Meta-Analyzing the Writing Process of Structural Language to Develop New Writing Analysis Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Tablet
2.3. Cloud of Line Distribution (COLD)
2.4. Principal Component Analysis (PCA)
3. Results
3.1. Cloud of Line Distribution (COLD) Features
3.2. PCA Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reisman, J.E. Development and reliability of the research version of the Minnesota Handwriting Test. Phys. Occup. Ther. Pediatr. 1993, 13, 41–55. [Google Scholar] [CrossRef]
- Gu, Y.; Hong, S.; Lee, K.; Son, J.; Kim, D. Relationship between Written Expression and Writing Fluency among Primary Grade Students. Korea J. Learn. Disabil. 2008, 5, 43–59. [Google Scholar]
- Kim, D.; Lee, J.; Lee, M. Meta-analysis of Writing Learning Disability for Single-subject Intervention Researches in Korea. Korea J. Learn. Disabil. 2013, 10, 73–82. [Google Scholar]
- Kim, E.-B.; Lee, C.-H.; Kim, E.-Y.; Lee, O. Quantitative image processing analysis for handwriting legibility evaluation. J. Korea Acad. -Ind. Coop. Soc. 2019, 20, 158–165. [Google Scholar]
- Tucha, O.; Tucha, L.; Lange, K.W. Graphonomics, automaticity and handwriting assessment. Literacy 2008, 42, 145–155. [Google Scholar] [CrossRef]
- Gerth, S.; Dolk, T.; Klassert, A.; Fliesser, M.; Fischer, M.H.; Nottbusch, G.; Festman, J. Adapting to the surface: A comparison of handwriting measures when writing on a tablet computer and on paper. Hum. Mov. Sci. 2016, 48, 62–73. [Google Scholar] [CrossRef]
- Xia, X.; Chen, Z.; Luan, F.; Song, X. Signature alignment based on GMM for on-line signature verification. Pattern Recognit. 2017, 65, 188–196. [Google Scholar] [CrossRef]
- Nag, S.; Shivakumara, P.; Wu, Y.; Pal, U.; Lu, T. New COLD Feature Based Handwriting Analysis for Enthnicity/Nationality Identification. In Proceedings of the 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018. [Google Scholar]
- Guilbert, J.; Alamargot, D.; Morin, M.-F. Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults. Hum. Mov. Sci. 2019, 65, 30–41. [Google Scholar] [CrossRef]
- Diaz, M.; Ferrer, M.A.; Impedovo, D.; Pirlo, G.; Vessio, G. Dynamically enhanced static handwriting representation for Parkinson’s disease detection. Pattern Recognit. Lett. 2019, 128, 204–210. [Google Scholar] [CrossRef]
- Husnain, M.; Saad Missen, M.M.; Mumtaz, S.; Jhanidr, M.Z.; Coustaty, M.; Muzzamil Luqman, M.; Ogier, J.-M.; Sang Choi, G. Recognition of Urdu Handwritten Characters Using Convolutional Neural Network. Appl. Sci. 2019, 9, 2758. [Google Scholar] [CrossRef] [Green Version]
- Abiyev, R.H.; Arslan, M.; Idoko, J.B. Sign Language Translation Using Deep Convolutional Neural Networks. KSII Trans. Internet Inf. Syst. 2020, 14, 631–653. [Google Scholar]
- Wilson, J.; Olinghouse, N.G.; McCoach, D.B.; Santangelo, T.; Andrada, G.N. Comparing the accuracy of different scoring methods for identifying sixth graders at risk of failing a state writing assessment. Assess. Writ. 2016, 27, 11–23. [Google Scholar] [CrossRef]
- Costa, L.-J.; Green, M.; Sideris, J.; Hooper, S.R. First-grade cognitive predictors of writing disabilities in grades 2 through 4 elementary school students. J. Learn. Disabil. 2018, 51, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Donica, D.K.; Holt, S. Examining Validity of the Print Tool Compared With Test of Handwriting Skills–Revised. OTJR Occup. Particip. Health 2019, 39, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Shin, J. The Validity of Curriculum-Based Measurement in Writing for Screeing Students at risk for Writing Disabilities: A Meta-Analysis. Korea J. Learn. Disabil. 2019, 16, 101–122. [Google Scholar]
- He, S.; Schomaker, L. Writer identification using curvature-free features. Pattern Recognit. 2017, 63, 451–464. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Palaiahnakote, S.; Lu, T.; Liu, J. Cloud of Line Distribution for Arbitrary Text Detection in Scene/Video/License Plate Images. In Proceedings of the Pacific Rim Conference on Multimedia, Harbin, China, 28–29 September 2017. [Google Scholar]
