Effects of Plyometric Training on Surface Electromyographic Activity and Performance during Blocking Jumps in College Division I Men’s Volleyball Athletes
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Data Collection
2.3. Experimental Design
2.4. Procedures
2.5. Dependent Measures
2.6. Statistical Analysis
3. Results
3.1. Muscle Activities of Blocking Jumps
3.2. Jump Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sheppard, J.M.; Gabbett, T.; Taylor, K.L.; Dorman, J.; Lebedew, A.J.; Borgeaud, R. Development of a repeated-effort test for elite men’s volleyball. Int. J. Sport Physiol. 2007, 2, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.; Borgeaud, R.; Strugnel, A. Influence of stature on movement speed and repeated efforts in elite volleyball players. J. Aust. Strength Cond. 2008, 16, 12–14. [Google Scholar]
- Sheppard, J.M.; Cronin, J.B.; Gabbett, T.J.; McGuigan, M.R.; Etxebarria, N.; Newton, R.U. Relative importance of strength, power, and anthropometric measures to jump performance of elite volleyball players. J. Strength Cond. Res. 2008, 22, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Menzel, H.J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.; Campos, C.E.; Giannetti, M.R. Usefulness of the jump-and-reach test in assessment of vertical jump performance. Percept. Mot. Skills. 2010, 110, 150–158. [Google Scholar] [CrossRef]
- Merletti, R.; Parker, P. Electromyography—Physiology, Engineering and Noninvasive Applications, 1st ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Komi, P.V.; Finni, T.; Kuitunen, S. Contribution of the tendinous tissue to force enhancement during stretch–shortening cycle exercise depends on the prestretch and concentric phase intensities. J. Electromyogr. Kines. 2006, 16, 423–431. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Van Der Krogt, M.M.; Van Doorn, W.H.; de Ruiter, C.J. Effects of Fatigue of Plantarflexors on Control and Performance in Vertical Jumping. Med. Sci. Sports Exerc. Off. J. Am. Coll. Sports Med. 2011, 43, 673–684. [Google Scholar] [CrossRef]
- Horita, T.; Komi, P.V.; Nicol, C.; Kyrolainen, H. Effect of exhausting stretch-shortening cycle exerciseon the time course of mechanical behaviour in the drop jump: Possible role of muscle damage. Eur. J. Appl. Physiol. 1999, 79, 160–167. [Google Scholar] [CrossRef]
- Horita, T.; Komi, P.; Hämäläinen, I.; Avela, J. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance. Eur. J. Appl. Physiol. 2003, 88, 527–534. [Google Scholar] [CrossRef]
- Kuitunen, S.; Avela, J.; Kyrolainen, H.; Nicol, C.; Komi, P.V. Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise. Eur. J. Appl. Physiol. 2002, 88, 107–116. [Google Scholar]
- Neyroud, D.; Samararatne, J.; Kayser, B.; Place, N. Neuromuscular Fatigue After Repeated Jumping With Concomitant Electrical Stimulation. Int. J. Sport Physiol. 2017, 12, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- ve Dikey, A.; Şimşek, D.; Kırkaya, İ.; Güngör, E.O.; Soylu, A.R. Relationships among Vertical Jumping Performance, EMG Activation, and Knee Extensor and Flexor Muscle Strength in Turkish Elite Male Volleyball Players. Turk. Klin. J. Sports Sci. 2016, 8, 46–56. [Google Scholar]
- Pereira, G.; de Freitas, P.B.; Rodacki, A.; Ugrinowitsch, C.; Fowler, N.; Kokubun, E. Evaluation of an innovative critical power model in intermittent vertical jump. Int. J. Sports Med. 2009, 30, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Correia, R.; Ugrinowitsch, C.; Nakamura, F.; Rodacki, A.; Fowler, N.; Kokubun, E. The rating of perceived exertion predicts intermittent vertical jump demand and performance. J. Sports Sci. 2011, 29, 927–932. [Google Scholar] [CrossRef]
