On the Flow over High-rise Building for Wind Energy Harvesting: An Experimental Investigation of Wind Speed and Surface Pressure
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Methodology
2.1. High-Rise Building Models
2.2. Wind Tunnel Setup and Incoming Flow
2.3. Experimental Procedure
3. Results
3.1. Flat-roof Building
3.1.1. Wind Velocity
3.1.2. Surface Pressure
3.1.3. Turbulence Intensity and Flow Acceleration
3.1.4. Flow Pattern Comparison with Other Flat-Roof Buildings
3.2. Deck-roof Building
3.2.1. Wind Velocity
3.2.2. Surface Pressure
3.2.3. Turbulence Intensity and Flow Acceleration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
Cp | pressure coefficient |
Cp,mean | mean surface pressure coefficient |
Cp RMS | standard deviation of the surface pressure coefficient |
D | width of building model |
f | frequency |
H | height of building model |
IU | stream-wise turbulence intensity |
IW | vertical turbulence intensity |
LU | longitudinal integral length-scale |
p | surface pressure |
p∞ | free-stream pressure |
Re | Reynolds number |
SU(f) | spectral density function for wind velocity |
U | mean stream-wise wind speed |
Uref | mean stream-wise wind speed at model height (H) |
x, y, z | coordinates |
zfl | height above wind tunnel floor |
zref | reference height equal to height of building model (H) |
ρ | air density |
σU | standard deviation of stream-wise wind velocity component |
σW | standard deviation of vertical wind velocity component |
References
- United Nations—Department of Economic and Social Affairs—Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019.
- Cheng, V. Understanding density and high density. In Designing High-Density Cities for Social and Environmental Sustainability; Routledge: London, UK, 2009. [Google Scholar]
- Energy Information Administration—EIA. EIA Projects World Energy Consumption Will Increase 56% by 2040—Today in Energy. 2013. Available online: https://www.eia.gov/todayinenergy/detail.php?id=12251# (accessed on 6 December 2019).
- Walsh, C.; Pineda, I. Wind Energy in Europe in 2018. Trends and Statistics; Wind Europe: Brussels, Belgium, 2019. [Google Scholar]
- van Kuik, G.; Ummels, B.; Hendriks, R. Perspectives of Wind Energy. In Sustainable Energy Technologies; Hanjalić, K., Van de Krol, R., Lekić, A., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Sieros, G.; Chaviaropoulos, P.; Sørensen, J.D.; Bulder, B.H.; Jamieson, P. Upscaling wind turbines: Theoretical and practical aspects and their impact on the cost of energy. Wind Energy 2012, 15, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. A framework for preliminary large-scale urban wind energy potential assessment: Roof-mounted wind turbines. Energy Convers. Manag. 2020. [Google Scholar] [CrossRef]
- Bahaj, A.S.; Myers, L.; James, P.A.B. Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings. Energy Build. 2007, 39, 154–165. [Google Scholar] [CrossRef]
- Tummala, A.; Velamati, R.K.; Sinha, D.K.; Indraja, V.; Krishna, V.H. A review on small scale wind turbines. Renew. Sustain. Energy Rev. 2016, 56, 1351–1371. [Google Scholar] [CrossRef]
- Drew, D.R.; Barlow, J.F.; Cockerill, T.T. Estimating the potential yield of small wind turbines in urban areas: A case study for Greater London, UK. J. Wind Eng. Ind. Aerodyn. 2013, 115, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Ip, K.Y. Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong. Renew. Sustain. Energy Rev. 2009, 13, 450–461. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Stathopoulos, T.; Pillay, P. Comparison of wind tunnel and on site measurements for urban wind energy estimation of potential yield. J. Wind Eng. Ind. Aerodyn. 2016, 158, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulos, T.; Alrawashdeh, H.; Al-Quraan, A.; Blocken, B.; Dilimulati, A.; Paraschivoiu, M.; Pila, P. Urban wind energy: Some views on potential and challenges. J. Wind Eng. Ind. Aerodyn. 2018, 179, 146–157. [Google Scholar] [CrossRef]
- Blocken, B. 50 years of Computational Wind Engineering: Past, present and future. J. Wind Eng. Ind. Aerodyn. 2014, 129, 69–102. [Google Scholar] [CrossRef]
- Simões, T.; Estanqueiro, A. A new methodology for urban wind resource assessment. Renew. Energy 2016, 89, 598–605. [Google Scholar]
- Stankovic, S.; Campbell, N.; Harries, A. Urban Wind Energy; Earthscan Publications Ltd.: London, UK, 2009. [Google Scholar]
- Campos-Arriaga, L. Wind Energy in the Built Environment: A Design Analysis Using CFD and Wind Tunnel Modelling Approach; University of Nottingham: Nottingham, UK, 2009; Available online: http://eprints.nottingham.ac.uk/10806/1/CamposArriagaPhDThesis.pdf (accessed on 23 June 2020).
