Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Rapid Isometric Contraction of the Knee Extensors
2.4. Force Variables
- Maximal voluntary contraction force (MVC): instantaneous maximal isometric muscle strength in Newtons (N).
- Rate of force development (RFD): the contractile RFD was obtained from the slope of the force-time curve (ΔForce/Δtime) expressed in N·s−1; thus, the instantaneous RFD peak (RFDmax) was the highest slope of the curve [17]. Average RFD was calculated for three overlapping periods in milliseconds to collect measures in three different phases of the contraction: 0–50 ms (RFD0–50), 0–150 ms (RFD0–150) and 0–250 ms (RFD0–250) [9,27].
- Impulse: the impulse was calculated through integration of force over time (i.e., cumulated area under the force-time curve) expressed in N·s [17]. Average impulse was calculated for the same three overlapping RFD periods in milliseconds (Impulse0–50, Impulse0–150 and Impulse0–250)
2.5. Statistical Analysis
3. Results
3.1. Intra-Session Reliability
3.2. Test-Retest Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Ruiter, C.J.; Van Leeuwen, D.; Heijblom, A.; Bobbert, M.F.; De Haan, A. Fast unilateral isometric knee extension torque development and bilateral jump height. Med. Sci. Sports Exerc. 2006, 38, 1843–1852. [Google Scholar] [CrossRef]
- Requena, B.; González-Badillo, J.J.; Saez De Villareal, E.S.; Ereline, J.; García, I.; Gapeyeva, H.; Pääsuke, M. Functional performance, maximal strength, and power characteristics in isometric and dynamic actions of lower extremities in soccer players. J. Strength Cond. Res. 2009, 23, 1391–1401. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Bizzini, M.; Widler, K.; Munzinger, U. Asymmetry in quadriceps rate of force development as a functional outcome measure in TKA. Clin. Orthop. Relat. Res. 2010, 468, 191–198. [Google Scholar] [CrossRef]
- Gapeyeva, H.; Buht, N.; Peterson, K.; Ereline, J.; Haviko, T.; Pääsuke, M. Quadriceps femoris muscle voluntary isometric force production and relaxation characteristics before and 6 months after unilateral total knee arthroplasty in women. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 202–211. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Storey, A.G.; Nelson, A.R.; Cronin, J.B. Isometric training and long-term adaptations: Effects of muscle length, intensity, and intent: A systematic review. Scand. J. Med. Sci. Sports 2019, 29, 484–503. [Google Scholar] [CrossRef]
- Folland, J.P.; Buckthorpe, M.W.; Hannah, R. Human capacity for explosive force production: Neural and contractile determinants. Scand. J. Med. Sci. Sports 2014, 24, 894–906. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef]
- McGuigan, M. Testing and Evaluation of Strength and Power; Routledge: Abingdon, UK, 2019; ISBN 0429647956. [Google Scholar]
- Dideriksen, J.L.; Del Vecchio, A.; Farina, D. Neural and muscular determinants of maximal rate of force development. J. Neurophysiol. 2020, 123, 149–157. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Toonstra, J.; Mattacola, C.G. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J. Sport Rehabil. 2013, 22, 1–5. [Google Scholar] [CrossRef]
