The Inventory Routing Problem with Priorities and Fixed Heterogeneous Fleet
Abstract
:1. Introduction
2. Literature Review
3. Inventory Routing Problem with Priority
4. Mathematical Formulation
Assumptions
- The product is shipped from the depot (vertex 0) to a set of customers () over a time horizon (T), using a directed graph where is the set of vertices including the depot and the clients and the set of arcs.
- Storage facilities at each customer have a maximum capacity and minimum stock level .
- There is an inventory cost per unit in stock associated to every storage facility .
- There is a cost associated with every arc
- There is no distribution or product consumption at time .
- There is a fixed set of vehicles K, each one with a given capacity to supply the customers. Note that there are at least two vehicles and , with different capacities .
- The consumption rate associated with each customer remains constant throughout the periods.
5. Computational Experiments
6. Case of Study
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Results of Computational Experiments
Instance | ||||||
---|---|---|---|---|---|---|
1 | 0.00 | 729.9 | 236.45 | 1336.00 | 2302.35 | – |
1 | 0.25 | 737.1 | 230.93 | 1429.00 | 2397.03 | 4.11% |
1 | 0.50 | 729.9 | 236.45 | 1336.00 | 2302.35 | 0.00% |
1 | 0.75 | 729.9 | 236.45 | 1336.00 | 2302.35 | 0.00% |
2 | 0.00 | 676.5 | 201.67 | 1318.00 | 2196.17 | – |
2 | 0.25 | 676.5 | 201.67 | 1336.00 | 2214.17 | 0.82% |
2 | 0.50 | 676.5 | 201.67 | 1318.00 | 2196.17 | 0.00% |
2 | 0.75 | 676.5 | 201.67 | 1318.00 | 2196.17 | 0.00% |
3 | 0.00 | 985.2 | 382.28 | 2108.00 | 3475.48 | – |
3 | 0.25 | 985.2 | 382.28 | 2133.00 | 3500.48 | 0.72% |
3 | 0.50 | 985.2 | 382.28 | 2108.00 | 3475.48 | 0.00% |
3 | 0.75 | 985.2 | 382.28 | 2108.00 | 3475.48 | 0.00% |
4 | 0.00 | 528.6 | 118.53 | 1832.00 | 2479.13 | – |
4 | 0.25 | 528.6 | 118.53 | 1880.00 | 2527.13 | 1.94% |
4 | 0.50 | 528.6 | 118.53 | 1832.00 | 2479.13 | 0.00% |
4 | 0.75 | 528.6 | 118.53 | 1852.00 | 2499.13 | 0.81% |
5 | 0.00 | 931.5 | 391.22 | 1091.00 | 2413.72 | – |
5 | 0.25 | 925.8 | 397.49 | 1143.00 | 2466.29 | 2.18% |
5 | 0.50 | 925.8 | 397.49 | 1143.00 | 2466.29 | 2.18% |
5 | 0.75 | 925.8 | 397.49 | 1159.00 | 2482.29 | 2.84% |
Instance | ||||||
---|---|---|---|---|---|---|
1 | 0.00 | 2348.40 | 751.82 | 2123.00 | 5223.22 | – |
1 | 0.25 | 2313.30 | 776.63 | 2200.00 | 5289.93 | 1.28% |
1 | 0.50 | 2348.40 | 751.82 | 2123.00 | 5223.22 | 0.00% |
1 | 0.75 | 2318.70 | 781.92 | 2143.00 | 5243.62 | 0.39% |
2 | 0.00 | 1931.40 | 614.74 | 2685.00 | 5231.14 | – |
2 | 0.25 | 1931.40 | 614.74 | 2814.00 | 5360.14 | 2.47% |
2 | 0.50 | 1931.40 | 614.74 | 2764.00 | 5310.14 | 1.51% |
2 | 0.75 | 1908.30 | 638.37 | 2932.00 | 5478.67 | 4.73% |
3 | 0.00 | 1809.30 | 618.74 | 1915.00 | 4343.04 | – |
3 | 0.25 | 1809.30 | 618.74 | 2132.00 | 4560.04 | 5.00% |
