A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering
Abstract
:1. Introduction
2. Leaky-Wave Antenna
2.1. Feed Network
2.2. RF Choke
2.3. Radiating Section
3. Antenna and Photodiode Integration
4. Measurements and Results
4.1. Electronic Measurements
4.2. Photonic Measurements
5. Featured Application
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Method for Probe De-Embedding
References
- Preu, S.; Döhler, G.H.; Malzer, S.; Stöhr, A.; Rymanov, V.; Göbel, T.; Brown, E.R.; Feiginov, M.; Gonzalo, R.; Beruete, M.; et al. Principles of THz generation. In Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation, 1st ed.; Carpintero, G., García-Muñoz, L.E., Hartnagel, H.L., Preu, S., Räisänen, A.V., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Nagatsuma, T.; Hisatake, S.; Fujita, M.; Pham, H.H.N.; Tsuruda, K.; Kuwano, S.; Terada, J. Millimeter-wave and terahertz-wave applications enabled by photonics. IEEE J. Quantum Electron. 2016, 52, 1–12. [Google Scholar] [CrossRef]
- Ali, M.; Jankowski, A.; Guzman, R.C.; García-Muñoz, L.E.; van Dijk, F.; Carpintero, G. Photonics-based compact broadband transmitter module for E-band wireless communications. In Proceedings of the 2019 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; IEEE: Paris, France, 2019; pp. 808–811. [Google Scholar]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Carpintero, G. Recent progress and future prospect of photonics-enabled Terahertz communications research. IEICE Trans. Electron. 2015, 98, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Hirata, A.; Ishii, H.; Nagatsuma, T. Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters. IEEE Trans. Microw. Theory Tech. 2001, 49, 2157–2162. [Google Scholar] [CrossRef]
- Li, X.; Yu, J. Over 100 Gb/s ultrabroadband MIMO wireless signal delivery system at the D-band. IEEE Photonics J. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Oogimoto, K.; Yasuda, Y.; Fujita, Y.; Inubushi, Y.; Hisatake, S.; Agoues, A.M.; Lopez, G.C. 300-GHz-band wireless transmission at 50 Gbit/s over 100 meters. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; IEEE: Copenhagen, Denmark, 2016; pp. 1–2. [Google Scholar]
- Hirata, A.; Kosugi, T.; Meisl, N.; Shibata, T.; Nagatsuma, T. High-Directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link. IEEE Trans. Microw. Theory Tech. 2004, 52, 1843–1850. [Google Scholar] [CrossRef]
- Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G. Continuous terahertz-wave generation using a monolithically integrated horn antenna. Appl. Phys. Lett. 2008, 93, 111108. [Google Scholar] [CrossRef]
- Rey, S.; Merkle, T.; Tessmann, A.; Kürner, T. A phased array antenna with horn elements for 300 GHz communications. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; IEEE: Okinawa, Japan, 2016; pp. 122–123. [Google Scholar]
- Bauerschmidt, S.T.; Döhler, G.H.; Lu, H.; Gossard, A.C.; Malzer, S.; Preu, S. Arrayed free space continuous-wave terahertz photomixers. Opt. Lett. 2013, 38, 3673–3676. [Google Scholar] [CrossRef] [PubMed]
- Preu, S.; Muller-Landau, C.; Malzer, S.; Döhler, G.H.; Lu, H.; Gossard, A.C.; Segovia-Vargas, D.; Rivera-Lavado, A.; Garcia-Munoz, L.E. Fiber-Coupled 2-D n-i-pn-i-p superlattice photomixer array. IEEE Trans. Antennas Propag. 2017, 65, 3474–3480. [Google Scholar] [CrossRef]
- Shimizu, N.; Nagatsuma, T. Photodiode-integrated microstrip antenna array for subterahertz radiation. IEEE Photonics Technol. Lett. 2006, 18, 743–745. [Google Scholar] [CrossRef]
- Kalimulin, R.; Artemenko, A.; Maslennikov, R.; Putkonen, J.; Salmelin, J. Impact of mounting structures twists and sways on point-to-point millimeter-wave backhaul links. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; IEEE: London, UK, 2015; pp. 19–24. [Google Scholar]
- Katayama, Y.; Takano, K.; Kohda, Y.; Ohba, N.; Nakano, D. Wireless data center networking with steered-beam mmWave links. In Proceedings of the 2011 IEEE Wireless Communications and Networking Conference, Cancun, Mexico, 28–31 March 2011; IEEE: Cancun, Mexico, 2011; pp. 2179–2184. [Google Scholar]
- Rupakula, B.; Nafe, A.; Zihir, S.; Wang, Y.; Lin, T.W.; Rebeiz, G. 63.5–65.5-GHz transmit/receive phased-array communication link with 0.5–2 Gb/s at 100–800 m and ± 50° scan angles. IEEE Trans. Microw. Theory Tech. 2018, 66, 4108–4120. [Google Scholar] [CrossRef]
- Pascual, A.J.; Ali, M.; García-Muñoz, L.E.; Carpintero, G.; van Dijk, F.; González-Ovejero, D.; Sauleau, R. A scalable photomixing array for increased emitted power. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; IEEE: Paris, France, 2019; pp. 1–2. [Google Scholar]