- Ruschel, C.; Haupenthal, A.; Jacomel, G.F.; de Fontana, H.B.; dos Santos, D.P.; Scoz, R.D.; Roesler, H. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors. J. Sport Rehabil. 2015, 24, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Neural adaptation to resistance training: Changes in evoked V-wave and H-reflex responses. J. Appl. Physiol. 2002, 92, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, A.; Valentin, S.; Sanderson, M.; Halperin, I. The Isometric Horizontal Push Test: Test–Retest Reliability and Validation Study. Int. J. Sports Physiol. Perform. 2019, 15, 581–584. [Google Scholar] [CrossRef]
- Moir, G.L.; Getz, A.; Davis, S.E.; Marques, M.; Witmer, C.A. The Inter-Session Reliability of Isometric Force-Time Variables and the Effects of Filtering and Starting Force. J. Hum. Kinet. 2019, 66, 43–55. [Google Scholar] [CrossRef]
- Brady, C.J.; Harrison, A.J.; Flanagan, E.P.; Gregory Haff, G.; Comyns, T.M. A comparison of the isometric midthigh pull and isometric squat: Intraday reliability, usefulness, and the magnitude of difference between tests. Int. J. Sports Physiol. Perform. 2018, 13, 844–852. [Google Scholar] [CrossRef]
- Buckthorpe, M.W.; Hannah, R.; Pain, T.G.; Folland, J.P. Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve 2012, 46, 566–576. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Switaj, Z.J.; Zuleger, B.M. The Addition of a “Rapid Response” Neuromuscular Activation To a Standard Dynamic Warm-Up Improves Isometric Force and Rate of Force Development. J. Aust. Strength Cond. 2017, 25, 19–24. [Google Scholar]
- Buckthorpe, M.W.; Roi, G.S. The time has come to incorporate a greater focus on rate of force development training in the sports injury rehabilitation process. Muscles Ligaments Tendonsj. 2017, 7, 435. [Google Scholar] [CrossRef]
- Tillin, N.A.; Jimenez-Reyes, P.; Pain, M.T.G.; Folland, J.P. Neuromuscular performance of explosive power athletes versus untrained individuals. Med. Sci. Sports Exerc. 2010, 42, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Stastny, P.; Tufano, J.; Kregl, J.; Petr, M.; Blazek, D.; Steffl, M.; Roczniok, R.; Fiala, M.; Golas, A.; Zmijewski, P. The Role of Visual Feedback on Power Output During Intermittent Wingate Testing in Ice Hockey Players. Sports 2018, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Baudry, S. Maximal discharge rate of motor units determines the maximal rate of force development during ballistic contractions in human. Front. Hum. Neurosci. 2014, 8, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Dirnberger, J.; Wiesinger, H.P.; Wiemer, N.; Kösters, A.; Müller, E. Explosive strength of the knee extensors: The influence of criterion trial detection methodology on measurement reproducibility. J. Hum. Kinet. 2016, 50, 15–25. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of selecting and reporting intraclasscorrelation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A. Statistical methods for assssing measurement Error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Kiff, A.B. Effect of Focus of Attention on Rate of Torque Development in the Knee Extensors; Oregon State University: Corvallis, OR, USA, 2017. [Google Scholar]
Raw Data | Dominant Leg | Non-Dominant Leg | Diff% | ||||||
---|---|---|---|---|---|---|---|---|---|
M (SD) | CV | SEM | ICC | M (SD) | CV | SEM | ICC | ||
MVC (N) | |||||||||
Session 1 | 649 (115) | 9.1% | 59.9 | 0.887 | 598 (91) | 5.8% | 34.0 | 0.869 | −8.9% |
Session 2 | 676 (117) | 5.0% | 33.9 | 0.966 | 618 (102) | 4.4% | 26.9 | 0.975 | −8.3% |
Impulse0–50 (N·s) | |||||||||