3 | 0.50 | 1809.30 | 618.74 | 2201.00 | 4629.04 | 6.59% |
3 | 0.75 | 1809.30 | 618.74 | 2196.00 | 4624.04 | 6.47% |
4 | 0.00 | 1888.20 | 518.98 | 2356.00 | 4763.18 | – |
4 | 0.25 | 1890.60 | 519.10 | 2413.00 | 4822.70 | 1.25% |
4 | 0.50 | 1951.50 | 457.71 | 2715.00 | 5124.21 | 7.58% |
4 | 0.75 | 1888.20 | 518.98 | 2690.00 | 5097.18 | 7.01% |
5 | 0.00 | 2217.90 | 932.06 | 2139.00 | 5288.96 | – |
5 | 0.25 | 2310.00 | 820.31 | 2230.00 | 5360.31 | 1.35% |
5 | 0.50 | 2217.90 | 932.06 | 2139.00 | 5288.96 | 0.00% |
5 | 0.75 | 2262.30 | 890.47 | 2207.00 | 5359.77 | 1.34% |
Instance | ||||||
---|---|---|---|---|---|---|
1 | 0.00 | 2956.20 | 880.95 | 2081.00 | 5918.15 | – |
1 | 0.25 | 2979.00 | 867.27 | 2232.00 | 6078.27 | 2.71% |
1 | 0.50 | 2958.00 | 878.43 | 2429.00 | 6265.43 | 5.87% |
1 | 0.75 | 3003.60 | 851.07 | 2241.00 | 6095.67 | 3.00% |
2 | 0.00 | 2816.10 | 862.93 | 2406.00 | 6085.03 | – |
2 | 0.25 | 2816.10 | 862.93 | 2573.00 | 6252.03 | 2.74% |
2 | 0.50 | 2816.10 | 862.93 | 2574.00 | 6253.03 | 2.76% |
2 | 0.75 | 2833.20 | 859.74 | 2638.00 | 6330.94 | 4.04% |
3 | 0.00 | 3243.90 | 1047.75 | 2633.00 | 6924.65 | – |
3 | 0.25 | 3243.90 | 1047.75 | 2786.00 | 7077.65 | 2.21% |
3 | 0.50 | 3224.40 | 1077.42 | 2909.00 | 7210.82 | 4.13% |
3 | 0.75 | 3207.30 | 1100.87 | 2809.00 | 7117.17 | 2.78% |
4 | 0.00 | 2517.30 | 593.92 | 2435.00 | 5546.22 | – |
4 | 0.25 | 2472.30 | 626.66 | 2656.00 | 5754.96 | 3.76% |
4 | 0.50 | 2532.60 | 585.76 | 2571.00 | 5689.36 | 2.58% |
4 | 0.75 | 2444.10 | 659.38 | 2597.00 | 5700.48 | 2.78% |
5 | 0.00 | 2250.00 | 829.11 | 2568.00 | 5647.11 | – |
5 | 0.25 | 2232.30 | 854.07 | 2803.00 | 5889.37 | 4.29% |
5 | 0.50 | 2269.80 | 803.22 | 3067.00 | 6140.02 | 8.73% |
5 | 0.75 | 2238.60 | 839.62 | 2766.00 | 5844.22 | 3.49% |
Instance | ||||||
---|---|---|---|---|---|---|
1 | 0.00 | 3918.60 | 1142.67 | 2859.00 | 7920.27 | – |
1 | 0.25 | 3917.10 | 1150.42 | 3065.00 | 8132.52 | 2.68% |
1 | 0.50 | 3927.00 | 1170.93 | 3254.00 | 8351.93 | 5.45% |
1 | 0.75 | 3886.50 | 1165.48 | 3075.00 | 8126.98 | 2.61% |
2 | 0.00 | 3903.30 | 1185.13 | 2423.00 | 7511.43 | – |
2 | 0.25 | 3919.20 | 1160.19 | 2846.00 | 7925.39 | 5.51% |
2 | 0.50 | 3947.40 | 1145.33 | 2744.00 | 7836.73 | 4.33% |
2 | 0.75 | 3907.20 | 1182.50 | 2897.00 | 7986.70 | 6.33% |
3 | 0.00 | 3926.10 | 1431.04 | 3051.00 | 8408.14 | – |
3 | 0.25 | 3971.40 | 1361.46 | 3373.00 | 8705.86 | 3.54% |
3 | 0.50 | 3930.90 | 1423.36 | 3312.00 | 8666.26 | 3.07% |
3 | 0.75 | 3916.80 | 1422.28 | 3248.00 | 8587.08 | 2.13% |
4 | 0.00 | 3346.20 | 889.81 | 3534.00 | 7770.01 | – |
4 | 0.25 | 3330.00 | 901.17 | 3681.00 | 7912.17 | 1.83% |
4 | 0.50 | 3372.90 | 872.98 | 3967.00 | 8212.88 | 5.70% |
4 | 0.75 | 3385.20 | 860.64 | 3736.00 | 7981.84 | 2.73% |
5 | 0.00 | 4134.00 | 1508.35 | 3311.00 | 8953.35 | – |
5 | 0.25 | 4223.10 | 1403.83 | 3721.00 | 9347.93 | 4.41% |