- Ginger, J.D.; Letchford, C.W. Characteristics of large pressures in regions of flow separation. J. Wind Eng. Ind. Aerodyn. 1993, 49, 301–310. [Google Scholar] [CrossRef]
- Kawai, H.; Nishimura, G. Characteristics of fluctuating suction and conical vortices on a flat roof in oblique flow. J. Wind Eng. Ind. Aerodyn. 1996, 60, 211–225. [Google Scholar] [CrossRef]
- Kawai, H. Structure of conical vortices related with suction fluctuation on a flat roof in oblique smooth and turbulent flows. J. Wind Eng. Ind. Aerodyn. 1997, 69–71, 579–588. [Google Scholar] [CrossRef]
- Banks, D.; Meroney, R.N. A model of roof-top surface pressures produced by conical vortices: Model development. Wind Struct. An Int. J. 2001, 4, 227–246. [Google Scholar] [CrossRef] [Green Version]
- Marwood, R.; Wood, C.J. Conical vortex movement and its effect on roof pressures. J. Wind Eng. Ind. Aerodyn. 1997, 69–71, 589–595. [Google Scholar] [CrossRef]
- Banks, D.; Meroney, R.N.; Sarkar, P.P.; Zhao, Z.; Wu, F. Flow visualization of conical vortices on flat roofs with simultaneous surface pressure measurement. J. Wind Eng. Ind. Aerodyn. 2000, 84, 65–85. [Google Scholar] [CrossRef]
- Cao, Y.; Tamura, T. Large-eddy simulations of flow past a square cylinder using structured and unstructured grids. Comput. Fluids 2016, 137, 36–54. [Google Scholar] [CrossRef]
- Wu, F.; Sarkar, P.P.; Mehta, K.C.; Zhao, Z. Influence of incident wind turbulence on pressure fluctuations near flat-roof corners. J. Wind Eng. Ind. Aerodyn. 2001, 89, 403–420. [Google Scholar] [CrossRef]
- Kawai, H. Local peak pressure and conical vortex on building. J. Wind Eng. Ind. Aerodyn. 2002, 90, 251–263. [Google Scholar] [CrossRef]
- Ahmad, S.; Kumar, K. Effect of geometry on wind pressures on low-rise hip roof buildings. J. Wind Eng. Ind. Aerodyn. 2002, 90, 755–779. [Google Scholar] [CrossRef]
- Franchini, S.; Pindado, S.; Meseguer, J.; Sanz-Andrés, A. A parametric, experimental analysis of conical vortices on curved roofs of low-rise buildings. J. Wind Eng. Ind. Aerodyn. 2005, 93, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Tryggeson, H.; Lyberg, M.D. Stationary vortices attached to flat roofs. J. Wind Eng. Ind. Aerodyn. 2010, 98, 47–54. [Google Scholar] [CrossRef]
- Ono, Y.; Tamura, T.; Kataoka, H. LES analysis of unsteady characteristics of conical vortex on a flat roof. J. Wind Eng. Ind. Aerodyn. 2008, 96, 2007–2018. [Google Scholar] [CrossRef]
- Tamura, Y.; Suganuma, S.; Kikuchi, H.; Hibi, K. Proper orthogonal decomposition of random wind pressure field. J. Fluids Struct. 1999, 13, 1069–1095. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Peralta, C.; Lopez-Garcia, O.; Navarro, J.; Cruz, I. On Roof Geometry for Urban Wind Energy Exploitation in High-Rise Buildings. Computation 2015, 3, 299–325. [Google Scholar] [CrossRef]
- Ledo, L.; Kosasih, P.B.; Cooper, P. Roof mounting site analysis for micro-wind turbines. Renew. Energy 2011, 36, 1379–1391. [Google Scholar] [CrossRef]
- Abohela, I.; Hamza, N.; Dudek, S. Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renew. Energy 2013, 50, 1106–1118. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Lopez-Garcia, O.; Peralta, C.; Navarro, J.; Cruz, I. An empirical-heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Appl. Energy 2016, 164, 769–794. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bianchini, A.; Ferrari, L. Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield. Renew. Energy 2012, 45, 163–174. [Google Scholar] [CrossRef]
- Architectural Institute of Japan. Guidebook for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. 2007. Available online: https://www.aij.or.jp/jpn/publish/cfdguide/index_e.htm (accessed on 23 June 2020).
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- CEDVAL. Compilation of Experimental Data for Validation of Microscale Dispersion Models; Hamburg University: Hamburg, Germany, 2006; Available online: https://mi-pub.cen.uni-hamburg.de/index.php?id=628 (accessed on 23 June 2020).