- Skurvydas, A.; Brazaitis, M.; Streckis, V.; Rudas, E. The effect of plyometric training on central and peripheral fatigue in boys. Int. J. Sports Med. 2010, 31, 451–457. [Google Scholar] [CrossRef]
- Nordlund, M.M.; Thorstensson, A.; Cresswell, A.G. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. J. Appl. Physiol. 2004, 96, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Makaruk, H.; Sacewicz, T. Effects of plyometric training on maximal power output and jumping ability. Hum. Mov. 2010, 11, 17–22. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Park, S.E. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players. J. Phys. Ther. Sci. 2016, 28, 3140–3144. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Costa, A.; Santos, P.; Figueiredo, T.; Vicente João, P. Training strategy of explosive strength in young female volleyball players. Medicina 2015, 51, 126–131. [Google Scholar] [CrossRef]
- Wulf, G.; Dufek, J.S.; Lozano, L.; Pettigrew, C. Increased jump height and reduced EMG activity with an external focus. Hum. Mov. Sci. 2010, 29, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Lin, K.C.; Chen, K.C.; Chiu, P.K.; Chen, H.J. System design and application for evaluation of blocking agility in volleyball. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2016, 230, 195–202. [Google Scholar] [CrossRef]
- Piper, T.J.; Erdmann, L.D. A 4 step plyometric program. Strength Cond. J. 1998, 20, 72–73. [Google Scholar] [CrossRef]
- Hayashibe, M.; Zhang, Q.; Guiraud, D.; Fattal, C. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation. J. Neural Eng. 2011, 8, 064001. [Google Scholar] [CrossRef] [PubMed]
- Stulen, F.B.; De Luca, C.J. Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans. Biomed. Eng. 1981, 7, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Merletti, R.; Conte, L.R.L. Surface EMG signal processing during isometric contractions. J. Electromyogr. Kines. 1997, 7, 241–250. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W.B.; Doyle, T.L.; Sheppard, T.A.; Newton, R.U. An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J. Sci. Med. Sport. 2006, 9, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Farrow, D.; Young, W.; Bruce, L. The development of a test of reactive agility for netball: A new methodology. J. Sci. Med. Sport. 2005, 8, 52–60. [Google Scholar] [CrossRef]
- Potteiger, J.A.; Lockwood, R.H.; Haub, M.D.; Dolezal, B.A.; Alumzaini, K.S.; Schroeder, J.M.; Zebas, C.J. Muscle power and fiber characteristic following 8 weeks of plyometric training. J. Strength Cond. Res. 1999, 13, 275–279. [Google Scholar]
- Arampatzis, A.; Stafilidis, S.; Morey-Klapsing, G.; Brüggemann, G.P. Interaction of the human body and surfaces of different stiffness during drop jumps. Med. Sci. Sports Exerc. 2004, 36, 451–459. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Demps, M.; Granacher, U. Effects of fatigue and surface instability on neuromuscular performance during jumping. Scand J. Med Sci Spor. 2016, 26, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Avela, J.; Komi, P.V.; Santos, P.M. Effects of differently induced stretch loads on neuromuscular control in drop jump exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 72, 553–562. [Google Scholar] [CrossRef] [PubMed]
Plyometric Training Program Number of Sets × Number of Rebounds | Week 1–2 (Sets × Rebs) | Week 3–4 (Sets × Rebs) | Week 5–6 (Sets × Rebs) |
---|---|---|---|
Standing vertical hops | 2 × 10 | ||
Single foot hops | 4 × 8 | ||
Multiple two-foot hurdle jumps (hurdle height 0.55 m) | 6 × 6 | ||
Counter movement jumps | 3 × 5 | ||
Depth jumps (drop box height 0.20 m) | 3 × 6 | ||