5 | 0.50 | 4205.40 | 1428.83 | 3863.00 | 9497.23 | 6.07% |
5 | 0.75 | 4145.70 | 1487.74 | 3613.00 | 9246.44 | 3.27% |
Instance | ||||||
---|---|---|---|---|---|---|
1 | 0.00 | 4650.30 | 1311.25 | 3275.00 | 9236.55 | – |
1 | 0.25 | 4644.90 | 1301.22 | 3398.00 | 9344.12 | 1.16% |
1 | 0.50 | 4715.40 | 1247.86 | 3564.00 | 9527.26 | 3.15% |
1 | 0.75 | 4674.60 | 1281.25 | 3545.00 | 9500.85 | 2.86% |
2 | 0.00 | 4902.30 | 1505.88 | 3282.00 | 9690.18 | – |
2 | 0.25 | 4887.30 | 1513.60 | 3457.00 | 9857.90 | 1.73% |
2 | 0.50 | 4952.10 | 1461.36 | 3712.00 | 10,125.46 | 4.49% |
2 | 0.75 | 4921.50 | 1479.01 | 3742.00 | 10,142.51 | 4.67% |
3 | 0.00 | 5334.30 | 1691.57 | 3582.00 | 10,607.87 | – |
3 | 0.25 | 5346.30 | 1695.95 | 4131.00 | 11,173.25 | 5.33% |
3 | 0.50 | 5341.80 | 1716.62 | 4111.00 | 11,169.42 | 5.29% |
3 | 0.75 | 5348.40 | 1694.81 | 3888.00 | 10,931.21 | 3.05% |
4 | 0.00 | 4741.80 | 1283.27 | 3054.00 | 9079.07 | – |
4 | 0.25 | 4782.00 | 1208.58 | 3600.00 | 9590.58 | 5.63% |
4 | 0.50 | 4778.70 | 1225.31 | 3774.00 | 9778.01 | 7.70% |
4 | 0.75 | 4721.70 | 1297.61 | 3828.00 | 9847.31 | 8.46% |
5 | 0.00 | 5970.90 | 1987.10 | 2985.00 | 10,943.00 | – |
5 | 0.25 | 5871.00 | 2089.17 | 3802.00 | 1762.17 | 7.49% |
5 | 0.50 | 5959.20 | 1984.81 | 4207.00 | 2151.01 | 11.04% |
5 | 0.75 | 5865.90 | 2095.67 | 4131.00 | 2092.57 | 10.51% |
Instance | ||||||
---|---|---|---|---|---|---|
1 | 0.00 | 7331.70 | 2531.53 | 3149.65 | 13,012.88 | – |
1 | 0.25 | 7209.00 | 2437.77 | 4130.00 | 13,776.77 | 5.87% |
1 | 0.50 | 7330.20 | 2330.05 | 4203.00 | 13,863.25 | 6.53% |
1 | 0.75 | 7344.60 | 2311.77 | 4027.00 | 13,683.37 | 5.15% |
2 | 0.00 | 6455.10 | 1979.58 | 3209.54 | 11,644.22 | – |
2 | 0.25 | 6524.70 | 1912.56 | 3777.00 | 12,214.26 | 4.90% |
2 | 0.50 | 6554.70 | 1931.98 | 3666.00 | 12,152.68 | 4.37% |
2 | 0.75 | 6571.50 | 1887.07 | 3934.00 | 12,392.57 | 6.43% |
3 | 0.00 | 7248.30 | 2351.44 | 3086.20 | 12,685.94 | – |
3 | 0.25 | 7279.50 | 2445.98 | 3496.00 | 13,221.48 | 4.22% |
3 | 0.50 | 7194.60 | 2535.73 | 3674.00 | 13,404.33 | 5.66% |
3 | 0.75 | 7111.80 | 2608.88 | 3967.00 | 13,687.68 | 7.90% |
4 | 0.00 | 5542.20 | 1470.74 | 3276.68 | 10,289.62 | – |
4 | 0.25 | 5628.00 | 1449.68 | 4016.00 | 11,093.68 | 7.81% |
4 | 0.50 | 5523.60 | 1550.11 | 4016.00 | 11,089.71 | 7.78% |
4 | 0.75 | 5582.70 | 1521.01 | 3872.00 | 10,975.71 | 6.67% |
5 | 0.00 | 5694.90 | 1987.77 | 2890.63 | 10,573.30 | – |
5 | 0.25 | 5693.10 | 1987.99 | 3333.00 | 11,014.09 | 4.17% |
5 | 0.50 | 5723.70 | 1952.01 | 3481.00 | 11,156.71 | 5.52% |
5 | 0.75 | 5669.10 | 2000.25 | 3492.00 | 11,161.35 | 5.56% |
References
- Sakalli, U.S.; Atabas, I. Ant Colony Optimization and Genetic Algorithm for Fuzzy Stochastic Production-Distribution Planning. Appl. Sci. 2018, 8, 2042. [Google Scholar] [CrossRef] [Green Version]
