Effective Compressive Strengths of Corner and Edge Concrete Columns Based on an Adaptive Neuro-Fuzzy Inference System
Abstract
:1. Introduction
2. ANFIS Structure
3. Proposed Model Using ANFIS
4. Simplified Model Using ANFIS
5. Concluding Remarks
- (1)
- The effective compressive strengths of HSC corner and edge columns intersected by NSC slabs were estimated using ANFIS, a type of neuro-fuzzy system. The results showed that the ANFIS model offers a very accurate evaluation of the collected test results, with the COV calculated at 0.13.
- (2)
- The equations for effective compressive strength specified in ACI 318-19 and CSA A23.3-14 provided very conservative results, but with relatively large scatters.
- (3)
- The parametric study was performed based on the ANFIS model, and a simplified equation for effective compressive strengths was proposed by means of a dimensional analysis. The simplified equation showed an accuracy which was very similar to that of the ANFIS model.
Author Contributions
Funding
Conflicts of Interest
References
- Choi, S.H.; Lee, D.H.; Hwang, J.H.; Oh, J.Y.; Kim, K.S.; Kim, S.H. Effective Compressive Strength of Corner and Exterior Concrete Columns intersected by Slabs with Different Compressive Strengths. Arch. Civ. Mech. Eng. 2018, 18, 731–741. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, J.M.; Lee, S.H.; Yoon, Y.S. Improved Transmission of UHSC Column Loads by Puddling of Fiber Reinforced UHSC. J. Korea Concr. Inst. 2007, 19, 209–216. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19); American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Canadian Standards Association. CSA A23. 3-14: Design of Concrete Structures; Canadian Standards Association: Toronto, ON, Canada, 2014. [Google Scholar]
- Bianchini, A.C.; Woods, R.E.; Kesler, C.E. Effect of Floor Concrete Strength on Column Strength. ACI J. Proc. 1960, 56, 1149–1170. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Reinforced Concrete (ACI 318-63); American Concrete Institute: Detroit, MI, USA, 1963. [Google Scholar]
- Gamble, W.L.; Klinar, J.D. Tests of High-Strength Concrete Columns with Intervening Floor Slabs. ASCE J. Struct. Eng. 1991, 117, 1462–1476. [Google Scholar] [CrossRef]
- Kayani, M.K. Load Transfer from High-Strength Concrete Columns through Lower Strength Concrete Slabs. Ph.D. Thesis, University of Illinois, Chicago, IL, USA, 1992. [Google Scholar]
- Lee, S.C.; Mendis, P. Behavior of High-Strength Concrete Corner Columns Intersected by Weaker Slabs with Different Thicknesses. ACI Struct. J. 2004, 101, 11–18. [Google Scholar]
- Ospina, C.E.; Alexander, S.D. Transmission of High Strength Concrete Column Loads through Concrete Slabs; University of Alberta: Edmonton, AB, Canada, 1997. [Google Scholar]
- Shin, H.O.; Yoon, Y.S.; Cook, W.D.; Mitchell, D. Enhancing the performance of UHSC columns intersected by weaker slabs. Eng. Struct. 2016, 127, 359–373. [Google Scholar] [CrossRef]
- Shu, C.C.; Hawkins, N.M. Behavior of Columns Continuous Through Concrete Floors. ACI Struct. J. 1992, 89, 405–414. [Google Scholar]
- Stanisław Urban, T.; Gołdyn, M.M. Behaviour of eccentrically loaded high-strength concrete columns intersected by lower-strength concrete slabs. Struct. Concr. 2015, 16, 480–495. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Abraham, A. Neuro fuzzy systems: State-of-the-art modeling techniques. In International Work-Conference on Artificial Neural Networks; Springer: Berlin, Germany, 2001; pp. 269–276. [Google Scholar]
- Abraham, A. Adaptation of fuzzy inference system using neural learning. In Fuzzy Systems Engineering; Springer: Berlin, Germany, 2005; pp. 53–83. [Google Scholar]
- Livingstone, D.J.; Manallack, D.T.; Tetko, I.V. Data modelling with neural networks: Advantages and limitations. J. Comput. Aided Mol. Des. 1997, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Grabisch, M.; Murofushi, T.; Sugeno, M. Fuzzy Measures and Integral; Physica-Verlag: Heidelberg, Germany, 2007. [Google Scholar]
