Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea
Abstract
:1. Introduction
2. Methodology
3. Simulation Conditions
4. Results
4.1. Effect of Leakage Rate (Cases 1, 2, and 3/Bubble Size = 20 mm, Leakage Area = 20,000 m)
4.2. Effect of Initial Diameter of CO2 Bubble (Cases 5, 4, and 3/Leakage Rate = 100,000 t/y, Leakage Area = 20,000 m)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Furre, A.-K.; Eiken, O.; Alnes, H.; Vevatne, J.N.; Kiær, A.F. 20 Years of Monitoring CO2-injection at Sleipner. Energy Procedia 2017, 114, 3916–3926. [Google Scholar] [CrossRef]
- Bentham, M.; Kirby, M. CO2 Storage in Saline Aquifers. Oil Gas. Sci. Technol. 2006, 60, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Hansen, O.; Gilding, D.; Nazarian, B.; Osdal, B.; Ringrose, P.; Kristoffersen, J.-B.; Eiken, O.; Hansen, H. Snøhvit: The History of Injecting and Storing 1 Mt CO2 in the Fluvial Tubåen Fm. Energy Procedia 2013, 37, 3565–3573. [Google Scholar] [CrossRef] [Green Version]
- Tanase, D.; Sasaki, T.; Yoshii, T.; Motohashi, S.; Sawada, Y.; Aramaki, S.; Yamanouchi, Y.; Tanaka, T.; Ohkawa, S.; Inowaki, R. Tomakomai CCS Demonstration Project in Japan. Energy Procedia 2013, 37, 6571–6578. [Google Scholar] [CrossRef] [Green Version]
- Blackford, J.C.; Stahl, H.; Bull, J.M.; Berges, B.J.P.; Cevatoglu, M.; Lichtschlag, A.; Connelly, D.; James, R.H.; Kita, J.; Long, D.; et al. Detection and impacts of leakage from sub-seafloor carbon dioxide storage. Nat. Clim. Chang. 2014, 4, 1011–1016. [Google Scholar] [CrossRef]
- Sellami, N.; Dewar, M.; Stahl, H.; Chen, B. Dynamics of rising CO2 bubble plumes in the QICS field experiment. Int. J. Greenh. Gas. Control 2015, 38, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Alendal, G.; Drange, H. Two-phase, near-field modeling of purposefully released CO2 in the ocean. J. Geophys. Res. Oceans 2001, 106, 1085–1096. [Google Scholar] [CrossRef]
- Sato, T.; Sato, K. Numerical prediction of the dilution process and its biological impacts in CO2 ocean sequestration. J. Mar. Sci. Tech.-Jpn. 2002, 6, 169–180. [Google Scholar] [CrossRef]
- Jeong, S.M.; Sato, T.; Chen, B.; Tabeta, S. Numerical simulation on multi-scale diffusion of CO2 injected in the deep ocean in a practical scenario. Int. J. Greenh. Gas. Control 2010, 4, 64–72. [Google Scholar] [CrossRef]
- Kano, Y.; Sato, T.; Kita, J.; Hirabayashi, S.; Tabeta, S. Model prediction on the rise of pCO2 in uniform flows by leakage of CO2 purposefully stored under the seabed. Int. J. Greenh. Gas. Control 2009, 3, 617–625. [Google Scholar] [CrossRef]
- Kano, Y.; Sato, T.; Kita, J.; Hirabayashi, S.; Tabeta, S. Multi-scale modeling of CO2 dispersion leaked from seafloor off the Japanese coast. Mar. Pollut. Bull. 2010, 60, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Mori, C.; Sato, T.; Kano, Y.; Oyama, H.; Aleynik, D.; Tsumune, D.; Maeda, Y. Numerical study of the fate of CO2 purposefully injected into the sediment and seeping from seafloor in Ardmucknish Bay. Int. J. Greenh. Gas Control 2015, 38, 153–161. [Google Scholar] [CrossRef]
- Kang, K.; Huh, C.; Kang, S.-G. A numerical study on the CO2 leakage through the fault during offshore carbon sequestration. J. Korean Soc. Mar. Environ. Energy 2015, 18, 94–101. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, B.H.; Kim, K.; Kim, S.Y.; Park, J.C. Tidal current simulation around the straits of korea and its application to a speed trial. Int. J. Nav. 2019, 11, 474–481. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Sterner, S.M. Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J. Chem. Phys. 1994, 101, 3111–3116. [Google Scholar] [CrossRef]