- Bolaños Zuñiga, J.; Saucedo Martínez, J.A.; Salais Fierro, T.E.; Marmolejo Saucedo, J.A. Optimization of the Storage Location Assignment and the Picker-Routing Problem by Using Mathematical Programming. Appl. Sci. 2020, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Avila-Torres, P.; Caballero, R.; Litvinchev, I.; Lopez-Irarragorri, F.; Vasant, P. The urban transport planning with uncertainty in demand and travel time: A comparison of two defuzzification methods. J. Ambient Intell. Humaniz. Comput. 2018, 9, 843–856. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. An Improved SPEA2 Algorithm with Local Search for Multi-Objective Investment Decision-Making. Appl. Sci. 2019, 9, 1675. [Google Scholar] [CrossRef] [Green Version]
- Roldán, R.F.; Basagoiti, R.; Coelho, L.C. Robustness of inventory replenishment and customer selection policies for the dynamic and stochastic inventory-routing problem. Comput. Oper. Res. 2016, 74, 14–20. [Google Scholar] [CrossRef]
- Herer, Y.T.; Levy, R. The Metered Inventory Routing Problem, an integrative heuristic algorithm. Int. J. Prod. Econ. 1997, 51, 69–81. [Google Scholar] [CrossRef]
- Cordeau, J.F.; Laporte, G.; Savelsbergh, M.W.; Vigo, D. Chapter 6 Vehicle Routing. In Handbooks in Operations Research and Management Science; Barnhart, C., Laporte, G., Eds.; Elsevier: New York, NY, USA, 2007; Volume 14, pp. 367–428. [Google Scholar] [CrossRef]
- Moin, N.H.; Salhi, S. Inventory routing problems: A logistical overview. J. Oper. Res. Soc. 2007, 58, 1185–1194. [Google Scholar] [CrossRef]
- Archetti, C.; Bianchessi, N.; Irnich, S.; Speranza, M.G. Formulations for an inventory routing problem. Int. Trans. Oper. Res. 2014, 21, 353–374. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, H.; Chu, F. A new model and hybrid approach for large scale inventory routing problems. Eur. J. Oper. Res. 2008, 189, 1022–1040. [Google Scholar] [CrossRef]
- Campbell, A.; Clarke, L.; Kleywegt, A.; Savelsbergh, M. The Inventory Routing Problem. In Fleet Management and Logistics; Crainic, T.G., Laporte, G., Eds.; Springer: Boston, MA, USA, 1998; pp. 95–113. [Google Scholar]
- Litvinchev, I.; López, F.; Escalante, H.J.; Mata, M. A milp bi-objective model for static portfolio selection of R&D projects with synergies. J. Comput. Syst. Sci. Int. 2011, 50, 942–952. [Google Scholar]
- Andersson, H.; Hoff, A.; Christiansen, M.; Hasle, G.; Løkketangen, A. Industrial aspects and literature survey: Combined inventory management and routing. Comput. Oper. Res. 2010, 37, 1515–1536. [Google Scholar] [CrossRef] [Green Version]
- Coelho, L.C.; Cordeau, J.F.; Laporte, G. Thirty Years of Inventory Routing. Transp. Sci. 2014, 48, 1–19. [Google Scholar] [CrossRef]
- Roldán, R.F.; Basagoiti, R.; Coelho, L.C. A survey on the inventory-routing problem with stochastic lead times and demands. J. Appl. Log. 2017, 24, 15–24. [Google Scholar] [CrossRef]
