Measuring Customer Experience in E-Retail
Abstract
1. Introduction
2. Theoretical Framework
2.1. Customer Effort Score
2.2. Customer Experience
2.3. Customer Satisfaction
2.4. Customer Loyalty Index
2.5. Net Promoter Score
2.6. Synthesis and Tensions
3. Development of Hypotheses and Conceptual Framework
4. Materials and Methods
4.1. Nature of the Study and Methodological Approach
4.2. Sample Target
4.3. Data Collection Instrument
4.3.1. Data Protection and Security
4.3.2. Item Development and Validation
- Stage 1: Item Selection and Adaptation—For CX, we selected three items (Pires et al., 2024) that capture holistic experiential evaluation (overall positivity, emotional comfort, and hedonic pleasure). These items were chosen for their brevity and alignment with the cognitive-emotional-hedonic dimensions central to CX theory. For CLI, we adopted the three-item structure from Cossío-Silva et al. (2019), integrating recommendation intent, repurchase intent, and cross-buy intent. Single-item measures for CES, CSAT, and NPS were taken verbatim from Dixon et al. (2010), Oliver (1980), and Reichheld (2003), respectively, as these represent canonical operationalisations.
- Stage 2: Expert Review and Cognitive Pretesting—The initial item pool was reviewed by three academic experts in consumer behaviour and marketing, who assessed face validity, clarity, and conceptual alignment. Minor wording adjustments were made to ensure Portuguese linguistic fluency while preserving construct meaning. Subsequently, cognitive interviews were conducted with 8 individuals representative of the target population (online shoppers aged 22–58). Participants completed the survey and were then asked to paraphrase each item, explain their interpretation, and identify any ambiguities. This process confirmed that all items were uniformly understood, with no systematic misinterpretations detected.
- Stage 3: Pilot Testing—A pilot survey (10 persons) was administered to assess item performance, survey flow, and completion time. Based on pilot feedback, minor formatting adjustments were made to improve visual clarity before full data collection commenced.
5. Results
5.1. Characterisation and Description of the Sample
5.2. Results of the PLS-SEM Analysis
5.3. Measurement Model Evaluation—Reflective Measurement Model
5.4. Structural Model Evaluation
6. Discussion
7. Conclusions
7.1. Theoretical Contributions
7.2. Managerial Implications
- 1.
- Prioritise Effort Reduction as a Foundational Intervention. The significant CES → CX → CSAT → CLI/NPS cascade demonstrates that:
- Reducing customer effort is not merely a cost-cutting exercise but a strategic CX investment with downstream revenue implications.
- Specific tactics include: streamlining checkout flows, minimising form fields, providing intelligent search and filtering, enabling one-click reorder, and proactively resolving issues before customers must exert effort.
- Metrics: Track CES longitudinally and set reduction targets (e.g., <2.5 on 5-point scale).
- 2.
- Manage CX Holistically Across All Touchpoints. The strong CX → CSAT link (β = 0.645) underscores that:
- Satisfaction is an emergent property of accumulated experiences; no single touchpoint can compensate for deficiencies elsewhere.
- Organisations must adopt journey-mapping and continuous experience monitoring (via brand tracking, touchpoint audits, and employee feedback).
- Cross-functional coordination (IT, logistics, customer service, marketing) is essential to ensure experiential consistency.
- 3.
- Leverage Satisfaction as the Proximal Driver of Behavioural Outcomes. Given CSAT’s strong influence on CLI (β = 0.600) and NPS (β = 0.565):
- Post-purchase satisfaction surveys should trigger immediate recovery protocols when scores fall below thresholds.
- Satisfaction improvements reliably boost retention and advocacy; even marginal CSAT gains (e.g., +0.5 on a 5-point scale) yield measurable loyalty increases.
- Proactive satisfaction management (anticipating dissatisfaction via predictive analytics) is more effective than reactive complaint handling.
- 4.