- Smagorinsky, J. Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex. Engineering and Geophysical Flows. In Large Eddy Simulation of Complex Engineering and Geophysical Flows; Galperin, B., Orszag, S.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA; Melbourne, Australia; Madrid, Spain; Cape Town, South Africa; Singapore; São Paulo, Brazil; Delhi, India; Dubai, UAE; Tokyo, Japan, 1993; pp. 3–36. [Google Scholar]
- Hirai, S.; Okazaki, K.; Tabe, Y.; Hijikata, K. Mass transport phenomena of liquid CO2 with hydrate. J. Waste Manag. 1997, 17, 353–360. [Google Scholar] [CrossRef]
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Chen, B.; Song, Y.; Nishio, M.; Someya, S.; Akai, M. Modeling near-field dispersion from direct injection of carbon dioxide into the ocean. J. Geophys. Res. 2005, 110, C09S15. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Takanezawa, T.; Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr. 2000, 56, 567–581. [Google Scholar] [CrossRef]
- Hino, M.; Nakaza, E. Tests of a new numerical scheme on a “non-reflection and free-transmission” open-sea boundary for longwaves. Fluid Dyn. Res. 1989, 4, 305. [Google Scholar] [CrossRef]
- Klusman, R.W. Rate measurements and detection of gas microseepage to the atmosphere from an enhanced oil recovery/sequestration project, Rangely, CO, USA. Appl. Geochem. 2003, 18, 1825–1838. [Google Scholar] [CrossRef]
- Kikkawa, T.; Kita, J.; Ishimatsu, A.J.M.P.B. Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull. 2004, 48, 108–110. [Google Scholar] [CrossRef]
- Kita, J.; Watanabe, Y. Impact assessment of high-CO2 environment on marine organisms. In Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, (GHGT-8), Trondheim, Norway, 19–22 June 2006. CD-ROM. [Google Scholar]
Layer Number | Thickness (m) | Depth (m) |
---|---|---|
1(surface)–2 | 5 | 0–10 |
3–18 | 10 | 20–170 |
19–28 | 2 | 172–190 |
29 | 10 | 200 |
30–59 | 20 | 220–800 |
60–63 | 50 | 900–1000 |
Tidal Components | Period (h) | Amplitude (m) | Phase (°) |
---|---|---|---|
M2 | 12.42 | 0.0689 | 356.07 |
O1 | 25.82 | 0.0522 | 182.96 |
K1 | 23.93 | 0.0476 | 220.93 |
S2 | 12.00 | 0.0386 | 102.91 |
Climate Conditions | Temporal Average |
---|---|
Albedo (-) | 0.06 |
Injection rate (-) | 0.97 |
Cloud amount coefficient (-) | 0.65 |
Global solar radiation (W/m2) | 148.1 |
Cloud amount (0–10) | 6.07 |
Precipitation (mm/h) | 0.1647 |
Water vapor pressure (hPa) | 12.8 |
Wind speed (m/s) | 3.10 |
Air temperature (°C) | 16.72 |
Case | Leakage Rate (t/y) | Diameter of CO2 Bubble (mm) | Leakage Area (m2) |
---|---|---|---|
1 | 3800 | 20 | 20,000 |
2 | 50,000 | 20 | 20,000 |
3 | 100,000 | 20 | 20,000 |
4 | 100,000 | 10 | 20,000 |
5 | 100,000 | 5 | 20,000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-M.; Ko, S.; Sean, W.-Y. Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea. Appl. Sci. 2020, 10, 4237. https://doi.org/10.3390/app10124237
Jeong S-M, Ko S, Sean W-Y. Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea. Applied Sciences. 2020; 10(12):4237. https://doi.org/10.3390/app10124237
Chicago/Turabian StyleJeong, Se-Min, Seokwon Ko, and Wu-Yang Sean. 2020. "Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea" Applied Sciences 10, no. 12: 4237. https://doi.org/10.3390/app10124237
APA StyleJeong, S.-M., Ko, S., & Sean, W.-Y. (2020). Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea. Applied Sciences, 10(12), 4237. https://doi.org/10.3390/app10124237