Session 1 | 7.1 (3.7) | 37.8% | 2.6 | 0.788 | 6.2 (3.3) | 29.3% | 1.8 | 0.896 | −10.2% |
Session 2 | 7.6 (3.1) | 30.3% | 2.2 | 0.798 | 7.3 (3.3) | 21.5% | 1.6 | 0.815 | −2.4% |
Impulse0–150 (N·s) | |||||||||
Session 1 | 48.6 (15.1) | 16.0% | 7.8 | 0.910 | 42.9 (14.0) | 11.9% | 5.1 | 0.956 | −13.1% |
Session 2 | 49.5 (14.0) | 10.7% | 5.3 | 0.954 | 45.8 (13.5) | 16.6% | 7.6 | 0.909 | −8.0% |
Impulse0–250 (N·s) | |||||||||
Session 1 | 102.8 (26.2) | 11.7% | 12.0 | 0.928 | 93.4 (24.8) | 8.2% | 7.7 | 0.969 | −10.0% |
Session 2 | 105.1 (25.1) | 6.7% | 7.0 | 0.976 | 96.6 (24.1) | 12.7% | 12.2 | 0.926 | −8.8% |
RFD0–50 (N·s−1) | |||||||||
Session 1 | 4446 (2275) | 34.8% | 1548 | 0.802 | 3959 (2209) | 26.9% | 1064 | 0.914 | −12.4% |
Session 2 | 4667 (1951) | 21.8% | 1016 | 0.901 | 4256 (1989) | 32.1% | 1367 | 0.816 | −9.7% |
RFD0–150 (N·s−1) | |||||||||
Session 1 | 3074 (695) | 8.3% | 254 | 0.956 | 2771 (706) | 13.3% | 369 | 0.934 | −10.9% |
Session 2 | 3087 (760) | 8.0% | 247 | 0.966 | 2881 (677) | 9.3% | 268 | 0.959 | −7.2% |
RFD0–250 (N·s−1) | |||||||||
Session 1 | 2122 (426) | 7.0% | 148 | 0.959 | 1954 (430) | 9.6% | 189 | 0.950 | −8.6% |
Session 2 | 2211 (491) | 7.7% | 170 | 0.958 | 2010 (393) | 6.0% | 122 | 0.968 | −10.0% |
RFDmax (N·s−1) | |||||||||
Session 1 | 6988 (2278) | 16.2% | 1135 | 0.912 | 6118 (1933) | 21.3% | 1302 | 0.944 | −14.2% |
Session 2 | 7098 (2346) | 12.7% | 899 | 0.952 | 6800 (1858) | 24.4% | 1660 | 0.874 | −4.4% |
Fitted Data | Dominant Leg | Non-Dominant Leg | %Diff | ||||||
---|---|---|---|---|---|---|---|---|---|
M (SD) | CV | SEM | ICC | M (SD) | CV | SEM | ICC | ||
MVC (N) | |||||||||
Session 1 | 628 (111) | 5.9% | 37.7 | 0.887 | 568 (93) | 6.2% | 35.2 | 0.869 | −10.5% |
Session 2 | 646 (117) | 5.6% | 35.9 | 0.969 | 597 (96) | 4.7% | 27.9 | 0.975 | −8.2% |
Impulse0–50 (N·s) | |||||||||
Session 1 | 7.6 (2.9) | 22.6% | 1.7 | 0.788 | 7.3 (2.6) | 25.8% | 1.9 | 0.815 | −15.9% |
Session 2 | 7.7 (2.8) | 15.8% | 1.2 | 0.798 | 6.5 (2.6) | 15.1% | 1.0 | 0.896 | −5.3% |
Impulse0–150 (N·s) | |||||||||
Session 1 | 48.4 (14.6) | 15.7% | 7.6 | 0.910 | 43.1 (13.5) | 10.6% | 4.6 | 0.956 | −12.3% |
Session 2 | 49.3 (13.8) | 9.8% | 4.8 | 0.954 | 46.1 (12.7) | 15.0% | 6.9 | 0.909 | −6.8% |
Impulse0–250 (N·s) | |||||||||
Session 1 | 102.8 (26.4) | 11.7% | 12.1 | 0.928 | 96.4 (23.8) | 12.6% | 12.1 | 0.926 | −8.8% |
Session 2 | 104.9 (25.3) | 7.1% | 7.4 | 0.976 | 93.3 (25.0) | 8.4% | 7.8 | 0.969 | −10.2% |
RFD0–50 (N·s−1) | |||||||||
Session 1 | 5465 (2000) | 21.2% | 1161 | 0.802 | 4801 (1756) | 13.6% | 651 | 0.914 | −13.8% |
Session 2 | 5589 (1840) | 13.6% | 761 | 0.901 | 5308 (1637) | 18.7% | 991 | 0.816 | −5.3% |
RFD0–150 (N·s−1) | |||||||||
Session 1 | 3315 (850) | 12.2% | 406 | 0.956 | 3119 (766) | 11.5% | 358.2 | 0.934 | −6.3% |
Session 2 | 3411 (808) | 6.8% | 232 | 0.966 | 3042 (790) | 8.1% | 244.9 | 0.959 | −12.1% |
RFD0–250 (N·s−1) | |||||||||
Session 1 | 2318 (463) | 8.1% | 188 | 0.959 | 2120 (457) | 8.5% | 181 | 0.950 | −9.3% |
Session 2 | 2365 (484) | 5.3% | 126 | 0.958 | 2142 (448) | 5.9% | 126 | 0.968 | −10.4% |
RFDmax (N·s−1) | |||||||||
Session 1 | 7561 (3447) | 28.8% | 2179 | 0.912 | 6363 (2892) | 18.9% | 1202 | 0.874 | −21.3% |
Session 2 | 7721 (3340) | 21.3% | 1644 | 0.952 | 7459 (2763) | 24.9% | 1856 | 0.944 | −1.4% |