- Wang, W.; Wu, Y.; Shivakumara, P.; Lu, T. Cloud of Line Distribution and Random Forest Based Text Detection from Natural/Video Scene Images. In Proceedings of the International Conference on Multimedia Modeling, Bankok, Thailand, 5–7 February 2018. [Google Scholar]
- Jain, A.K.; Griess, F.D.; Connell, S.D. On-line signature verification. Pattern Recognit. 2002, 35, 2963–2972. [Google Scholar] [CrossRef]
- Kumar, P.; Saini, R.; Roy, P.P.; Pal, U. A lexicon-free approach for 3D handwriting recognition using classifier combination. Pattern Recognit. Lett. 2018, 103, 1–7. [Google Scholar] [CrossRef]
- Bonneton-Botté, N.; Fleury, S.; Girard, N.; Le Magadou, M.; Cherbonnier, A.; Renault, M.; Anquetil, E.; Jamet, E. Can tablet apps support the learning of handwriting? An investigation of learning outcomes in kindergarten classroom. Comput. Educ. 2020, 151, 103831. [Google Scholar] [CrossRef] [Green Version]
- Van Gemmert, A.; Adler, C.H.; Stelmach, G. Parkinson’s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1502–1508. [Google Scholar] [CrossRef] [Green Version]
- Berninger, V.W.; Nagy, W.; Tanimoto, S.; Thompson, R.; Abbott, R.D. Computer instruction in handwriting, spelling, and composing for students with specific learning disabilities in grades 4–9. Comput. Educ. 2015, 81, 154–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nackaerts, E.; Nieuwboer, A.; Broeder, S.; Smits-Engelsman, B.C.; Swinnen, S.P.; Vandenberghe, W.; Heremans, E. Opposite effects of visual cueing during writing-like movements of different amplitudes in Parkinson’s disease. Neurorehabilit. Neural Repair 2016, 30, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollscheid, S.; Sjaastad, J.; Tømte, C. The impact of digital devices vs. Pen (cil) and paper on primary school students’ writing skills—A research review. Comput. Educ. 2016, 95, 19–35. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, Y.; Tan, T. Personal handwriting identification based on PCA. In Proceedings of the Second International Conference on Image and Graphics, Hefei, China, 16–18 August 2002. [Google Scholar]
- Yin, Y.; Xie, L.; Gu, T.; Lu, Y.; Lu, S. AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition. ACM Trans. Sens. Netw. (TOSN) 2019, 15, 1–25. [Google Scholar] [CrossRef]
- Drotár, P.; Mekyska, J.; Rektorová, I.; Masarová, L.; Smékal, Z.; Faundez-Zanuy, M. Analysis of in-air movement in handwriting: A novel marker for Parkinson’s disease. Comput. Methods Programs Biomed. 2014, 117, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Jerkovic, V.M.; Kojic, V.; Miskovic, N.D.; Djukic, T.; Kostic, V.S.; Popovic, M.B. Analysis of on-surface and in-air movement in handwriting of subjects with Parkinson’s disease and atypical parkinsonism. Biomed. Eng. Biomed. Tech. 2019, 64, 187–194. [Google Scholar] [CrossRef]
- Yoon, H. The Characteristics of decoding process in Korean Scripts, Hangul. Korean J. Hum. Dev. 2001, 8, 27–43. [Google Scholar]
- Yang, M. Spelling Development of Kindergarten Students: A one Year Longitudinal Study. Korean Acad. Speech-Lang. Pathol. Audiol. 2009, 14, 14–33. [Google Scholar]
- Lee, C.H.; Kim, E.B.; Lee, O.; Kim, E.Y. Development of the Korean Handwriting Assessment for Children Using Digital Image Processing. KSII Trans. Internet Inf. Syst. 2019, 13, 4241–4254. [Google Scholar]
- Rosenblum, S.; Dror, G. Identifying developmental dysgraphia characteristics utilizing handwriting classification methods. IEEE Trans. Hum. Mach. Syst. 2016, 47, 293–298. [Google Scholar] [CrossRef]
- Choudhury, H.; Prasanna, S.M. Representation of online handwriting using multi-component sinusoidal model. Pattern Recognit. 2019, 91, 200–215. [Google Scholar] [CrossRef]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Alginahi, Y.M.; Mudassar, M.; Kabir, M.N. An Arabic Script Recognition System. KSII Trans. Internet Inf. Syst. 2015, 9. [Google Scholar] [CrossRef]
