Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea
Abstract
1. Introduction
2. Methodology
3. Simulation Conditions
4. Results
4.1. Effect of Leakage Rate (Cases 1, 2, and 3/Bubble Size = 20 mm, Leakage Area = 20,000 m)
4.2. Effect of Initial Diameter of CO2 Bubble (Cases 5, 4, and 3/Leakage Rate = 100,000 t/y, Leakage Area = 20,000 m)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Furre, A.-K.; Eiken, O.; Alnes, H.; Vevatne, J.N.; Kiær, A.F. 20 Years of Monitoring CO2-injection at Sleipner. Energy Procedia 2017, 114, 3916–3926. [Google Scholar] [CrossRef]
- Bentham, M.; Kirby, M. CO2 Storage in Saline Aquifers. Oil Gas. Sci. Technol. 2006, 60, 559–567. [Google Scholar] [CrossRef]
- Hansen, O.; Gilding, D.; Nazarian, B.; Osdal, B.; Ringrose, P.; Kristoffersen, J.-B.; Eiken, O.; Hansen, H. Snøhvit: The History of Injecting and Storing 1 Mt CO2 in the Fluvial Tubåen Fm. Energy Procedia 2013, 37, 3565–3573. [Google Scholar] [CrossRef]
- Tanase, D.; Sasaki, T.; Yoshii, T.; Motohashi, S.; Sawada, Y.; Aramaki, S.; Yamanouchi, Y.; Tanaka, T.; Ohkawa, S.; Inowaki, R. Tomakomai CCS Demonstration Project in Japan. Energy Procedia 2013, 37, 6571–6578. [Google Scholar] [CrossRef]
- Blackford, J.C.; Stahl, H.; Bull, J.M.; Berges, B.J.P.; Cevatoglu, M.; Lichtschlag, A.; Connelly, D.; James, R.H.; Kita, J.; Long, D.; et al. Detection and impacts of leakage from sub-seafloor carbon dioxide storage. Nat. Clim. Chang. 2014, 4, 1011–1016. [Google Scholar] [CrossRef]
- Sellami, N.; Dewar, M.; Stahl, H.; Chen, B. Dynamics of rising CO2 bubble plumes in the QICS field experiment. Int. J. Greenh. Gas. Control 2015, 38, 44–51. [Google Scholar] [CrossRef]
- Alendal, G.; Drange, H. Two-phase, near-field modeling of purposefully released CO2 in the ocean. J. Geophys. Res. Oceans 2001, 106, 1085–1096. [Google Scholar] [CrossRef]
- Sato, T.; Sato, K. Numerical prediction of the dilution process and its biological impacts in CO2 ocean sequestration. J. Mar. Sci. Tech.-Jpn. 2002, 6, 169–180. [Google Scholar] [CrossRef]
- Jeong, S.M.; Sato, T.; Chen, B.; Tabeta, S. Numerical simulation on multi-scale diffusion of CO2 injected in the deep ocean in a practical scenario. Int. J. Greenh. Gas. Control 2010, 4, 64–72. [Google Scholar] [CrossRef]
- Kano, Y.; Sato, T.; Kita, J.; Hirabayashi, S.; Tabeta, S. Model prediction on the rise of pCO2 in uniform flows by leakage of CO2 purposefully stored under the seabed. Int. J. Greenh. Gas. Control 2009, 3, 617–625. [Google Scholar] [CrossRef]
- Kano, Y.; Sato, T.; Kita, J.; Hirabayashi, S.; Tabeta, S. Multi-scale modeling of CO2 dispersion leaked from seafloor off the Japanese coast. Mar. Pollut. Bull. 2010, 60, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Mori, C.; Sato, T.; Kano, Y.; Oyama, H.; Aleynik, D.; Tsumune, D.; Maeda, Y. Numerical study of the fate of CO2 purposefully injected into the sediment and seeping from seafloor in Ardmucknish Bay. Int. J. Greenh. Gas Control 2015, 38, 153–161. [Google Scholar] [CrossRef]
- Kang, K.; Huh, C.; Kang, S.-G. A numerical study on the CO2 leakage through the fault during offshore carbon sequestration. J. Korean Soc. Mar. Environ. Energy 2015, 18, 94–101. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, B.H.; Kim, K.; Kim, S.Y.; Park, J.C. Tidal current simulation around the straits of korea and its application to a speed trial. Int. J. Nav. 2019, 11, 474–481. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Sterner, S.M. Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J. Chem. Phys. 1994, 101, 3111–3116. [Google Scholar] [CrossRef]