Test-Retest | Dominant Leg | Non-Dominant Leg | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CV | SEM | ICC | %Diff | p | ES | CV | SEM | ICC | %Diff | p | ES | |
Raw | ||||||||||||
MVC (N) | 5.7% | 38.0 | 0.948 | +2.5% | 0.290 | 0.14 | 5.4% | 33.4 | 0.939 | +2.7% | 0.248 | 0.17 |
Impulse0–50 (N·s) | 19.7% | 1.8 | 0.801 | +1.1% | 0.882 | 0.03 | 24.1% | 1.9 | 0.713 | −19.6% | 0.075 | 0.50 |
Impulse0–150 (N·s) | 10.0% | 5.4 | 0.908 | −0.6% | 0.891 | 0.02 | 11.4% | 5.6 | 0.955 | −6.5% | 0.154 | 0.26 |
Impulse0–250 (N·s) | 9.2% | 10.2 | 0.904 | <0.1% | 0.994 | 0.01 | 7.4% | 7.5 | 0.929 | −3.5% | 0.265 | 0.17 |
RFD0–50 (N·s−1) | 15.6% | 868 | 0.848 | −1.1% | 0.870 | 0.04 | 23.7% | 1184 | 0.742 | −7.6% | 0.497 | 0.19 |
RFD0–150 (N·s−1) | 8.7% | 283 | 0.914 | −0.1% | 0.980 | 0.01 | 10.4% | 313 | 0.840 | +2.9% | 0.530 | 0.14 |
RFD0–250 (N·s−1) | 7.3% | 165 | 0.938 | +5.0% | 0.081 | 0.24 | 5.7% | 120 | 0.952 | −0.1% | 0.982 | 0.01 |
RFDmax (N·s−1) | 17.2% | 1349 | 0.799 | −0.8% | 0.918 | 0.03 | 22.0% | 1658 | 0.212 | +14.5% | 0.095 | 0.67 |
Fitted | ||||||||||||
MVC (N) | 6.1% | 40.0 | 0.938 | +2.4% | 0.306 | 0.13 | 5.0% | 30.2 | 0.947 | +2.5% | 0.261 | 0.15 |
Impulse0–50 (N·s) | 13.3% | 1.2 | 0.901 | −0.5% | 0.932 | 0.02 | 17.1% | 1.4 | 0.810 | −16.4% | 0.030 | 0.49 |
Impulse0–150 (N·s) | 10.5% | 5.6 | 0.900 | −0.4% | 0.937 | 0.01 | 10.8% | 5.3 | 0.879 | −7.0% | 0.146 | 0.28 |
Impulse0–250 (N·s) | 9.1% | 10.1 | 0.904 | +0.3% | 0.942 | 0.01 | 7.5% | 7.7 | 0.925 | −3.5% | 0.311 | 0.16 |
RFD0–50 (N·s−1) | 12.4% | 778 | 0.898 | −0.6% | 0.906 | 0.02 | 14.8% | 841 | 0.823 | −10.5% | 0.115 | 0.38 |
RFD0–150 (N·s−1) | 8.9% | 318 | 0.907 | +0.4% | 0.923 | 0.02 | 6.5% | 218 | 0.940 | −2.6% | 0.411 | 0.21 |
RFD0–250 (N·s−1) | 7.1% | 173 | 0.930 | +0.3% | 0.925 | 0.01 | 4.6% | 102 | 0.967 | −0.1% | 0.958 | 0.01 |
RFDmax (N·s−1) | 16.9% | 1548 | 0.891 | −0.2% | 0.975 | 0.01 | 22.9% | 1864 | 0.717 | −17.3% | 0.106 | 0.45 |
Isometric Knee Extension Force | Reliability | Preferable Signal | Influence of Familiarization | Inter-Limb Asymmetry |
---|---|---|---|---|
MVC(N) | High | Raw/Fitted | Low | Low |
RFD0–250(N·s−1) | High | Fitted | Low | low |
Impulse0–250(N·s) | High | Raw/Fitted | Low | Moderate |
RFD0–150(N·s−1) | Moderate | Raw/Fitted | High | Moderate |
Impulse0–150(N·s) | Moderate | Fitted | High | High |
RFD0–50(N·s−1) | Moderate | Fitted | Very high | High |
Impulse0–50(N·s) | Low | Fitted | Very high | Very high |
RFDmax(N·s−1) | Low | Raw | Very high | Very high |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courel-Ibáñez, J.; Hernández-Belmonte, A.; Cava-Martínez, A.; Pallarés, J.G. Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment. Appl. Sci. 2020, 10, 4499. https://doi.org/10.3390/app10134499
Courel-Ibáñez J, Hernández-Belmonte A, Cava-Martínez A, Pallarés JG. Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment. Applied Sciences. 2020; 10(13):4499. https://doi.org/10.3390/app10134499
Chicago/Turabian StyleCourel-Ibáñez, Javier, Alejandro Hernández-Belmonte, Alejandro Cava-Martínez, and Jesús G. Pallarés. 2020. "Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment" Applied Sciences 10, no. 13: 4499. https://doi.org/10.3390/app10134499
APA StyleCourel-Ibáñez, J., Hernández-Belmonte, A., Cava-Martínez, A., & Pallarés, J. G. (2020). Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment. Applied Sciences, 10(13), 4499. https://doi.org/10.3390/app10134499