- Cho, H.C.; Lee, D.H.; Hwang, J.H.; Ju, H.J.; Kim, K.S.; Seo, S.Y. Shear Strength Evaluation of Steel Fiber-Reinforced Concrete Flexural Members Using ANFIS. J. Archit. Inst. Korea 2013, 26, 3–11. [Google Scholar]
- Choi, K.K.; Taha, M.M.R.; Sherif, A.G. Simplified Punching Shear Design Method for Slab-Column Connections Using Fuzzy Learning. ACI Struct. J. 2007, 104, 438–447. [Google Scholar]
- Choi, K.K.; Sherif, A.G.; Taha, M.M.R.; Chung, L. Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement: A Model using Fuzzy Set Theory. Eng. Struct. 2013, 31, 768–777. [Google Scholar] [CrossRef]
- Cho, H.C.; Lee, D.H.; Hwang, J.H.; Ju, H.J.; Kim, K.S.; Seo, S.Y. Evaluation Model for Shear Behavior of Reinforced Concrete Panels Based on Neuro-Fuzzy System. J. Reg. Assoc. Archit. Inst. Korea 2013, 15, 67–73. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans. Syst. ManCybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Sugeno, M.; Kang, G.T. Structure Identification of Fuzzy Model. Fuzzy Sets Syst. 1988, 28, 15–33. [Google Scholar] [CrossRef]
- Kim, M.; Cho, H.; Lee, K.J.; Hahm, K.W.; Han, S.; Kim, K.S. Estimation of Bond Strength of Reinforcing Bars in Reinforced Concrete Members Using ANFIS. J. Archit. Inst. Korea 2016, 32, 27–34. [Google Scholar]
- Shah, A.A.; Dietz, J.; Tue, N.V.; Koenig, G. Experimental Investigation of Column-Slab Joints. ACI Struct. J. 2005, 102, 103–113. [Google Scholar]
- McHarg, P.J.; Cook, W.D.; Mitchell, D.; Yoon, Y.S. Improved Transmission of High-Strength Concrete Column Loads through Normal Strength Concrete Slabs. ACI Struct. J. 2000, 97, 149–157. [Google Scholar]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; Lucien, L., Jerzy, N., Eds.; University of California Press: Berkeley/Los Angeles, CA, USA, 2009; Volume 1, pp. 281–297. [Google Scholar]
- Bridgeman, P.W. Dimensional Analysis; Yale University Press: New Haven, CT, USA, 1931. [Google Scholar]
Researcher | Number of Specimens | ||||
---|---|---|---|---|---|
Lee et al. [2] | 1 | 88.33 | 46.89 | 53.3 | 0.6 |
Bianchini et al. [5] | 22 | 15.8–46.9 | 8.8–24.8 | 12.8–29 | 0.6 |
Gamble and Klinar [7] | 6 | 79.3–97.9 | 15.9–45.5 | 15.8–46.9 | 0.5–0.7 |
Lee and Mendis [9] | 3 | 77.4–83.9 | 17.5–28.2 | 31.7–33.7 | 0.3–0.8 |
Shu and Hawkins [12] | 41 | 38.6–50.8 | 6.9–39.2 | 8.6–43.6 | 0.2–3 |
Shah et al. [26] | 1 | 84 | 29 | 42.3 | 0.6 |
McHarg et al. [27] | 1 | 80.7 | 30 | 43.8 | 0.7 |
MEAN | STDEV | COV | MIN | MAX | |
---|---|---|---|---|---|
ACI 318-19 [3] | 0.79 | 0.25 | 0.32 | 0.19 | 1.27 |
CSA.A23.3-14 [4] | 0.81 | 0.23 | 0.28 | 0.19 | 1.27 |
Kayani [8] | 0.91 | 0.22 | 0.24 | 0.29 | 1.56 |
Ospania and Alexander [10] | 0.9 | 0.25 | 0.27 | 0.23 | 1.53 |
Proposed ANFIS model | 1.05 | 0.13 | 0.13 | 0.87 | 1.45 |
Simplified model using ANFIS | 0.99 | 0.18 | 0.18 | 0.63 | 1.40 |
(mm) | (mm) | |||
---|---|---|---|---|
Parameter range | 36–75 | 24–30 | 200–500 | 50–750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.-C.; Choi, S.-H.; Han, S.-J.; Lee, S.-H.; Kim, H.-Y.; Kim, K.S. Effective Compressive Strengths of Corner and Edge Concrete Columns Based on an Adaptive Neuro-Fuzzy Inference System. Appl. Sci. 2020, 10, 3475. https://doi.org/10.3390/app10103475
Cho H-C, Choi S-H, Han S-J, Lee S-H, Kim H-Y, Kim KS. Effective Compressive Strengths of Corner and Edge Concrete Columns Based on an Adaptive Neuro-Fuzzy Inference System. Applied Sciences. 2020; 10(10):3475. https://doi.org/10.3390/app10103475
Chicago/Turabian StyleCho, Hae-Chang, Seung-Ho Choi, Sun-Jin Han, Sang-Hoon Lee, Heung-Youl Kim, and Kang Su Kim. 2020. "Effective Compressive Strengths of Corner and Edge Concrete Columns Based on an Adaptive Neuro-Fuzzy Inference System" Applied Sciences 10, no. 10: 3475. https://doi.org/10.3390/app10103475
APA StyleCho, H.-C., Choi, S.-H., Han, S.-J., Lee, S.-H., Kim, H.-Y., & Kim, K. S. (2020). Effective Compressive Strengths of Corner and Edge Concrete Columns Based on an Adaptive Neuro-Fuzzy Inference System. Applied Sciences, 10(10), 3475. https://doi.org/10.3390/app10103475