- Malladi, K.T.; Sowlati, T. Sustainability aspects in Inventory Routing Problem: A review of new trends in the literature. J. Clean. Prod. 2018, 197, 804–814. [Google Scholar] [CrossRef]
- Popović, D.; Bjelić, N.; Radivojević, G. Simulation Approach to Analyse Deterministic IRP Solution of the Stochastic Fuel Delivery Problem. Procedia Soc. Behav. Sci. 2011, 20, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Bard, J.F.; Nananukul, N. Heuristics for a multiperiod inventory routing problem with production decisions. Comput. Ind. Eng. 2009, 57, 713–723. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Mateo, M. An iterated local search algorithm for the single-vehicle cyclic inventory routing problem. Eur. J. Oper. Res. 2014, 237, 802–813. [Google Scholar] [CrossRef]
- Naccache, S.; Côté, J.F.; Coelho, L.C. The multi pickup and delivery problem with time windows. Eur. J. Oper. Res. 2018, 269, 353–362. [Google Scholar] [CrossRef]
- Luca, B.; Leandro, C.C.; Annarita, D.M.; Demetrio, L. A metaheuristic algorithm for the multidepot inventory routing problem. Transp. Res. Part E 2019, 122, 524–544. [Google Scholar]
- Rohmer, S.U.K.; Claassen, G.D.H.; Laporte, G. A two-echelon inventory routing problem for perishable products. Comput. Oper. Res. 2019, 107, 156–172. [Google Scholar] [CrossRef]
- Ali Kourank, B.; Hejazi Seyed Reza, A.M. The vehicle routing problem with multiple prioritized time windows: A case study. Comput. Ind. Eng. 2015, 90, 402–413. [Google Scholar]
- Vahid, B.; Amir, S.; Hossein, H.A. Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach. Comput. Ind. Eng. 2019, 131, 187–199. [Google Scholar]
- Lin, Y.H.; Batta, R.; Rogerson, P.A.; Blatt, A.; Flanigan, M. A logistics model for emergency supply of critical items in the aftermath of a disaster. Socio-Econ. Plan. Sci. 2011, 45, 132–145. [Google Scholar] [CrossRef]
- Zhang, C.; Nemhauser, G.; Sokol, J.; Cheon, M.S.; Keha, A. Flexible solutions to maritime inventory routing problems with delivery time windows. Comput. Oper. Res. 2018, 89, 153–162. [Google Scholar] [CrossRef]
- Wei, C.; Gao, W.W.; Hu, Z.H.; Yin, Y.Q.; Pan, S.D. Assigning customer-dependent travel time limits to routes in a cold-chain inventory routing problem. Comput. Ind. Eng. 2019, 133, 275–291. [Google Scholar] [CrossRef]
- Aghezzaf, E.H.; Raa, B.; Van Landeghem, H. Modeling inventory routing problems in supply chains of high consumption products. Eur. J. Oper. Res. 2006, 169, 1048–1063. [Google Scholar] [CrossRef]
- Moin, N.; Salhi, S.; Aziz, N. An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem. Int. J. Prod. Econ. 2011, 133, 334–343. [Google Scholar] [CrossRef]
- Coelho, L.C.; Cordeau, J.F.; Laporte, G. Consistency in multi-vehicle inventory-routing. Transp. Res. Part C Emerg. Technol. 2012, 24, 270–287. [Google Scholar] [CrossRef]