- Adopt Integrated Measurement Rather Than Single-Metric Optimisation. The integrated model demonstrates metric interdependence:
- Tracking only NPS or only CSAT provides incomplete diagnostics; portfolio dashboards (CES-CX-CSAT-CLI-NPS) enable root-cause analysis.
- Resource allocation should reflect causal priorities: invest upstream (effort, experience) to drive downstream outcomes (loyalty, advocacy) rather than directly incentivising NPS.
- Segment-level analysis (e.g., comparing high-CES vs. low-CES cohorts on downstream metrics) can identify high-leverage improvement opportunities.
7.3. Limitations and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agag, G., Durrani, B. A., Shehawy, Y. M., Alharthi, M., Alamoudi, H., El-Halaby, S., Hassanein, A., & Abdelmoety, Z. H. (2023). Understanding the link between customer feedback metrics and firm performance. Journal of Retailing and Consumer Services, 73, 103301. [Google Scholar] [CrossRef]
- Agag, G., & Eid, R. (2020). Which consumer feedback metrics are the most valuable in driving consumer expenditure in the tourism industries? A view from macroeconomic perspective. Tourism Management, 80, 104109. [Google Scholar] [CrossRef]
- Aguinis, H., & Burgi-Tian, J. (2021). Measuring performance during crises and beyond: The Performance Promoter Score. Business Horizons, 64(1), 149–160. [Google Scholar] [CrossRef]
- Agyei-Boapeah, H., Evans, R., & Nisar, T. M. (2022). Disruptive innovation: Designing business platforms for new financial services. Journal of Business Research, 150, 134–146. [Google Scholar] [CrossRef]
- Albahar, M., Gazzawe, F., Thanoon, M., & Albahr, A. (2023). Exploring Hajj pilgrim satisfaction with hospitality services through expectation-confirmation theory and deep learning. Heliyon, 9(11), e22192. [Google Scholar] [CrossRef] [PubMed]
- Albert, W. (2023). Introduction. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128180808000017?via%3Dihub (accessed on 19 May 2025).
- Ali, A. S., & Maelah, R. (2025). Technological innovation and sustainability of shared service: Insights from industry players. Heliyon, 11(4), e42915. [Google Scholar] [CrossRef] [PubMed]
- Anshu, K., Gaur, L., & Singh, G. (2022). Impact of customer experience on attitude and repurchase intention in online grocery retailing: A moderation mechanism of value co-creation. Journal of Retailing and Consumer Services, 64, 102798. [Google Scholar] [CrossRef]
- Arce, E., Suárez-García, A., López-Vázquez, J. A., & Fernández-Ibáñez, M. I. (2022). Design Sprint: Enhancing STEAM and engineering education through agile prototyping and testing ideas. Thinking Skills and Creativity, 44, 101039. [Google Scholar] [CrossRef]
- Auh, S., & Johnson, M. D. (2005). Compatibility effects in evaluations of satisfaction and loyalty. Journal of Economic Psychology, 26(1), 35–57. [Google Scholar] [CrossRef]
- Aytekin, A., Okoth, B. O., Korucuk, S., Mishra, A. R., Memiş, S., Karamaşa, Ç., & Tirkolaee, E. B. (2023). Critical success factors of lean six sigma to select the most ideal critical business process using q-ROF CRITIC-ARAS technique: Case study of food business. Expert Systems with Applications, 224, 120057. [Google Scholar] [CrossRef]
- Balaji, M., Dinesh, S. N., Manoj Kumar, P., & Hari Ram, K. (2021). Balanced Scorecard approach in deducing supply chain performance. Materials Today: Proceedings, 47, 5217–5222. [Google Scholar] [CrossRef]
- Bandaru, S., Gaur, A., Deb, K., Khare, V., Chougule, R., & Bandyopadhyay, P. (2015). Development, analysis and applications of a quantitative methodology for assessing customer satisfaction using evolutionary optimization. Applied Soft Computing, 30, 265–278. [Google Scholar] [CrossRef]
- Banik, S., & Gao, Y. (2023). Exploring the hedonic factors affecting customer experiences in phygital retailing. Journal of Retailing and Consumer Services, 70, 103147. [Google Scholar] [CrossRef]
- Barnum, C. M. (2021). Preparing for usability testing. Available online: https://www.sciencedirect.com/science/article/abs/pii/B978012816942100006X?via%3Dihub (accessed on 19 May 2025).
