawase, K.; Ogawa, Y.; Watanabe, Y. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 2003, 11, 2549–2554. [Google Scholar] [CrossRef] [Green Version]
- Murate, K.; Kawase, K. Perspective: Terahertz wave parametric generator and its applications. J. Appl. Phys. 2018, 124, 160901. [Google Scholar] [CrossRef]
- Kato, M.; Tripathi, S.R.; Murate, K.; Imayama, K.; Kawase, K. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection. Opt. Express 2016, 24, 6425–6432. [Google Scholar] [CrossRef]
- Busch, S.; Probst, T.; Schwerdtfeger, M.; Dietz, R.; Palaci, J.; Koch, M. Terahertz transceiver concept. Opt. Express 2014, 22, 16841–16846. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy. Sci. Rep. 2016, 6, 39079. [Google Scholar] [CrossRef]
- Watanabe, S. Terahertz Polarization Imaging and Its Applications. Photonics 2018, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Okano, M.; Watanabe, S. Internal Status of Visibly Opaque Black Rubbers Investigated by Terahertz Polarization Spectroscopy: Fundamentals and Applications. Polymers 2018, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Okano, M.; Watanabe, S. Inspection of internal filler alignment in visibly opaque carbon-black–rubber composites by terahertz polarization spectroscopy in reflection mode. Polym. Test. 2018, 72, 196–201. [Google Scholar] [CrossRef]
- Dandolo, C.L.K.; Guillet, J.P.; Ma, X.; Fauquet, F.; Roux, M.; Mounaix, P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Opt. Express 2018, 26, 5358–5367. [Google Scholar] [CrossRef] [PubMed]
- Dandolo, C.L.K.; Lopez, M.; Fukunaga, K.; Ueno, Y.; Pillay, R.; Giovannacci, D.; Du, Y.L.; Bai, X.; Menu, M.; Detalle, V. Toward a multimodal fusion of layered cultural object images: Complementarity of optical coherence tomography and terahertz time-domain imaging in the heritage field. Appl. Opt. 2019, 58, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Ritchie, D.A.; Iotti, R.C.; Rossi, F. Terahertz semiconductor heterostructure laser. Nature 2002, 417, 156. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photonics 2007, 1, 517. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, M.; Ravaro, M.; Bartalini, S.; Consolino, L.; Vitiello, M.S.; Cicchi, R.; Pavone, F.; De Natale, P. Real-time terahertz digital holography with a quantum cascade laser. Sci. Rep. 2015, 5, 13566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkin, M.A.; Capasso, F.; Belyanin, A.; Sivco, D.L.; Cho, A.Y.; Oakley, D.C.; Vineis, C.J.; Turner, G.W. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photonics 2007, 1, 288–292. [Google Scholar] [CrossRef]
- Belkin, M.A.; Capasso, F. New frontiers in quantum cascade lasers: High performance room temperature terahertz sources. Phys. Scr. 2015, 90, 118002. [Google Scholar] [CrossRef]
- Lu, Q.; Razeghi, M. Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation. Photonics 2016, 3, 42. [Google Scholar] [CrossRef]
- Fujita, K.; Jung, S.; Jiang, Y.; Kim, J.H.; Nakanishi, A.; Ito, A.; Hitaka, M.; Edamura, T.; Belkin, M.A. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics 2018, 7, 1795–1817. [Google Scholar] [CrossRef]
- Fujita, K.; Hayashi, S.; Ito, A.; Hitaka, M.; Dougakiuchi, T. Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics 2019, 8, 2235–2241. [Google Scholar] [CrossRef]
- Vijayraghavan, K.; Adams, R.W.; Vizbaras, A.; Jang, M.; Grasse, C.; Boehm, G.; Amann, M.C.; Belkin, M.A. Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers. Appl. Phys. Lett. 2012, 100, 251104. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Edamura, T.; Furuta, S.; Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 2010, 96, 241107. [Google Scholar] [CrossRef]
- Fujita, K.; Hitaka, M.; Ito, A.; Edamura, T.; Yamanishi, M.; Jung, S.; Belkin, M.A. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Appl. Phys. Lett. 2015, 106, 251104. [Google Scholar] [CrossRef]
- Fujita, K.; Hitaka, M.; Ito, A.; Yamanishi, M.; Dougakiuchi, T.; Edamura, T. Ultra-broadband room temperature terahertz quantum cascade laser sources based on difference frequency generation. Opt. Express 2016, 24, 16357–16365. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Ito, A.; Hitaka, M.; Dougakiuchi, T.; Edamura, T. Low-threshold room temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source. Appl. Phys. Express 2017, 10, 082102. [Google Scholar] [CrossRef]
- Nakanishi, A.; Fujita, K.; Horita, K.; Takahashi, H. Terahertz imaging with room temperature terahertz difference-frequency quantum-cascade laser sources. Opt. Express 2019, 27, 1884–1893. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakanishi, A.; Hayashi, S.; Satozono, H.; Fujita, K. Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser. Appl. Sci. 2020, 10, 5926. https://doi.org/10.3390/app10175926
Nakanishi A, Hayashi S, Satozono H, Fujita K. Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser. Applied Sciences. 2020; 10(17):5926. https://doi.org/10.3390/app10175926
Chicago/Turabian StyleNakanishi, Atsushi, Shohei Hayashi, Hiroshi Satozono, and Kazuue Fujita. 2020. "Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser" Applied Sciences 10, no. 17: 5926. https://doi.org/10.3390/app10175926
APA StyleNakanishi, A., Hayashi, S., Satozono, H., & Fujita, K. (2020). Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser. Applied Sciences, 10(17), 5926. https://doi.org/10.3390/app10175926