- Solyali, O.; Cordeau, J.F.; Laporte, G. Robust Inventory Routing Under Demand Uncertainty. Transp. Sci. 2012, 46, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Bertazzi, L.; Bosco, A.; Guerriero, F.; Laganà, D. A stochastic inventory routing problem with stock-out. Transp. Res. Part C Emerg. Technol. 2013, 27, 89–107. [Google Scholar] [CrossRef]
- Coelho, L.C.; Laporte, G. The exact solution of several classes of inventory-routing problems. Comput. Oper. Res. 2013, 40, 558–565. [Google Scholar] [CrossRef]
- Raa, B. Fleet optimization for cyclic inventory routing problems. Int. J. Prod. Econ. 2015, 160, 172–181. [Google Scholar] [CrossRef]
- Nikolakopoulos, A.; Ganas, I. Economic model predictive inventory routing and control. Cent. Eur. J. Oper. Res. 2017, 25, 587–609. [Google Scholar] [CrossRef]
- Iassinovskaia, G.; Limbourg, S.; Riane, F. The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains. Int. J. Prod. Econ. 2017, 183, 570–582. [Google Scholar] [CrossRef] [Green Version]
- Moin, N.H.; Halim, H.Z.A. Solving inventory routing problem with stochastic demand. AIP Conf. Proc. 2018, 1974, 020104. [Google Scholar] [CrossRef]
- Archetti, C.; Christiansen, M.; Speranza, M.G. Inventory routing with pickups and deliveries. Eur. J. Oper. Res. 2018, 268, 314–324. [Google Scholar] [CrossRef]
- Golsefidi, A.H.; Jokar, M.R.A. A robust optimization approach for the production-inventory-routing problem with simultaneous pickup and delivery. Comput. Ind. Eng. 2020, 143, 106388. [Google Scholar] [CrossRef]
- Archetti, C.; Bertazzi, L.; Laporte, G.; Speranza, M.G. A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem. Transp. Sci. 2007, 41, 382–391. [Google Scholar] [CrossRef]
- Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems. J. ACM 1960, 7, 326–329. [Google Scholar] [CrossRef]
- Arratia-Martinez, N.M.; Fernandez, R.C.; Litvinchev, I.; López-Irarragorri, F. Research and development project portfolio selection under uncertainty. J. Ambient Intell. Humaniz. Comput. 2018, 9, 857–866. [Google Scholar] [CrossRef]
Paper | Product | Depot | Route Structure | Vehicles | Fleet | Time Windows | Priority | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Single | Multiple | One | Multiple | Direct | Multiple | One | Multiple | Homo- Geneous | Hetero- Geneous | |||
Aghezzaf et al. (2006) [28] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Yu et al. (2008) [10] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Bard and Nananukul (2009) [18] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Moin et al. (2011) [29] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Coelho et al. (2012) [30] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Solyali et al. (2012) [31] | ✓ | ✓ | ✓ | ✓ | ||||||||
Bertazzi et al. (2013) [32] | ✓ | ✓ | ✓ | ✓ | ||||||||
