A Tiny Haptic Knob Based on Magnetorheological Fluids
Abstract
:1. Introduction
2. Design of Proposed Haptic Knob
2.1. Structure of Proposed Haptic Knob
2.2. Design of Rotary Shaft and Housing
2.3. Design of Solenoid Coil
2.4. Operating Principle of Proposed Haptic Knob and Its Magnetic Flux Path Simulation
2.5. Fabrication of Proposed Haptic Knob
3. Results and Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Badescu, M.; Wampler, C.; Mavroidis, C. Rotary haptic knob for vehicular instrument controls. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Orlando, FL, USA, 24–25 March 2002. [Google Scholar] [CrossRef]
- Kim, L.; Han, M.; Shin, S.; Park, S. A haptic dial system for multimodal prototyping. In Proceedings of the 18th International Conference on Artificial Reality and Telexistence, Yokohama, Japan, 1–3 December 2008. [Google Scholar]
- Kim, L.; Park, W.; Cho, H.; Park, S. An universal remote controller with haptic interface for home devices. In Proceedings of the 2010 Digest of Technical Papers International Conference on Consumer Electronics, Las Vegas, NV, USA, 9–13 January 2010. [Google Scholar] [CrossRef]
- Chapuis, D.; Michel, X.; Gassert, R.; Chew, C.-M.; Burdet, E.; Bleuler, H. A haptic knob with a hybrid ultrasonic motor and powder clutch actuator. In Proceedings of the Second Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Tsukaba, Japan, 22–24 March 2007. [Google Scholar] [CrossRef]
- MacLean, K.E.; Shaver, M.J.; Pai, D.K. Handheld haptics: A USB media controller with force sensing. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Orlando, FL, USA, 24–25 March 2002. [Google Scholar] [CrossRef]
- Hua, T.P.; Fai, Y.C.; Yap, R.; Ming, E.S.L. Development of a low cost haptic knob. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2011, 5, 2034–2037. [Google Scholar] [CrossRef]
- An, J.; Kwon, D.-S. Stability and performance of haptic interfaces with active/passive actuators—Theory and experiments. Int. J. Robot. Res. 2006, 25, 1121–1136. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.H.; Kosasih, P.B.; Zhang, X.Z. Development of an MR-brake-based haptic device. Smart Mater. Struct. 2006, 15, 1960–1966. [Google Scholar] [CrossRef]
- Olabi, A.G.; Grunwald, A. Design and application of magneto-rheological fluid. Mater. Des. 2007, 28, 2658–2664. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.T.; Liao, W.H. A novel multifunctional rotary actuator with magnetorheological fluid. Smart Mater. Struct. 2012, 21, 065012. [Google Scholar] [CrossRef]
- Qin, H.; Song, A.; Mo, Y. A hybrid actuator with hollowed multi-drum magnetorheological brake and direct-current micromotor for hysteresis compensation. J. Intell. Mater. Syst. Struct. 2019, 30, 1031–1042. [Google Scholar] [CrossRef]
- Qin, H.; Song, A.; Gao, Z.; Liu, Y.; Jiang, G. A multi-finger interface with MR actuators for haptic applications. IEEE Trans. Haptics 2017, 11, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Tri, D.B.; Cuong, V.V.; Quoc, H.N. Development of a new magnetorheological actuator for force feedback application. Int. J. Electron. Electr. Eng. 2017, 5, 280–283. [Google Scholar] [CrossRef]
- Karabulut, M.G.; Dede, M.I.C. Design and experimental validation of an MR-fluid based brake for use in haptics. In Proceedings of the 16th International Conference on New Actuators, Bermen, Germany, 25–27 June 2018. [Google Scholar]
- Nguyen, H.Q.; Le, T.D.; Nguyen, D.N.; Le, T.D.; Lang, T.V.; Ngo, T.V. Development of 3-DOF force feedback system using spherical arm mechanism and MR brakes. Int. J. Mech. Eng. Robot. Res. 2020, 9, 170–176. [Google Scholar] [CrossRef]
- Yin, X.; Guo, S.; Song, Y. Magnetorheological fluids actuated haptic-based teleoperated catheter operating system. Micromachines 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncalves, F.D. Characterizing the Behavior of Magnetorheological Fluids at High Velocities and High Shear Rates. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2005. [Google Scholar]
- Wereley, N.M.; Pang, L. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Mater. Struct. 1998, 7, 732–743. [Google Scholar] [CrossRef]
- Choi, S.-B.; Choi, Y.-T. Sliding mode control of a shear-mode type ER engine mount. KSME Int. J. 1999, 13, 26–33. [Google Scholar] [CrossRef]
- Jolly, M.R.; Carlson, J.D. Controllable squeeze damping using magnetorheological fluid. In Proceedings of the 5th International Conference on New Actuators, Bremen, Germany, 26–28 June 1996. [Google Scholar]
- Woodruff, B.; Helson, H. Torque: A new dimension in tactile-kinesthetic sensitivity. Am. J. Psychol. 1965, 78, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, B.; Helson, H. Torque sensitivity as a function of knob radius and load. Am. J. Psychol. 1967, 80, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Jandura, L.; Srinivasan, M.A. Experiments on human performance in torque discrimination and control. In Proceedings of the ASME Winter Annual Meeting, Chicago, IL, USA, 13–18 November 1994; Available online: http://www.rle.mit.edu/touchlab/publications/1994_002.pdf (accessed on 24 July 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, Y.H.; Choi, D.-S.; Yun, I.-H.; Kim, S.-Y. A Tiny Haptic Knob Based on Magnetorheological Fluids. Appl. Sci. 2020, 10, 5118. https://doi.org/10.3390/app10155118
Heo YH, Choi D-S, Yun I-H, Kim S-Y. A Tiny Haptic Knob Based on Magnetorheological Fluids. Applied Sciences. 2020; 10(15):5118. https://doi.org/10.3390/app10155118
Chicago/Turabian StyleHeo, Yong Hae, Dong-Soo Choi, In-Ho Yun, and Sang-Youn Kim. 2020. "A Tiny Haptic Knob Based on Magnetorheological Fluids" Applied Sciences 10, no. 15: 5118. https://doi.org/10.3390/app10155118
APA StyleHeo, Y. H., Choi, D.-S., Yun, I.-H., & Kim, S.-Y. (2020). A Tiny Haptic Knob Based on Magnetorheological Fluids. Applied Sciences, 10(15), 5118. https://doi.org/10.3390/app10155118