- Baumann, C., Hoadley, S., Hamin, H., & Nugraha, A. (2017). Competitiveness vis-à-vis service quality as drivers of customer loyalty mediated by perceptions of regulation and stability in steady and volatile markets. Journal of Retailing and Consumer Services, 36, 62–74. [Google Scholar] [CrossRef]
- Baumgartner, J., Sonderegger, A., & Sauer, J. (2023). Questionnaire experience of the pictorial usability inventory (PUI)—A comparison of pictorial and hybrid usability scales. International Journal of Human-Computer Studies, 179, 103116. [Google Scholar] [CrossRef]
- Bawack, R. E., Wamba, S. F., & Carillo, K. D. A. (2021). Exploring the role of personality, trust, and privacy in customer experience performance during voice shopping: Evidence from SEM and fuzzy set qualitative comparative analysis. International Journal of Information Management, 58, 102309. [Google Scholar] [CrossRef]
- Bergkvist, L., & Rossiter, J. R. (2007). The predictive validity of multiple-item versus single-item measures of the same constructs. Journal of Marketing Research, 44(2), 175–184. [Google Scholar] [CrossRef]
- Berkowitz, E. N. (2006). Marketing the gastrointestinal practice: Strategic considerations. Gastrointestinal Endoscopy Clinics of North America, 16(4), 657–669. [Google Scholar] [CrossRef]
- Birnik, A., Birnik, A.-K., & Sheth, J. (2010). The branding challenges of Asian manufacturing firms. Business Horizons, 53(5), 523–532. [Google Scholar] [CrossRef]
- Bitencourt, V. N., Crestani, F., Peuckert, M. Z., Andrades, G. R. H., Krauzer, J. R. M., Cintra, C. d. C., Cunha, M. L. d. R., Eckert, G. U., Girardi, L., Santos, I. S., & Garcia, P. C. R. (2023). Net Promoter Score (NPS) as a tool to assess parental satisfaction in pediatric intensive care units. Jornal de Pediatria, 99(3), 296–301. [Google Scholar] [CrossRef]
- Boccia, F., & Palmieri, N. (2025). Towards an Aporia? Empirical evidence on the relationship between consumer behaviour and metaverse-based virtual stores. Sustainable Horizons, 14, 100140. [Google Scholar] [CrossRef]
- Bressolles, G., Durrieu, F., & Senecal, S. (2014). A consumer typology based on e-service quality and e-satisfaction. Journal of Retailing and Consumer Services, 21(6), 889–896. [Google Scholar] [CrossRef]
- Buehrer, R. E., Senecal, S., & Bolman Pullins, E. (2005). Sales force technology usage—Reasons, barriers, and support: An exploratory investigation. Industrial Marketing Management, 34(4), 389–398. [Google Scholar] [CrossRef]
- Castell, C., Kiefer, J., Schubach, S., Schumann, J. H., Graf-Vlachy, L., & König, A. (2023). Integrating digital platform dynamics into customer orientation research: A systematic review and research agenda. Journal of Business Research, 163, 113911. [Google Scholar] [CrossRef]
- Castro, C. B., Martín Armario, E., & Martín Ruiz, D. (2007). The influence of market heterogeneity on the relationship between a destination’s image and tourists’ future behaviour. Tourism Management, 28(1), 175–187. [Google Scholar] [CrossRef]
- Chehade, E. C., Liu, H., Albert, W., & Kim, M. (2023). An empirical study of how service designers use metrics. She Ji: The Journal of Design, Economics, and Innovation, 9(3), 402–427. [Google Scholar] [CrossRef]
- Chi, C. G.-Q., Pan, L., & Del Chiappa, G. (2018). Examining destination personality: Its antecedents and outcomes. Journal of Destination Marketing & Management, 9, 149–159. [Google Scholar] [CrossRef]
- Chi, C. G.-Q., & Qu, H. (2008). Examining the structural relationships of destination image, tourist satisfaction and destination loyalty: An integrated approach. Tourism Management, 29(4), 624–636. [Google Scholar] [CrossRef]
