Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Stock Dispersions
2.2. Preparation of Electrodes
2.3. Preparation of Si Substrates
2.4. Preparation of Solar Cells
2.5. Post Treatments
2.6. Characterisation
Atomic Force and Scanning Electron Microscopy (AFM and SEM)
3. Results
3.1. Characterisation
3.2. Properties of the Reference Cell
3.3. Optimisation of the Electrode Transparency
3.4. Optimisation of the Oxide Layer Thickness
3.5. Optimisation of the Component Ratio
3.6. Layered Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brunekreeft, G.; Neuhoff, K.; Newbery, D. Electricity transmission: An overview of the current debate. Util. Policy 2005, 13, 73–93. [Google Scholar] [CrossRef] [Green Version]
- Tune, D.D.; Flavel, B.S.; Krupke, R.; Shapter, J.G. Carbon nanotube-silicon solar cells. Adv. Energy Mater. 2012, 2, 1043–1055. [Google Scholar] [CrossRef]
- Wei, J.; Jia, Y.; Shu, Q.; Gu, Z.; Wang, K.; Zhuang, D.; Zhang, G.; Wang, Z.; Luo, J.; Cao, A.; et al. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321. [Google Scholar] [CrossRef] [PubMed]
- Shi, E.; Zhang, L.; Li, Z.; Li, P.; Shang, Y.; Jia, Y.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2012, 2, 884. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305. [Google Scholar] [CrossRef]
- Castrucci, P.; Scilletta, C.; Gobbo, S.D.; Scarselli, M.; Camilli, L.; Simeoni, M.; Delley, B.; Continenza, A.; Crescenzi, M.D. Light harvesting with multiwall carbon nanotube/silicon heterojunctions. Nanotechnology 2011, 22, 115701. [Google Scholar] [CrossRef]
- Jia, Y.; Wei, J.; Wang, K.; Cao, A.; Shu, Q.; Gui, X.; Zhu, Y.; Zhuang, D.; Zhang, G.; Ma, B.; et al. Nanotube–Silicon Heterojunction Solar Cells. Adv. Mater. 2008, 20, 4594–4598. [Google Scholar] [CrossRef]
- Jia, Y.; Li, P.; Wei, J.; Cao, A.; Wang, K.; Li, C.; Zhuang, D.; Zhu, H.; Wu, D. Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells. Mater. Res. Bull. 2010, 45, 1401–1405. [Google Scholar] [CrossRef]
- Tune, D.D.; Blanch, A.J.; Krupke, R.; Flavel, B.S.; Shapter, J.G. Nanotube film metallicity and its effect on the performance of carbon nanotube–silicon solar cells. Phys. Status Solidi (a) 2014, 211, 1479–1487. [Google Scholar] [CrossRef]
- Harris, J.M.; Semler, M.R.; May, S.; Fagan, J.A.; Hobbie, E.K. Nature of record efficiency fluid-processed nanotube-silicon heterojunctions. J. Phys. Chem. C 2015, 119, 10295–10303. [Google Scholar] [CrossRef]
- Li, Z.; Kunets, V.P.; Saini, V.; Xu, Y.; Dervishi, E.; Salamo, G.J.; Biris, A.R.; Biris, A.S. SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions. Appl. Phys. Lett. 2008, 93, 243117. [Google Scholar] [CrossRef]
- Jia, Y.; Cao, A.; Bai, X.; Li, Z.; Zhang, L.; Guo, N.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Qian, Y.; Jeon, I.; Anisimov, A.; Matsuo, Y.; Kauppinen, E.I.; Maruyama, S. Scalable and solid-state redox functionalization of transparent single-walled carbon nanotube films for highly efficient and stable solar cells. Adv. Energy Mater. 2017, 7, 1700449. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, K.K.; Jo, Y.W.; Park, M.H.; Chae, S.J.; Duong, D.L.; Yang, C.W.; Kong, J.; Lee, Y.H. Role of anions in the AuCl3-doping of carbon nanotubes. ACS Nano 2011, 5, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Tune, D.D.; Shapter, J.G. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells. Nanomaterials 2013, 3, 655–673. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jung, Y.; Sakimoto, K.; Goh, T.-H.; Reed, M.A.; Taylor, A.D. Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ. Sci. 2013, 6, 879–887. [Google Scholar] [CrossRef]
- Ren, L.; Pint, C.L.; Booshehri, L.G.; Rice, W.D.; Wang, X.; Hilton, D.J.; Takeya, K.; Kawayama, I.; Tonouchi, M.; Hauge, R.H.; et al. Carbon nanotube terahertz polarizer. Nano Lett. 2009, 9, 2610–2613. [Google Scholar] [CrossRef] [Green Version]
