Tunable Plasmonic Talbot Effect Based on Graphene Monolayer
Abstract
1. Introduction
2. Model of the Plasmonic Talbot Effect and Calculation Methods
3. Calculation Results and Discussion
3.1. The Imaging of Plasmonic Talbot Effect
3.2. The Talbot Effect Distance as a Function of the Multiple Parameters
3.3. The FWHM Properties of the Talbot Images
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Talbot, H.F. Facts relating to optical science. Philos. Mag. 1836, 9, 401–407. [Google Scholar]
- Rayleigh, L. On copying diffraction-gratings, and on some phenomena connected therewith. Philos. Mag. 1881, 11, 196–205. [Google Scholar] [CrossRef]
- Lorenz Stuerzebecher, T.H.; Uwe Vogler, U.D.; Zeitner, R.V. Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and talbot effect. Opt. Express 2010, 18, 19485–19494. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. Lau cavity and phase locking of laser arrays. Opt. Lett. 1989, 14, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Mark, R.D.; Nikolay, Z.F.; Javier, G.A. The plasmon talbot effect. Opt. Express 2007, 15, 9692–9700. [Google Scholar]
- Nikitin, A.Y.; Guinea, F.; García-Vidal, F.J.; Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 2011, 84, 161407. [Google Scholar] [CrossRef]
- André, G.E.; Helfert, S.F.; Jürgen, J. Analysis of the self-imaging effect in plasmonic multimode waveguides. Appl. Opt. 2010, 49, A1–A10. [Google Scholar]
- Zhang, W.; Zhao, C.; Wang, J.; Zhang, J. An experimental study of the plasmonic talbot effect. Opt. Express 2009, 17, 19757–19762. [Google Scholar] [CrossRef]
- Liu, Z.W.; Steele, J.M.; Yuri, P.; Sun, C.; Xiang, Z. Focusing surface plasmons with a plasmonic len. Nano Lett. 2005, 5, 1726–1729. [Google Scholar] [CrossRef]
- Afshari-Bavil, M.; Luo, X.; Li, C.; Feng, S.; Dong, M.; Zhu, L. The observation of plasmonic talbot effect at non-illumination side of groove arrays. Plasmonics 2018, 13, 2387–2394. [Google Scholar] [CrossRef]
- Yu, Y.T.; Zappe, H. Experimental investigation of 3d plasmon talbot effect. In Proceedings of the 9th IEEE Internation Conference on Nano/Micro Engineered and Molecular Systems, Waikiki Beach, HI, USA, 13–16 April 2014; pp. 532–535. [Google Scholar]
- Sudhir, C.; Heinis, D.; Jean, C.; Niek, F.H.; Stefan, E. Romain Quidant Local observation of plasmon focusing in talbot carpets. Opt. Express 2009, 17, 23772–23784. [Google Scholar]
- Shi, X.Y.; Yang, W.; Xing, H.Y.; Chen, X.S. Discrete plasmonic talbot effect in finite metal waveguide arrays. Opt. Lett. 2015, 40, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Jia, Y.; Ji, Z.C. Discrete plasmonic talbot effect in single-mode graphene ribbon arrays. Appl. Opt. 2017, 56, 9998–10002. [Google Scholar]
- Li, L.L.; Zhang, Y.; Fu, Y.Q.; Wang, T.S.; Lu, Z.W.; Qiang, S.; Yu, W.X. Study of the plasmon talbot effect of metallic nanolenses induced by linearly polarized illumination. Plasmonics 2012, 7, 641–645. [Google Scholar] [CrossRef]
- Rahmani, M.; Miroshnichenko, A.E.; Lei, D.Y.; Luk’yanchuk, B.; Tribelsky, M.I.; Kuznetsov, A.I.; Kivshar, Y.S.; Francescato, Y.; Giannini, V.; Hong, M.; et al. Beyond the hybridization effects in plasmonic nanoclusters: Diffraction-induced enhanced absorption and scattering. Small 2014, 10, 576–583. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Liu, H.; Xu, L.; Sheng, C.; Zhu, S. Self-focusing and the talbot effect in conformal transformation optics. Phys. Rev. Lett. 2017, 119, 033902. [Google Scholar] [CrossRef]
- Salas, J.A.; Varga, K.; Yan, J.-A.; Bevan, K.H. Electron talbot effect on graphene. Phys. Rev. B 2016, 93, 104305. [Google Scholar] [CrossRef]
