Optimal Design of Pneumatic Flotation for Roll-to-Roll Conveyance in the Production of Printed Circuits
Abstract
1. Introduction
2. Mathematical Models of Pneumatic Flotation
2.1. FSI Numerical Simulations
2.2. Experimental Verification
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.; Byeon, J.; Lee, C. Fabrication of Thickness-Controllable Double Layer Electrolyte Using Roll-to-Roll Additive Manufacturing System. Int. J. Precis. Eng. Manuf. Green Technol. 2020, 7, 635–642. [Google Scholar] [CrossRef]
- Lee, J.; Byeon, J.; Lee, C. Theories and Control Technologies for Web Handling in the Roll-to-Roll Manufacturing Process. Int. J. Precis. Eng. Manuf. Green Technol. 2020, 7, 525–544. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Lee, C. Taper Tension Profile in Roll-to-Roll Rewinder: Improving Adhesive Force of Pressure-Sensitive Adhesive Film. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 853–860. [Google Scholar] [CrossRef]
- Zhang, H.; Moon, S.K.; Ngo, T.H. 3D Printed Electronics of Non-contact Ink Writing Techniques: Status and Promise. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 7, 511–524. [Google Scholar] [CrossRef]
- Ball, A.K.; Roy, S.S.; Kisku, D.R.; Murmu, N.C. A New Approach to Quantify the Uniformity Grade of the Electrohydrodynamic Inkjet Printed Features and Optimization of Process Parameters Using Nature-Inspired Algorithms. Int. J. Precis. Eng. Manuf. 2020, 21, 387–402. [Google Scholar] [CrossRef]
- Kim, C.; Jeon, S.W.; Kim, C.H. Reduction of Linearly Varying Term of Register Errors Using a Dancer System in Roll-to-Roll Printing Equipment for Printed Electronics. Int. J. Precis. Eng. Manuf. 2019, 20, 1485–1493. [Google Scholar] [CrossRef]
- Kang, H.; Lee, C. Effect of tension on conductivity of gravure printed Ag layer in roll-to-roll process. Int. J. Precis. Eng. Manuf. 2015, 16, 99–104. [Google Scholar] [CrossRef]
- Lee, D.J.; Oh, J.H.; Bae, H.S. Crack formation and substrate effects on electrical resistivity of inkjet-printed Ag lines. Mater. Lett. 2010, 64, 1069–1072. [Google Scholar] [CrossRef]
- Dikshit, V.; Nagalingam, A.P.; Yap, Y.L.; Sing, S.L.; Yeong, W.Y.; Wei, J. Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test. Mater. Des. 2018, 137, 140–151. [Google Scholar] [CrossRef]
- Khachatryan, H.; Kim, D.; Kim, M.; Kim, H. Roll-to-Roll fabrication of ITO thin film for flexible optoelectronics applications: The role of post-annealing. Mater. Sci. Semicond. Process. 2018, 88, 51–56. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Lee, C. Surface Drying for Brittle Material Coating Without Crack Defects in Large-Area Roll-To-Roll Coating System. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 723–730. [Google Scholar] [CrossRef]
- Chang, Y.B.; Moretti, P.M. Aerodynamic Characteristics of Pressure-Pad Air Bars. ASME J. Appl. Mech. 2000, 67, 177–182. [Google Scholar] [CrossRef]
- Chang, Y.B.; Swanson, R.P.; Moretti, P.M. Longitudinal and Out-of-Plane Stiffness of a Web in an Air-Flotation Oven. In Proceedings of the ASME Noise Control and Acoustics Division International Mechanical Engineering Congress and Exposition (IMECE ’99), Nashville, TN, USA, 14–19 November 1999; pp. 435–443. [Google Scholar]
- Moretti, P.M. Lateral Deflection of webs in Air-Flotation Ovens. ASME J. Appl. Mech. 2004, 71, 314–320. [Google Scholar] [CrossRef]
- Chang, Y.B.; Swanson, R.P.; Moretti, P.M. Resiliency of an Air-Floated Web. In Proceedings of the 5th International Conference on Web Handling, Stillwater, OK, USA, 6–9 June 1999; pp. 543–558. [Google Scholar]
- Müftü, S. Mechanics of a thin, tensioned shell, wrapped helically around a turn-bar. J. Fluids Struct. 2007, 23, 767–785. [Google Scholar] [CrossRef]