- Tune, D.D.; Blanch, A.J.; Shearer, C.J.; Moore, K.E.; Pfohl, M.; Shapter, J.G.; Flavel, B.S. Aligned Carbon nanotube thin films from liquid crystal polyelectrolyte Inks. ACS Appl. Mater. Interfaces 2015, 7, 25857–25864. [Google Scholar] [CrossRef]
- Wang, D.; Song, P.; Liu, C.; Wu, W.; Fan, S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 19, 075609. [Google Scholar] [CrossRef]
- Wang, K.; Luo, S.; Wu, Y.; He, X.; Zhao, F.; Wang, J.; Jiang, K.; Fan, S. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 2013, 23, 846–853. [Google Scholar] [CrossRef]
- Muramoto, E.; Yamasaki, Y.; Wang, F.; Hasegawa, K.; Matsuda, K.; Noda, S. Carbon nanotube–silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films. RSC Adv. 2016, 6, 93575–93581. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Batmunkh, M.; Dadkhah, M.; Shearer, C.J.; Shapter, J.G. Pyramid-textured antireflective silicon surface in graphene oxide/single-wall carbon nanotube–silicon heterojunction solar cells. Energy Environ. Mater. 2018, 1, 232–240. [Google Scholar] [CrossRef]
- Dudem, B.; Bharat, L.K.; Leem, J.W.; Kim, D.H.; Yu, J.S. Hierarchical Ag/TiO2/Si Forest-Like Nano/Micro-Architectures as Antireflective, Plasmonic Photocatalytic, and Self-Cleaning Coatings. ACS Sustain. Chem. Eng. 2018, 6, 1580–1591. [Google Scholar] [CrossRef]
- Dudem, B.; Heo, J.H.; Leem, J.W.; Yu, J.S.; Im, S.H. CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 2016, 4, 7573–7579. [Google Scholar] [CrossRef]
- Petterson, M.K.; Lemaitre, M.G.; Shen, Y.; Wadhwa, P.; Hou, J.; Vasilyeva, S.V.; Kravchenko, I.I.; Rinzler, A.G. On field-effect photovoltaics: Gate enhancement of the power conversion efficiency in a nanotube/silicon-nanowire solar cell. ACS Appl. Mater. Interfaces 2015, 7, 21182–21187. [Google Scholar] [CrossRef]
- Pettit, R.B.; Brinker, C.J.; Ashley, C.S. Sol-gel double-layer antireflection coatings for silicon solar cells. Sol. Cells 1985, 15, 267–278. [Google Scholar] [CrossRef]
- Yu, L.; Tune, D.D.; Shearer, C.J.; Shapter, J.G. Implementation of antireflection layers for improved efficiency of carbon nanotube–silicon heterojunction solar cells. Sol. Energy 2015, 118, 592–599. [Google Scholar] [CrossRef]
- Li, R.; Di, J.; Yong, Z.; Sun, B.; Li, Q. Polymethylmethacrylate coating on aligned carbon nanotube–silicon solar cells for performance improvement. J. Mater. Chem. A 2014, 2, 4140–4143. [Google Scholar] [CrossRef]
- Leem, J.W.; Choi, M.; Dudem, B.; Yu, J.S. Hierarchical structured polymers for light-absorption enhancement of silicon-based solar power systems. RSC Adv. 2016, 6, 55159–55166. [Google Scholar] [CrossRef] [Green Version]
- Tune, D.D.; Flavel, B.S.; Quinton, J.S.; Ellis, A.V.; Shapter, J.G. Single-walled carbon nanotube/polyaniline/n-silicon solar cells: Fabrication, characterization, and performance measurements. ChemSusChem 2013, 6, 320–327. [Google Scholar] [CrossRef]
- Yu, L.; Tune, D.D.; Shearer, C.J.; Shapter, J.G. Application of Polymer Interlayers in Silicon–Carbon Nanotube Heterojunction Solar Cells. ChemNanoMat 2015, 1, 115–121. [Google Scholar] [CrossRef]
- Yu, L.; Batmunkh, M.; Grace, T.; Dadkhah, M.; Shearer, C.; Shapter, J. Application of a hole transporting organic interlayer in graphene oxide/single walled carbon nanotube–silicon heterojunction solar cells. J. Mater. Chem. A 2017, 5, 8624–8634. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Grace, T.; Pham, H.D.; Batmunkh, M.; Dadkhah, M.; Shearer, C.; Sonar, P.; Shapter, J. Application of hole-transporting materials as the interlayer in graphene oxide/single-wall carbon nanotube silicon heterojunction solar cells. Aust. J. Chem. 2017, 70, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-L.; Su, S.-H.; Chang, J.-K.; Tsai, D.-S.; Chen, C.-H.; Wu, C.-I.; Li, L.-J.; Chen, L.-J.; He, J.-H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322. [Google Scholar] [CrossRef] [PubMed]