- Choi, T. Y., & Chu, R. (2001). Determinants of hotel guests’ satisfaction and repeat patronage in the Hong Kong hotel industry. International Journal of Hospitality Management, 20(3), 277–297. [Google Scholar] [CrossRef]
- Chow, H. K. H., Choy, K. L., & Lee, W. B. (2007). A strategic knowledge-based planning system for freight forwarding industry. Expert Systems with Applications, 33(4), 936–954. [Google Scholar] [CrossRef]
- Cortinas, M., Cabeza, R., Chocarro, R., & Villanueva, A. (2019). Attention to online channels across the path to purchase: An eye-tracking study. Electronic Commerce Research and Applications, 36, 100864. [Google Scholar] [CrossRef]
- Cossío-Silva, F.-J., Revilla-Camacho, M.-Á., & Vega-Vázquez, M. (2019). The tourist loyalty index: A new indicator for measuring tourist destination loyalty? Journal of Innovation & Knowledge, 4(2), 71–77. [Google Scholar] [CrossRef]
- Cuesta-Valiño, P., Gutiérrez-Rodríguez, P., Núnez-Barriopedro, E., & García-Henche, B. (2023). Strategic orientation towards digitization to improve supermarket loyalty in an omnichannel context. Journal of Business Research, 156, 113475. [Google Scholar] [CrossRef]
- Cui, T., Dai, P., Xu, J., Lu, Y., & Wang, W. (2024). Influence of the internet celebrity’ attributes of the host on the loyalty of users on live platforms. PLoS ONE, 19(9), e0310308. [Google Scholar] [CrossRef]
- Curtis, T., Abratt, R., Rhoades, D., & Dion, P. (2011). Customer loyalty, repurchase and satisfaction: A meta-analytical review. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 24, 1–26. [Google Scholar]
- Dixon, M., Freeman, K., & Toman, N. (2010). Stop trying to delight your customers. Harvard Business Review, 88(7/8), 116–122. [Google Scholar]
- Duarte, P., Costa e Silva, S., & Ferreira, M. B. (2018). How convenient is it? Delivering online shopping convenience to enhance customer satisfaction and encourage e-WOM. Journal of Retailing and Consumer Services, 44, 161–169. [Google Scholar] [CrossRef]
- Eric Hostler, R., Yoon, V. Y., & Guimaraes, T. (2012). Recommendation agent impact on consumer online shopping: The movie magic case study. Expert Systems with Applications, 39(3), 2989–2999. [Google Scholar] [CrossRef]
- Filieri, R., Alguezaui, S., Galati, F., & Raguseo, E. (2023). Customer experience with standard and premium Peer-To-Peer offerings: A mixed-method combining text analytics and qualitative analysis. Journal of Business Research, 167, 114128. [Google Scholar] [CrossRef]
- Francesco, G., & Roberta, G. (2019). Cross-country analysis of perception and emphasis of hotel attributes. Tourism Management, 74, 24–42. [Google Scholar] [CrossRef]
- Fuchs, C., & Diamantopoulos, A. (2009). Using single-item measures for construct measurement in management research: Conceptual issues and application guidelines. Die Betriebswirtschaft, 69(2), 195. [Google Scholar]
- Funk, D. C. (2017). Introducing a sport experience design (SX) framework for sport consumer behaviour research. Sport Management Review, 20(2), 145–158. [Google Scholar] [CrossRef]
- Gadár, L., Szabó, M., Lantos, Z., & Abonyi, J. (2024). Measuring factors affecting local loyalty based on a correlation network. Cities, 145, 104677. [Google Scholar] [CrossRef]
- Gattiker, U. E. (2012). Improving the customer experience: How social media can make a difference. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9781843346937500106?via%3Dihub (accessed on 21 May 2025).