Lateral two-foot jumps | 2 × 10 | ||
Two-foot jumps | 4 × 8 | ||
Counter movement jumps | 3 × 5 | ||
Multiple two-foot hurdle jumps (hurdle height 0.65 m) | 6 × 6 | ||
Depth jumps (drop box height 0.30 m) | 3 × 6 | ||
Two-foot jumps forward and backward: | 2 × 10 | ||
Single foot jumps | 2 × 8 on each foot | ||
Counter movement jumps | 3 × 5 | ||
Multiple two-foot hurdle jumps (hurdle height 0.76 m) | 6 × 6 | ||
Depth jumps (drop box height 0.40 m) | 3 × 6 |
MDF | Jump Performances | |||||
---|---|---|---|---|---|---|
RFM | TAM | GM | BFM | BA | Maximum Vertical Jump Height | |
Pre-test | 0.991 | 0.976 | 0.614 | 0.660 | 0.973 | 0.964 |
Post-test | 0.978 | 0.936 | 0.560 | 0.690 | 0.988 | 0.983 |
PTG | CG | Interaction Effect (F-value) | Simple Effects (F-value) | Post-hoc Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||
RFM | Pre-test | 109.7 ± 7.2 | 94.9 ± 3.7 | 85.1 ± 3.1 | 108.2 ± 6.4 | 95.7 ± 4.4 | 85.9 ± 3.9 | 23.624 ** | T1 = 0.301 T2 = 8.136 * T3 = 40.690 ** | PTG > CG PTG > CG |
Post-test | 109.2 ± 6.6 | 96.8 ± 3.6 | 89.9 ± 3.5 | 107.8 ± 6.4 | 95.9 ± 3.7 | 84.6 ± 4.0 | ||||
BFM | Pre-test | 200.4 ± 9.5 | 172.2 ± 32.8 | 172.4 ± 27.3 | 188.1 ± 19.4 | 174.8 ± 35.8 | 178.7 ± 30.1 | 1.639 | ||
Post-test | 193.6 ± 5.6 | 174.3 ± 27.7 | 170.9 ± 27.1 | 187.4 ± 18.6 | 188.1 ± 18.4 | 183.1 ± 27.8 | ||||
TAM | Pre-test | 182.2 ± 7.7 | 136.5 ± 4.3 | 118.4 ± 7.2 | 174.9 ± 15.9 | 133.0 ± 2.9 | 119.3 ± 6.7 | 11.086 ** | T1 = 1.284 T2 = 95.390 ** T3 = 109.149 ** | PTG > CG PTG > CG |
Post-test | 180.5 ± 6.2 | 142.7 ± 6.4 | 131.2 ± 2.7 | 170.7 ± 17.7 | 132.8 ± 3.0 | 117.8 ± 7.6 | ||||
GM | Pre-test | 101.1 ± 28.9 | 94.4 ± 11.2 | 100.9 ± 14.2 | 95.3 ± 9.3 | 95.5 ± 8.1 | 100.9 ± 97.2 | 1.093 | ||
Post-test | 96.1 ± 29.3 | 87.5 ± 14.0 | 92.9 ± 10.2 | 92.0 ± 21.4 | 93.4 ± 9.7 | 99.1 ± 9.1 |
PTG | CG | Interaction Effect (F-value) | Main Effects (F-value) | Post-hoc Test | |||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | ||||
Pre-test | 2.04 ± 0.16 | 2.08 ± 0.13 | 2.11 ± 0.13 | 2.07 ± 0.15 | 2.08 ± 0.16 | 2.11 ± 0.13 | 0.618 | 58.287 ** | CG > PTG |
Post-test | 1.93 ± 0.12 | 1.95 ± 0.12 | 1.96 ± 0.11 | 2.06 ± 0.16 | 2.08 ± 0.16 | 2.09 ± 0.18 |
PTG | CG | F-value | Post-hoc Test | |
---|---|---|---|---|
Pre-test | 67.04 ± 3.83 | 66.86 ± 4.06 | 26.862 ** | PTG > CG |
Post-test | 69.27 ± 3.87 | 66.79 ± 3.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-H.; Chen, K.-C.; Hung, M.-H.; Chang, C.-Y.; Ho, C.-S.; Chang, C.-H.; Lin, K.-C. Effects of Plyometric Training on Surface Electromyographic Activity and Performance during Blocking Jumps in College Division I Men’s Volleyball Athletes. Appl. Sci. 2020, 10, 4535. https://doi.org/10.3390/app10134535
Wang M-H, Chen K-C, Hung M-H, Chang C-Y, Ho C-S, Chang C-H, Lin K-C. Effects of Plyometric Training on Surface Electromyographic Activity and Performance during Blocking Jumps in College Division I Men’s Volleyball Athletes. Applied Sciences. 2020; 10(13):4535. https://doi.org/10.3390/app10134535
Chicago/Turabian StyleWang, Min-Hsien, Ke-Chou Chen, Min-Hao Hung, Chi-Yao Chang, Chin-Shan Ho, Chun-Hao Chang, and Kuo-Chuan Lin. 2020. "Effects of Plyometric Training on Surface Electromyographic Activity and Performance during Blocking Jumps in College Division I Men’s Volleyball Athletes" Applied Sciences 10, no. 13: 4535. https://doi.org/10.3390/app10134535
APA StyleWang, M.-H., Chen, K.-C., Hung, M.-H., Chang, C.-Y., Ho, C.-S., Chang, C.-H., & Lin, K.-C. (2020). Effects of Plyometric Training on Surface Electromyographic Activity and Performance during Blocking Jumps in College Division I Men’s Volleyball Athletes. Applied Sciences, 10(13), 4535. https://doi.org/10.3390/app10134535