- Smagorinsky, J. Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex. Engineering and Geophysical Flows. In Large Eddy Simulation of Complex Engineering and Geophysical Flows; Galperin, B., Orszag, S.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA; Melbourne, Australia; Madrid, Spain; Cape Town, South Africa; Singapore; São Paulo, Brazil; Delhi, India; Dubai, UAE; Tokyo, Japan, 1993; pp. 3–36. [Google Scholar]
- Hirai, S.; Okazaki, K.; Tabe, Y.; Hijikata, K. Mass transport phenomena of liquid CO2 with hydrate. J. Waste Manag. 1997, 17, 353–360. [Google Scholar] [CrossRef]
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Chen, B.; Song, Y.; Nishio, M.; Someya, S.; Akai, M. Modeling near-field dispersion from direct injection of carbon dioxide into the ocean. J. Geophys. Res. 2005, 110, C09S15. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takanezawa, T.; Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr. 2000, 56, 567–581. [Google Scholar] [CrossRef]
- Hino, M.; Nakaza, E. Tests of a new numerical scheme on a “non-reflection and free-transmission” open-sea boundary for longwaves. Fluid Dyn. Res. 1989, 4, 305. [Google Scholar] [CrossRef]
- Klusman, R.W. Rate measurements and detection of gas microseepage to the atmosphere from an enhanced oil recovery/sequestration project, Rangely, CO, USA. Appl. Geochem. 2003, 18, 1825–1838. [Google Scholar] [CrossRef]
- Kikkawa, T.; Kita, J.; Ishimatsu, A.J.M.P.B. Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull. 2004, 48, 108–110. [Google Scholar] [CrossRef]
- Kita, J.; Watanabe, Y. Impact assessment of high-CO2 environment on marine organisms. In Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, (GHGT-8), Trondheim, Norway, 19–22 June 2006. CD-ROM. [Google Scholar]
Layer Number | Thickness (m) | Depth (m) |
---|---|---|
1(surface)–2 | 5 | 0–10 |
3–18 | 10 | 20–170 |
19–28 | 2 | 172–190 |
29 | 10 | 200 |
30–59 | 20 | 220–800 |
60–63 | 50 | 900–1000 |
Tidal Components | Period (h) | Amplitude (m) | Phase (°) |
---|---|---|---|
M2 | 12.42 | 0.0689 | 356.07 |
O1 | 25.82 | 0.0522 | 182.96 |
K1 | 23.93 | 0.0476 | 220.93 |
S2 | 12.00 | 0.0386 | 102.91 |
Climate Conditions | Temporal Average |
---|---|
Albedo (-) | 0.06 |
Injection rate (-) | 0.97 |
Cloud amount coefficient (-) | 0.65 |
Global solar radiation (W/m2) | 148.1 |
Cloud amount (0–10) | 6.07 |
Precipitation (mm/h) | 0.1647 |
Water vapor pressure (hPa) | 12.8 |
Wind speed (m/s) | 3.10 |
Air temperature (°C) | 16.72 |
Case | Leakage Rate (t/y) | Diameter of CO2 Bubble (mm) | Leakage Area (m2) |
---|---|---|---|
1 | 3800 | 20 | 20,000 |
2 | 50,000 | 20 | 20,000 |
3 | 100,000 | 20 | 20,000 |
4 | 100,000 | 10 | 20,000 |
5 | 100,000 | 5 | 20,000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-M.; Ko, S.; Sean, W.-Y. Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea. Appl. Sci. 2020, 10, 4237. https://doi.org/10.3390/app10124237
Jeong S-M, Ko S, Sean W-Y. Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea. Applied Sciences. 2020; 10(12):4237. https://doi.org/10.3390/app10124237
Chicago/Turabian StyleJeong, Se-Min, Seokwon Ko, and Wu-Yang Sean. 2020. "Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea" Applied Sciences 10, no. 12: 4237. https://doi.org/10.3390/app10124237
APA StyleJeong, S.-M., Ko, S., & Sean, W.-Y. (2020). Numerical Prediction of the Behavior of CO2 Bubbles Leaked from Seafloor and Their Convection and Diffusion near Southeastern Coast of Korea. Applied Sciences, 10(12), 4237. https://doi.org/10.3390/app10124237