- Alzahly, S.; Yu, L.; Shearer, C.J.; Gibson, C.T.; Shapter, J.G. Efficiency improvement using molybdenum disulphide interlayers in single-wall carbon nanotube/silicon solar cells. Materials 2018, 11, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, X.; Lv, R.; Bai, J.; Zhang, Z.; Wei, J.; Huang, Z.-H.; Zhu, H.; Kang, F.; Terrones, M. Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Materials 2015, 2, 034003. [Google Scholar] [CrossRef]
- Bat-Erdene, M.; Batmunkh, M.; Tawfik, S.A.; Fronzi, M.; Ford, M.J.; Shearer, C.J.; Yu, L.; Dadkhah, M.; Gascooke, J.R.; Gibson, C.T.; et al. Efficiency enhancement of single-walled carbon nanotube-silicon heterojunction solar cells using microwave-exfoliated few-layer black phosphorus. Adv. Funct. Mater. 2017, 27, 1704488. [Google Scholar] [CrossRef]
- Hao, L.; Liu, Y.; Gao, W.; Han, Z.; Xue, Q.; Zeng, H.; Wu, Z.; Zhu, J.; Zhang, W. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015, 117, 114502. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef]
- Fan, X.; Xu, P.; Zhou, D.; Sun, Y.; Li, Y.C.; Nguyen, M.A.T.; Terrones, M.; Mallouk, T.E. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956–5960. [Google Scholar] [CrossRef]
- Cui, K.; Anisimov, A.S.; Chiba, T.; Fujii, S.; Kataura, H.; Nasibulin, A.G.; Chiashi, S.; Kauppinen, E.I.; Maruyama, S. Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J. Mater. Chem. A 2014, 2, 11311–11318. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Li, P.; Gui, X.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Zhang, L.; Cao, A.; Xu, Y. Encapsulated carbon nanotube-oxide-silicon solar cells with sTable 10% efficiency. Appl. Phys. Lett. 2011, 98, 133115. [Google Scholar] [CrossRef]
- Jung, Y.; Li, X.; Rajan, N.K.; Taylor, A.D.; Reed, M.A. Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett. 2013, 13, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, Y.; Wang, F.; Kozawa, D.; Funahashi, K.; Mouri, S.; Miyauchi, Y.; Takenobu, T.; Matsuda, K. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 2015, 7, 14476–14482. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Deng, B.; Shi, E.; Wu, S.; Zou, M.; Yang, L.; Wei, J.; Peng, H.; Cao, A. Comparison of Nanocarbon–silicon solar cells with nanotube–Si or graphene–Si contact. ACS Appl. Mater. Interfaces 2015, 7, 17088–17094. [Google Scholar] [CrossRef]
- Yu, L.; Tune, D.; Shearer, C.; Shapter, J. Heterojunction solar cells based on silicon and composite films of graphene oxide and carbon nanotubes. ChemSusChem 2015, 8, 2940–2947. [Google Scholar] [CrossRef] [Green Version]
- Tune, D.D.; Flavel, B.S. Advances in carbon nanotube–silicon heterojunction solar cells. Adv. Energy Mater. 2018, 8, 1703241. [Google Scholar] [CrossRef]
Device | 2D Material | Layered or Hybrid | Average Efficiency (%) | Reference |
---|---|---|---|---|
SWCNT/Si | MoS2 | Both | Hybrid 9.23 Layered 10.04 | This work |
SWCNT/Si | Phosphorene | Hybrid | 9.4 | [37] |
GrapheneCNT/Si | Graphene | Hybrid | 8.5 | [36] |
Graphene/Si | Graphene | Layered | 8.0 (14.9 with an antireflection layer) | [45] |
GOCNT/Si | Graphene Oxide (GO) | Hybrid | 6 | [46] |
SWCNT/MoS2/Si | MoS2 | Layered | 11.2 | [35] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, S.; Yu, L.; Grace, T.; Bati, A.S.R.; Shapter, J.G. Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells. Appl. Sci. 2020, 10, 287. https://doi.org/10.3390/app10010287
Almalki S, Yu L, Grace T, Bati ASR, Shapter JG. Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells. Applied Sciences. 2020; 10(1):287. https://doi.org/10.3390/app10010287
Chicago/Turabian StyleAlmalki, Samira, LePing Yu, Tom Grace, Abdulaziz S. R. Bati, and Joseph G. Shapter. 2020. "Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells" Applied Sciences 10, no. 1: 287. https://doi.org/10.3390/app10010287
APA StyleAlmalki, S., Yu, L., Grace, T., Bati, A. S. R., & Shapter, J. G. (2020). Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells. Applied Sciences, 10(1), 287. https://doi.org/10.3390/app10010287