- Wan, M.; Lai, Z. Feature Extraction via Sparse Difference Embedding (SDE). KSII Trans. Internet Inf. Syst. 2017, 11. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Wang, F.; Zhang, D.; Xia, Y.; He, F. A Novel P300 Classification Algorithm Based on a Principal Component Analysis-Convolutional Neural Network. Appl. Sci. 2020, 10, 1546. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.-Y.; Paek, Y.-S.; Kil, H.; Jin, M.; Sakura, Y.; Son, S.-H. Meta-analysis of single subject researches for students with difficulty in writing: Focusing on students with mild intellectual disabilities, learning disabilities, and low achievement. J. Spec. Educ. Theory Pract. 2018, 19, 123–148. [Google Scholar] [CrossRef]
- Williams, C.; Beam, S. Technology and writing: Review of research. Comput. Educ. 2019, 128, 227–242. [Google Scholar] [CrossRef]
- Rosenblum, S.; Parush, S.; Weiss, P.L. The in air phenomenon: Temporal and spatial correlates of the handwriting process. Percept. Mot. Ski. 2003, 96, 933–954. [Google Scholar] [CrossRef]
- Mucha, J.; Mekyska, J.; Galaz, Z.; Faundez-Zanuy, M.; Lopez-de-Ipina, K.; Zvoncak, V.; Kiska, T.; Smekal, Z.; Brabenec, L.; Rektorova, I. Identification and monitoring of Parkinson’s disease dysgraphia based on fractional-order derivatives of online handwriting. Appl. Sci. 2018, 8, 2566. [Google Scholar] [CrossRef] [Green Version]
- Holdich, C.; Holdich, R.G.; Chung, P.W. Assessing aspects of children’s written grammar: Automating the process. Comput. Educ. 2002, 39, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Jun, W.; Hong, S.-K. A Study on Development of Quality Standards of Educational Smart Contents. KSII Trans. Internet Inf. Syst. 2014, 8. [Google Scholar] [CrossRef]
- Pacheco-Venegas, N.D.; López, G.; Andrade-Aréchiga, M. Conceptualization, development and implementation of a web-based system for automatic evaluation of mathematical expressions. Comput. Educ. 2015, 88, 15–28. [Google Scholar] [CrossRef]
- Neumann, M.M. Young children’s use of touch screen tablets for writing and reading at home: Relationships with emergent literacy. Comput. Educ. 2016, 97, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Rosenblum, S.; Samuel, M.; Zlotnik, S.; Erikh, I.; Schlesinger, I. Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 2013, 260, 2357–2361. [Google Scholar] [CrossRef] [PubMed]
- Vessio, G. Dynamic Handwriting Analysis for Neurodegenerative Disease Assessment: A Literary Review. Appl. Sci. 2019, 9, 4666. [Google Scholar] [CrossRef] [Green Version]
- Sesa-Nogueras, E.; Faundez-Zanuy, M.; Mekyska, J. An information analysis of in-air and on-surface trajectories in online handwriting. Cogn. Comput. 2012, 4, 195–205. [Google Scholar] [CrossRef]
- Moetesum, M.; Siddiqi, I.; Vincent, N.; Cloppet, F. Assessing visual attributes of handwriting for prediction of neurological disorders—A case study on Parkinson’s disease. Pattern Recognit. Lett. 2019, 121, 19–27. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.B.; Kim, E.Y.; Lee, O. Meta-Analyzing the Writing Process of Structural Language to Develop New Writing Analysis Elements. Appl. Sci. 2020, 10, 3479. https://doi.org/10.3390/app10103479
Kim EB, Kim EY, Lee O. Meta-Analyzing the Writing Process of Structural Language to Develop New Writing Analysis Elements. Applied Sciences. 2020; 10(10):3479. https://doi.org/10.3390/app10103479
Chicago/Turabian StyleKim, Eun Bin, Eun Young Kim, and Onseok Lee. 2020. "Meta-Analyzing the Writing Process of Structural Language to Develop New Writing Analysis Elements" Applied Sciences 10, no. 10: 3479. https://doi.org/10.3390/app10103479
APA StyleKim, E. B., Kim, E. Y., & Lee, O. (2020). Meta-Analyzing the Writing Process of Structural Language to Develop New Writing Analysis Elements. Applied Sciences, 10(10), 3479. https://doi.org/10.3390/app10103479