Special Issue on Intelligent Processing on Image and Optical Information
1. Introduction
2. Intelligent Processing on Image and Optical Information
2.1. Classification and Detection
2.2. Feature Extraction and Segmentation
2.3. Estimation and Localization
2.4. Registration and Fusion
2.5. Compression, Completion, and Correction
2.6. Optimization and Clustering
Acknowledgments
Conflicts of Interest
References
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Hecht, E. Optics, 5th ed.; Pearson: London, UK, 2016. [Google Scholar]
- Xin, W.; Can, T.; Wei, W.; Ji, L. Change Detection of Water Resources via Remote Sensing: An L-V-NSCT approach. Appl. Sci. 2019, 9, 1223. [Google Scholar] [CrossRef]
- Wang, M.; Gao, L.; Huang, X.; Jiang, Y.; Gao, X. A Texture Classification Approach Based on the Integrated Optimization for Parameters and Features of Gabor Filter via Hybrid Ant Lion Optimizer. Appl. Sci. 2019, 9, 2173. [Google Scholar] [CrossRef]
- Rahmaniar, W.; Wang, W. Real-Time Automated Segmentation and Classification of Calcaneal Fractures in CT Images. Appl. Sci. 2019, 9, 3011. [Google Scholar] [CrossRef]
- Shang, S.; Long, L.; Lin, S.; Cong, F. Automatic Zebrafish Egg Phenotype Recognition from Bright-Field Microscopic Images Using Deep Convolutional Neural Network. Appl. Sci. 2019, 9, 3362. [Google Scholar] [CrossRef]
- Shang, S.; Lin, S.; Cong, F. Zebrafish Larvae Phenotype Classification from Bright-field Microscopic Images Using a Two-Tier Deep-Learning Pipeline. Appl. Sci. 2020, 10, 1247. [Google Scholar] [CrossRef]
- Kwak, J.; Ko, H. Unsupervised Generation and Synthesis of Facial Images via an Auto-Encoder-Based Deep Generative Adversarial Network. Appl. Sci. 2020, 10, 1995. [Google Scholar] [CrossRef]
- Vashpanov, Y.; Heo, G.; Kim, Y.; Venkel, T.; Son, J.Y. Detecting Green Mold Pathogens on Lemons Using Hyperspectral Images. Appl. Sci. 2020, 10, 1209. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, D.; Wei, Y.; Guo, J.; Zhang, X. Review on Computer Aided Weld Defect Detection from Radiography Images. Appl. Sci. 2020, 10, 1878. [Google Scholar] [CrossRef]
- Liu, X.; Xu, K.; Zhou, P.; Liu, H. Feature Extraction with Discrete Non-Separable Shearlet Transform and Its Application to Surface Inspection of Continuous Casting Slabs. Appl. Sci. 2019, 9, 4668. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Wang, Y.; Zheng, X.; Zhang, J. A Novel Extraction Method for Wildlife Monitoring Images with Wireless Multimedia Sensor Networks (WMSNs). Appl. Sci. 2019, 9, 2276. [Google Scholar] [CrossRef]
- Xue, H.; Fu, H.; Dai, B. IMU-Aided High-Frequency Lidar Odometry for Autonomous Driving. Appl. Sci. 2019, 9, 1506. [Google Scholar] [CrossRef]
- Giefer, L.A.; Lütjen, M.; Rohde, A.K.; Freitag, M. Determination of the Optimal State of Dough Fermentation in Bread Production by Using Optical Sensors and Deep Learning. Appl. Sci. 2019, 9, 4266. [Google Scholar] [CrossRef]
- Li, W.; Dong, M.; Lu, N.; Lou, X.; Zhou, W. Multi-Sensor Face Registration Based on Global and Local Structures. Appl. Sci. 2019, 9, 4623. [Google Scholar] [CrossRef]
- Jian, B.L.; Chu, W.L.; Li, Y.C.; Yau, H.T. Multifocus Image Fusion Using a Sparse and Low-Rank Matrix Decomposition for Aviator’s Night Vision Goggle. Appl. Sci. 2020, 10, 2178. [Google Scholar] [CrossRef]
- Huang, H.C.; Chen, P.L.; Chang, F.C. Error Resilience for Block Compressed Sensing with Multiple-Channel Transmission. Appl. Sci. 2020, 10, 161. [Google Scholar] [CrossRef]
- Zdunek, R.; Sadowski, T. Image Completion with Hybrid Interpolation in Tensor Representation. Appl. Sci. 2020, 10, 797. [Google Scholar] [CrossRef]
- Ma, C.; Zeng, Z.; Zhang, H.; Rui, X. A Correction Method for Heat Wave Distortion in Digital Image Correlation Measurements Based on Background-Oriented Schlieren. Appl. Sci. 2019, 9, 3851. [Google Scholar] [CrossRef]
- Yi, D.; Ahn, J.; Ji, S. An Effective Optimization Method for Machine Learning Based on ADAM. Appl. Sci. 2020, 10, 1073. [Google Scholar] [CrossRef]
- Li, Q.; Yue, S.; Wang, Y.; Ding, M.; Li, J.; Wang, Z. Boundary Matching and Interior Connectivity-Based Cluster Validity Analysis. Appl. Sci. 2020, 10, 1337. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, S. Special Issue on Intelligent Processing on Image and Optical Information. Appl. Sci. 2020, 10, 3911. https://doi.org/10.3390/app10113911
Yeom S. Special Issue on Intelligent Processing on Image and Optical Information. Applied Sciences. 2020; 10(11):3911. https://doi.org/10.3390/app10113911
Chicago/Turabian StyleYeom, Seokwon. 2020. "Special Issue on Intelligent Processing on Image and Optical Information" Applied Sciences 10, no. 11: 3911. https://doi.org/10.3390/app10113911
APA StyleYeom, S. (2020). Special Issue on Intelligent Processing on Image and Optical Information. Applied Sciences, 10(11), 3911. https://doi.org/10.3390/app10113911