- Yang, F.; Wang, B.; Kai, W.; Hua, L.; Lu, P.X. Talbot effect in weakly coupled monolayer graphene sheet arrays. Opt. Lett. 2014, 39, 3371–3373. [Google Scholar]
- Yi, H.; Suh, J.Y.; Zhou, W.; Mark, D.H.; Teri, W.O. Talbot effect beyond the paraxial limit at optical frequencies. Opt. Express 2012, 20, 14284–14291. [Google Scholar]
- Zhang, Y.Q.; Yao, X.; Chen, Y.; Li, P.Y.; Yuan, J.M.; Feng, W.; Jia, S.Q.; Zhang, Y.P. Controllable multiwave mixing talbot effect. IEEE Photon. J. 2012, 4, 2057–2065. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselo, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Qiu, W.; Chen, H.; Qiu, P.P.; Lin, Z.; Wang, J.X.; Kan, Q.; Pan, J.Q. Electromagnetic field coupling characteristics in graphene plasmonic oligomers: From isolated to collective modes. Phys. Chem. Chem. Phys. 2017, 19, 14671–14679. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Marinko Jablan, H.B.; Marin, S. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Sukosin, T.; Andrea, S.; Liu, Z.; Ma, L.; Wang, Y.; Pulickel, M.A.; Peter, N.; Naomi, J.H.; Abajo, F.J.G.D. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 2013, 7, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, V.; Nader, E. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar]
- Ren, J.; Wang, W.; Qiu, W.; Qiu, P.; Wang, Z.; Lin, Z.; Wang, J.X.; Kan, Q.; Pan, J.Q. Dynamic tailoring of electromagnetic behaviors of graphene plasmonic oligomers by local chemical potential. Phys. Chem. Chem. Phys. 2018, 20, 16695–16703. [Google Scholar] [CrossRef]
- Ren, J.; Wang, G.; Qiu, W.; Chen, H.; Qiu, P.; Kan, Q.; Pan, J.Q. A flexible control on electromagnetic behaviors of graphene oligomer by tuning chemical potential. Nanoscale Res. Lett. 2018, 13, 349. [Google Scholar] [CrossRef]
- Ren, J.; Wang, G.; Qiu, W.; Lin, Z.; Chen, H.; Qiu, P.; Wang, J.X.; Kan, Q.; Pan, J.Q. Optimization of the fano resonance lineshape based on graphene plasmonic hexamer in mid-infrared frequencies. Nanomaterials 2017, 7, 238. [Google Scholar] [CrossRef]
- Van Oosten, D.; Kuipers, M.S.L. Nanohole chains for directional and localized surface plasmon excitation. Nano Lett. 2010, 10, 286–290. [Google Scholar] [CrossRef]
- Gao, H.; Hyun, J.K.; Min, H.L.; Yang, J.C.; Lincoln, J.L.; Teri, W.O. Broadband plasmonic microlenses based on patches of nanohole. Nano Lett. 2010, 10, 4111–4116. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wan, M.; Yan, H.; Xie, G.C. High efficient narrow-band grating spectral filtering technology applied to laser echo detection. Chin. J. Lasers 2018, 45, 1005002. [Google Scholar]
- Zhong, H.; Zhang, Y.; Milivoj, R.B.; Zhang, Y. Generating lieb and super-honeycomb lattices by employing the fractional talbot effect. Phys. Opt. 2019, 3, 65. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Su, S.; Zhou, H.; Zhao, Z.; Lin, Z.; Qiu, W. Tunable Plasmonic Talbot Effect Based on Graphene Monolayer. Appl. Sci. 2020, 10, 4782. https://doi.org/10.3390/app10144782
Ma H, Su S, Zhou H, Zhao Z, Lin Z, Qiu W. Tunable Plasmonic Talbot Effect Based on Graphene Monolayer. Applied Sciences. 2020; 10(14):4782. https://doi.org/10.3390/app10144782
Chicago/Turabian StyleMa, Huanxi, Shaojian Su, Hengjie Zhou, Zeyang Zhao, Zhili Lin, and Weibin Qiu. 2020. "Tunable Plasmonic Talbot Effect Based on Graphene Monolayer" Applied Sciences 10, no. 14: 4782. https://doi.org/10.3390/app10144782
APA StyleMa, H., Su, S., Zhou, H., Zhao, Z., Lin, Z., & Qiu, W. (2020). Tunable Plasmonic Talbot Effect Based on Graphene Monolayer. Applied Sciences, 10(14), 4782. https://doi.org/10.3390/app10144782