- Lee, C.; Kang, H.; Kim, H.; Shin, K. Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation. Jpn. J. Appl. Phys. 2010, 49, 5S1. [Google Scholar] [CrossRef]
- Shin, K. Tension Control; Tappi Press: Atlanta, GA, USA, 2000. [Google Scholar]
- Kang, H.; Shin, K. Precise tension control of a dancer with a reduced-order observer for roll-to-roll manufacturing systems. Mech. Mach. Theory 2018, 122, 75–85. [Google Scholar] [CrossRef]
- Müftü, S.; Lewis, T.S.; Cole, K.A.; Benson, R.C. A Two Dimensional Model of the Fluid Dynamics of an Air Reverser. J. Appl. Mech. 1998, 65, 171–177. [Google Scholar] [CrossRef]
- Skogestad, S. Postlethwaite, Multivariable Feedback Control; Wiley: Chichester, UK, 1996; pp. 344–349. [Google Scholar]
- Lee, J.; Shin, K.; Kang, H. Design of a register controller considering inherent characteristics of a roll-to-roll continuous manufacturing system. Int. J. Adv. Manuf. Technol. 2019, 102, 3725–3737. [Google Scholar] [CrossRef]
- Kang, H.; Lee, C.; Shin, K. Modeling and compensation of the machine directional register in roll-to-roll printing. Control Eng. Pract. 2013, 21, 645–654. [Google Scholar] [CrossRef]
- Scheaua, F.D. Theoretical approaches regarding the VENTURI effect. Hidraulica 2016, III, 69–72. [Google Scholar]
Geometry | Air-Hole Density | No. of Holes | Inlet/Outlet Pressure (Pa) | Deformation (mm) | Cost Function (J) (Q = R = 1) | ||||
---|---|---|---|---|---|---|---|---|---|
Base Area | Additional Rows | Maximum | Minimum (x) | Middle | Inlet/Outlet Position | Difference (u) | |||
Type 0 | 0.026 | none | 552 | 8.773 | −3.899 | 4.140 | −5.103 | 9.243 | 100.63 |
Type A | 0.026 | 0.026 (both rows) | 658 | 7.792 | −2.923 | −2.872 | 3.480 | 6.352 | 48.89 |
Type B | 0.026 | 0.094 (both row) | 742 | 3.899 | −1.957 | −3.660 | 4.474 | 8.134 | 69.99 |
Type C | 0.026 | 0.052 + 0.013 (two rows) | 622 | 8.799 | −2.912 | 0.518 | −0.659 | 1.177 | 9.86 |
Velocity (m/min) | Blower Frequency (Hz) | Average Flotation Height (mm) | Flotation Height of a Moving Substrate (mm) | Lateral SD | Total SD | |||
---|---|---|---|---|---|---|---|---|
Left | Center | Right | ||||||
10 | 25 | 0.7 | Inlet | 0.601 | 0.671 | 0.818 | 0.111 | 0.095 |
Middle | 0.672 | 0.77 | 0.739 | 0.050 | ||||
Outlet | 0.533 | 0.614 | 0.777 | 0.124 | ||||
35 | 1.17 | Inlet | 1.046 | 1.132 | 1.295 | 0.126 | 0.120 | |
Middle | 1.106 | 1.161 | 1.322 | 0.112 | ||||
Outlet | 1.002 | 1.115 | 1.324 | 0.163 | ||||
15 | 25 | 0.83 | Inlet | 0.662 | 0.77 | 0.875 | 0.107 | 0.142 |
Middle | 0.72 | 0.9 | 1.108 | 0.194 | ||||
Outlet | 0.68 | 0.896 | 0.918 | 0.132 | ||||
35 | 1.21 | Inlet | 0.707 | 1.251 | 1.401 | 0.365 | 0.265 | |
Middle | 1.371 | 1.284 | 1.432 | 0.074 | ||||
Outlet | 0.884 | 1.113 | 1.486 | 0.304 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Lee, C. Optimal Design of Pneumatic Flotation for Roll-to-Roll Conveyance in the Production of Printed Circuits. Appl. Sci. 2020, 10, 5440. https://doi.org/10.3390/app10165440
Kang H, Lee C. Optimal Design of Pneumatic Flotation for Roll-to-Roll Conveyance in the Production of Printed Circuits. Applied Sciences. 2020; 10(16):5440. https://doi.org/10.3390/app10165440
Chicago/Turabian StyleKang, Hyunkyoo, and Changwoo Lee. 2020. "Optimal Design of Pneumatic Flotation for Roll-to-Roll Conveyance in the Production of Printed Circuits" Applied Sciences 10, no. 16: 5440. https://doi.org/10.3390/app10165440
APA StyleKang, H., & Lee, C. (2020). Optimal Design of Pneumatic Flotation for Roll-to-Roll Conveyance in the Production of Printed Circuits. Applied Sciences, 10(16), 5440. https://doi.org/10.3390/app10165440