- Jackson, D.R.; Oliner, A.A. Leaky-wave antennas. In Modern Antenna Handbook, 1st ed.; Balanis, C.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lafond, O.; Himdi, M. Printed Millimeter Antennas– Multilayer Technologies. In Advanced Millimeter-Wave Technologies, 1st ed.; Liu, D., Gaucher, B., Pfeiffer, U., Grzyb, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2009. [Google Scholar]
- James, J.R.; Hall, P.S.; Wood, C. Radiation mechanism of an open-circuit microstrip termination. In Microstrip Antenna: Theory and Design, 1st ed.; Peter Peregrinus Ltd.: London, UK, 2015. [Google Scholar]
- James, J.R.; Hall, P.S. Microstrip antennas and arrays. Part 2: New array-design technique. IEE J. Microw. Opt. Acoust. 1977, 1, 175–181. [Google Scholar] [CrossRef]
- Paulotto, S.; Baccarelli, P.; Frezza, F.; Jackson, D.R. A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans. Antennas Propag. 2009, 57, 1894–1906. [Google Scholar] [CrossRef]
- Hirata, A.; Minotani, T.; Ito, H.; Hirota, Y.; Ishibashi, T.; Sasaki, A.; Nagatsuma, T. High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes. IEE Proc. Optoelectron. 2003, 150, 138–142. [Google Scholar]
- Rouvalis, E.; Chtioui, M.; Tran, M.; Lelarge, F.; van Dijk, F.; Fice, M.J.; Renaud, C.C.; Carpintero, G.; Seeds, A.J. High-speed photodiodes for InP-based photonic integrated circuits. Opt. Express 2012, 20, 9172–9177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Muñoz, E.; Abdalmalak, K.A.; Santamaría, G.; Rivera-Lavado, A.; Segovia-Vargas, D.; Castillo-Araníbar, P.; van Dijk, F.; Nagatsuma, T.; Brown, E.R.; Guzman, R.C.; et al. Photonic-based integrated sources and antenna arrays for broadband wireless links in terahertz communications. Semicond. Sci. Technol. 2019, 34, 054001. [Google Scholar] [CrossRef]
- Ali, M.; Guzman, R.C.; Rivera-Lavado, A.; Cojocari, O.; García-Muñoz, L.E.; Carpintero, G. Quasi-optical schottky barrier diode detector for mmWave/sub-THz wireless communication. In Proceedings of the 2018 25th International Conference on Telecommunications (ICT), St. Malo, France, 26–28 June 2018; IEEE: St. Malo, France, 2018; pp. 279–282. [Google Scholar]
- Vardhan, H.; Thomas, N.; Ryu, S.-R.; Banerjee, B.; Prakash, R. Wireless data center with millimeter wave network. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; IEEE: Miami, FL, USA, 2010; pp. 1–6. [Google Scholar]
- Mahmoud, A.; Gonzalez-Ovejero, D.; Ettorre, M.; Sauleau, R.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A.-S. High gain constrained lens antenna on BCB substrate for 300-GHz applications. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, USA, 7–12 July 2019; IEEE: Atlanta, GA, USA, 2019; pp. 507–508. [Google Scholar]
- Hesler, J.L.; Crowe, T.W. NEP and responsivity of THz zero-bias Schottky diode detectors. In Proceedings of the 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, UK, 2–9 September 2007; IEEE: Cardiff, UK, 2007; pp. 844–845. [Google Scholar]
- Xu, H.; Kasper, E. A de-embedding procedure for one-port active mm-wave devices. In Proceedings of the 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), New Orleans, LA, USA, 11–13 January 2010; IEEE: New Orleans, LA, USA, 2010; pp. 37–40. [Google Scholar]
Parameter | Value |
---|---|
Data rate | 2.15 Gbps |
RF carrier | 80 GHz |
Modulation | OOK |
Link distance | 25 cm |
Bit error rate | <10−12 |
Photocurrent | 7.0 mA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascual-Gracia, Á.J.; Ali, M.; Carpintero Del Barrio, G.; Ferrero, F.; Brochier, L.; Sauleau, R.; García-Muñoz, L.E.; González-Ovejero, D. A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering. Appl. Sci. 2020, 10, 3474. https://doi.org/10.3390/app10103474
Pascual-Gracia ÁJ, Ali M, Carpintero Del Barrio G, Ferrero F, Brochier L, Sauleau R, García-Muñoz LE, González-Ovejero D. A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering. Applied Sciences. 2020; 10(10):3474. https://doi.org/10.3390/app10103474
Chicago/Turabian StylePascual-Gracia, Álvaro J., Muhsin Ali, Guillermo Carpintero Del Barrio, Fabien Ferrero, Laurent Brochier, Ronan Sauleau, Luis Enrique García-Muñoz, and David González-Ovejero. 2020. "A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering" Applied Sciences 10, no. 10: 3474. https://doi.org/10.3390/app10103474
APA StylePascual-Gracia, Á. J., Ali, M., Carpintero Del Barrio, G., Ferrero, F., Brochier, L., Sauleau, R., García-Muñoz, L. E., & González-Ovejero, D. (2020). A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering. Applied Sciences, 10(10), 3474. https://doi.org/10.3390/app10103474