Special Issue on Intelligent Processing on Image and Optical Information
1. Introduction
2. Intelligent Processing on Image and Optical Information
2.1. Classification and Detection
2.2. Feature Extraction and Segmentation
2.3. Estimation and Localization
2.4. Registration and Fusion
2.5. Compression, Completion, and Correction
2.6. Optimization and Clustering
Acknowledgments
Conflicts of Interest
References
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Hecht, E. Optics, 5th ed.; Pearson: London, UK, 2016. [Google Scholar]
- Xin, W.; Can, T.; Wei, W.; Ji, L. Change Detection of Water Resources via Remote Sensing: An L-V-NSCT approach. Appl. Sci. 2019, 9, 1223. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, L.; Huang, X.; Jiang, Y.; Gao, X. A Texture Classification Approach Based on the Integrated Optimization for Parameters and Features of Gabor Filter via Hybrid Ant Lion Optimizer. Appl. Sci. 2019, 9, 2173. [Google Scholar] [CrossRef] [Green Version]
- Rahmaniar, W.; Wang, W. Real-Time Automated Segmentation and Classification of Calcaneal Fractures in CT Images. Appl. Sci. 2019, 9, 3011. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.; Long, L.; Lin, S.; Cong, F. Automatic Zebrafish Egg Phenotype Recognition from Bright-Field Microscopic Images Using Deep Convolutional Neural Network. Appl. Sci. 2019, 9, 3362. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.; Lin, S.; Cong, F. Zebrafish Larvae Phenotype Classification from Bright-field Microscopic Images Using a Two-Tier Deep-Learning Pipeline. Appl. Sci. 2020, 10, 1247. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.; Ko, H. Unsupervised Generation and Synthesis of Facial Images via an Auto-Encoder-Based Deep Generative Adversarial Network. Appl. Sci. 2020, 10, 1995. [Google Scholar] [CrossRef] [Green Version]
- Vashpanov, Y.; Heo, G.; Kim, Y.; Venkel, T.; Son, J.Y. Detecting Green Mold Pathogens on Lemons Using Hyperspectral Images. Appl. Sci. 2020, 10, 1209. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Zhang, D.; Wei, Y.; Guo, J.; Zhang, X. Review on Computer Aided Weld Defect Detection from Radiography Images. Appl. Sci. 2020, 10, 1878. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, K.; Zhou, P.; Liu, H. Feature Extraction with Discrete Non-Separable Shearlet Transform and Its Application to Surface Inspection of Continuous Casting Slabs. Appl. Sci. 2019, 9, 4668. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, H.; Wang, Y.; Zheng, X.; Zhang, J. A Novel Extraction Method for Wildlife Monitoring Images with Wireless Multimedia Sensor Networks (WMSNs). Appl. Sci. 2019, 9, 2276. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Fu, H.; Dai, B. IMU-Aided High-Frequency Lidar Odometry for Autonomous Driving. Appl. Sci. 2019, 9, 1506. [Google Scholar] [CrossRef] [Green Version]
- Giefer, L.A.; Lütjen, M.; Rohde, A.K.; Freitag, M. Determination of the Optimal State of Dough Fermentation in Bread Production by Using Optical Sensors and Deep Learning. Appl. Sci. 2019, 9, 4266. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Dong, M.; Lu, N.; Lou, X.; Zhou, W. Multi-Sensor Face Registration Based on Global and Local Structures. Appl. Sci. 2019, 9, 4623. [Google Scholar] [CrossRef]
- Jian, B.L.; Chu, W.L.; Li, Y.C.; Yau, H.T. Multifocus Image Fusion Using a Sparse and Low-Rank Matrix Decomposition for Aviator’s Night Vision Goggle. Appl. Sci. 2020, 10, 2178. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.C.; Chen, P.L.; Chang, F.C. Error Resilience for Block Compressed Sensing with Multiple-Channel Transmission. Appl. Sci. 2020, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Zdunek, R.; Sadowski, T. Image Completion with Hybrid Interpolation in Tensor Representation. Appl. Sci. 2020, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Zeng, Z.; Zhang, H.; Rui, X. A Correction Method for Heat Wave Distortion in Digital Image Correlation Measurements Based on Background-Oriented Schlieren. Appl. Sci. 2019, 9, 3851. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Ahn, J.; Ji, S. An Effective Optimization Method for Machine Learning Based on ADAM. Appl. Sci. 2020, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yue, S.; Wang, Y.; Ding, M.; Li, J.; Wang, Z. Boundary Matching and Interior Connectivity-Based Cluster Validity Analysis. Appl. Sci. 2020, 10, 1337. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, S. Special Issue on Intelligent Processing on Image and Optical Information. Appl. Sci. 2020, 10, 3911. https://doi.org/10.3390/app10113911
Yeom S. Special Issue on Intelligent Processing on Image and Optical Information. Applied Sciences. 2020; 10(11):3911. https://doi.org/10.3390/app10113911
Chicago/Turabian StyleYeom, Seokwon. 2020. "Special Issue on Intelligent Processing on Image and Optical Information" Applied Sciences 10, no. 11: 3911. https://doi.org/10.3390/app10113911
APA StyleYeom, S. (2020). Special Issue on Intelligent Processing on Image and Optical Information. Applied Sciences, 10(11), 3911. https://doi.org/10.3390/app10113911