Coelho and Laporte (2013) [33] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Vansteenwegen and Mateo (2014) [19] | ✓ | ✓ | ✓ | ✓ | ||||||||
Archetti et al. (2014) [9] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Raa (2015) [34] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Nikolakopoulos and Ganas (2017) [35] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Iassinovskaia et al. (2017) [36] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Moin and Halim (2018) [37] | ✓ | ✓ | ✓ | ✓ | ||||||||
Archetti et al. (2018) [38] | ✓ | ✓ | ✓ | ✓ | ||||||||
Bertazzi et al. (2019) [21] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Golsefidi et al. (2020) [39] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Proposed Model | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Subset | n | |||||
---|---|---|---|---|---|---|
S1 | 5 | 0.00 | 0.21 | 0.01% | 1.93% | 1.04% |
S2 | 10 | 0.00 | 7.93 | −0.03% | 6.78% | 3.13% |
S3 | 15 | 0.00 | 140.30 | 0.05% | 9.05% | 3.73% |
S4 | 20 | 0.05 | 905.56 | −0.02% | 10.98% | 3.98% |
S5 | 25 | 0.04 | 1037.96 | −0.03% | 17.69% | 5.50% |
S6 | 30 | 0.04 | 1130.69 | 0.05% | 21.84% | 5.90% |
Subset | n | |||||
---|---|---|---|---|---|---|
0.25 | 0.02% | 3.38% | 1.95% | 1.37 | ||
S1 | 5 | 0.50 | 0.00% | 0.95% | 0.44% | 0.97 |
0.75 | 0.00% | 1.46% | 0.73% | 1.23 | ||
0.25 | −0.10% | 5.29% | 2.27% | 2.27 | ||
S2 | 10 | 0.50 | 0.01% | 6.62% | 3.14% | 3.14 |
0.75 | 0.01% | 8.43% | 3.99% | 3.99 | ||
0.25 | 0.01% | 7.65% | 3.14% | 0.85 | ||
S3 | 15 | 0.50 | 0.03% | 11.84% | 4.81% | 2.55 |
0.75 | 0.12% | 7.68% | 3.22% | 0.54 | ||
0.25 | −0.11% | 10.35% | 3.59% | 1.44 | ||
S4 | 20 | 0.50 | 0.10% | 12.91% | 4.93% | 1.22 |
0.75 | −0.06% | 9.68% | 3.41% | 1.67 | ||
0.25 | −0.09% | 11.03% | 3.28% | 4.29 | ||
S5 | 25 | 0.50 | 0.01% | 20.24% | 6.33% | 3.10 |
0.75 | 0.00% | 18.91% | 5.91% | 3.41 | ||
0.25 | −0.01% | 19.99% | 5.39% | 1.52 | ||
S6 | 30 | 0.50 | 0.08% | 21.94% | 5.97% | 1.27 |
0.75 | 0.06% | 23.59% | 6.34% | 1.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila-Torres, P.A.; Arratia-Martinez, N.M.; Ruiz-y-Ruiz, E. The Inventory Routing Problem with Priorities and Fixed Heterogeneous Fleet. Appl. Sci. 2020, 10, 3502. https://doi.org/10.3390/app10103502
Avila-Torres PA, Arratia-Martinez NM, Ruiz-y-Ruiz E. The Inventory Routing Problem with Priorities and Fixed Heterogeneous Fleet. Applied Sciences. 2020; 10(10):3502. https://doi.org/10.3390/app10103502
Chicago/Turabian StyleAvila-Torres, Paulina A., Nancy M. Arratia-Martinez, and Efraín Ruiz-y-Ruiz. 2020. "The Inventory Routing Problem with Priorities and Fixed Heterogeneous Fleet" Applied Sciences 10, no. 10: 3502. https://doi.org/10.3390/app10103502
APA StyleAvila-Torres, P. A., Arratia-Martinez, N. M., & Ruiz-y-Ruiz, E. (2020). The Inventory Routing Problem with Priorities and Fixed Heterogeneous Fleet. Applied Sciences, 10(10), 3502. https://doi.org/10.3390/app10103502