- Toja-Silva, F.; Peralta, C.; Lopez-Garcia, O.; Navarro, J.; Cruz, I. Roof region dependent wind potential assessment with different RANS turbulence models. J. Wind Eng. Ind. Aerodyn. 2015, 142, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Glumac, A.Š.; Hemida, H.; Vita, G.; Vranešević, K.K.; Höffer, R. Wind tunnel experimental data for flow characteristics above the roof of isolated high-rise building for wind energy harvesting considering two shapes of the roof, flat roof and deck roof. Mendeley Data 2020, 1. [Google Scholar] [CrossRef]
- Glumac, A.Š.; Hemida, H.; Höffer, R. Wind energy potential above a high-rise building influenced by neighboring buildings: An experimental investigation. J. Wind Eng. Ind. Aerodyn. 2018, 175, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Glumac, A.Š.; Hemida, H.; Höffer, R. Wind tunnel experimental data for flow characteristics above the roof of high-rise buildings in group arrangement for wind energy harvesting. Mendeley Data 2018, 2. [Google Scholar] [CrossRef]
- Baniotopoulos, C.; Borri, C. Wind Energy Technology reconsideration to enhance the concept of smart cities. In WORKSHOP Trends and Challenges for Wind Energy Harvesting; Eindhoven University of Technology: Eindhoven, The Netherlands, 2015; pp. 4–8. [Google Scholar]
- COST Action TU1304. WINERCOST—Wind energy Technology Reconsideration to Enhance the Concept of Smart Cities. 2018. Available online: http://winercost.com/ (accessed on 6 December 2019).
- Uematsu, Y.; Isyumov, N. Wind pressures acting on low-rise buildings. J. Wind Eng. Ind. Aerodyn. 1999, 82, 1–25. [Google Scholar] [CrossRef]
- Cook, N.J. The Designer’s Guide to Wind Loading of Building Structures: Static Structures Pt. 2; Butterworth-Heinemann Ltd.: Oxford, UK, 1990. [Google Scholar]
- Tominaga, Y. Flow around a high-rise building using steady and unsteady RANS CFD: Effect of large-scale fluctuations on the velocity statistics. J. Wind Eng. Ind. Aerodyn. 2015, 142, 93–103. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Peralta, C.; Lopez-Garcia, O.; Navarro, J.; Cruz, I. Effect of roof-mounted solar panels on the wind energy exploitation on high-rise buildings. J. Wind Eng. Ind. Aerodyn. 2015, 145, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Philipps, A. Experimentelle Untersuchung der Vertailung des Statishen Druckes in der Messstrecke des Grenzschichtwindkanals; Ruhr University Bochum: Bochum, Germany, 2019. [Google Scholar]
- Arunchalam, S. Hot Wire Velocity Measurements in Boundary Layer Wind Tunnel; Internal Report; Building Aerodynamics Laboratory, Ruhr University Bochum: Bochum, Germany, 2016. [Google Scholar]
- EN 1991-1-4. Eurocode 1: Actions on Structures—Part 1–4: General Actions—Wind Actions; The European Committee for Standardization (CEN): Brussels, Belgium, 2005. [Google Scholar]
- Neuhaus, C. Numerische Frequenzabhängige Kalibrierung Langer Druckmessschlauchsysteme; Technical report; Building Aerodynamics Laboratory, Ruhr University Bochum: Bochum, Germany, 2010. [Google Scholar]
- Hemida, H.; Šarkić, A. Wind Tunnel Tests—Air flow around Buildings—Final Report of a Short Term Scientific Mission—COST Action TU1304. WINERCOST, COST Action TU1304. 2014. Available online: http://winercost.com/cost_files/STSM_report-Sarkic_Hemida.pdf (accessed on 23 June 2020).
- Jørgensen, F.E. How to Measure Turbulence with Hot-Wire Anemometers—A Practical Guide; Dantec Dynamics: Skovlunde, Denmark, 2002; pp. 1–52. [Google Scholar]
- Yavuzkurt, S. A guide to uncertainty analysis of hot-wire data. J. Fluids Eng. Trans. ASME 1984, 106, 181–186. [Google Scholar] [CrossRef]
- Haan, F.L. The Effects of Turbulence on the Aerodynamics of Long-Span Bridges; University of Notre Dame: Notre Dame, Indiana, 2000. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemida, H.; Šarkić Glumac, A.; Vita, G.; Kostadinović Vranešević, K.; Höffer, R. On the Flow over High-rise Building for Wind Energy Harvesting: An Experimental Investigation of Wind Speed and Surface Pressure. Appl. Sci. 2020, 10, 5283. https://doi.org/10.3390/app10155283
Hemida H, Šarkić Glumac A, Vita G, Kostadinović Vranešević K, Höffer R. On the Flow over High-rise Building for Wind Energy Harvesting: An Experimental Investigation of Wind Speed and Surface Pressure. Applied Sciences. 2020; 10(15):5283. https://doi.org/10.3390/app10155283
Chicago/Turabian StyleHemida, Hassan, Anina Šarkić Glumac, Giulio Vita, Kristina Kostadinović Vranešević, and Rüdiger Höffer. 2020. "On the Flow over High-rise Building for Wind Energy Harvesting: An Experimental Investigation of Wind Speed and Surface Pressure" Applied Sciences 10, no. 15: 5283. https://doi.org/10.3390/app10155283
APA StyleHemida, H., Šarkić Glumac, A., Vita, G., Kostadinović Vranešević, K., & Höffer, R. (2020). On the Flow over High-rise Building for Wind Energy Harvesting: An Experimental Investigation of Wind Speed and Surface Pressure. Applied Sciences, 10(15), 5283. https://doi.org/10.3390/app10155283