- Gauri, D. K., Jindal, R. P., Ratchford, B., Fox, E., Bhatnagar, A., Pandey, A., Navallo, J. R., Fogarty, J., Carr, S., & Howerton, E. (2021). Evolution of retail formats: Past, present, and future. Journal of Retailing, 97(1), 42–61. [Google Scholar] [CrossRef]
- Godovykh, M., & Tasci, A. D. A. (2020). Customer experience in tourism: A review of definitions, components, and measurements. Tourism Management Perspectives, 35, 100694. [Google Scholar] [CrossRef]
- Gordon, M. J. (2002). How companies use six sigma to improve processes and prevent problems. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780444510471500021?via%3Dihub (accessed on 21 May 2025).
- Grewal, D., Benoit, S., Noble, S. M., Guha, A., Ahlbom, C.-P., & Nordfält, J. (2023). Leveraging in-store technology and AI: Increasing customer and employee efficiency and enhancing their experiences. Journal of Retailing, 99(4), 487–504. [Google Scholar] [CrossRef]
- Hasebrook, J., Hecke, J., Volkert, T., Singer, M., Hinkelmann, J., Michalak, L., & Hahnenkamp, K. (2023). Individual perspectives and mental maps of working conditions and intention to stay of physicians in academic medicine. Frontiers in Psychology, 14, 1106501. [Google Scholar] [CrossRef]
- Head, L. K., Greene, B., Gawad, N., Hamstra, S. J., & Brandys, T. (2020). Harvesting the ‘SEAD’: Long-term follow-up of the surgical exploration and discovery program. Journal of Surgical Education, 77(1), 96–103. [Google Scholar] [CrossRef]
- Holmlund, M., Van Vaerenbergh, Y., Ciuchita, R., Ravald, A., Sarantopoulos, P., Ordenes, F. V., & Zaki, M. (2020). Customer experience management in the age of big data analytics: A strategic framework. Journal of Business Research, 116, 356–365. [Google Scholar] [CrossRef]
- Hsu, H. Y., & Tsou, H.-T. (2011). Understanding customer experiences in online blog environments. International Journal of Information Management, 31(6), 510–523. [Google Scholar] [CrossRef]
- Hwang, H., Jung, T., & Suh, E. (2004). An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry. Expert Systems with Applications, 26(2), 181–188. [Google Scholar] [CrossRef]
- Javed, M. K., & Wu, M. (2020). Effects of online retailer after delivery services on repurchase intention: An empirical analysis of customers’ past experience and future confidence with the retailer. Journal of Retailing and Consumer Services, 54, 101942. [Google Scholar] [CrossRef]
- Jothi Krishnan, J. (2021). A study on loyalty dimension and measurement. Materials Today: Proceedings, 37, 890–893. [Google Scholar] [CrossRef]
- Jouve, O., Martin, E., & Guerin, M.-C. (2012). Case study: Sentiment-based text analytics to better predict customer satisfaction and net promoter® score using IBM®SPSS® modeler. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780123869791000219?via%3Dihub (accessed on 23 May 2025).
- Kalamas, M., Laroche, M., & Cézard, A. d. (2002). A model of the antecedents of should and will service expectations. Journal of Retailing and Consumer Services, 9(6), 291–308. [Google Scholar] [CrossRef]
- Kamran-Disfani, O., Mantrala, M. K., Izquierdo-Yusta, A., & Martínez-Ruiz, M. P. (2017). The impact of retail store format on the satisfaction-loyalty link: An empirical investigation. Journal of Business Research, 77, 14–22. [Google Scholar] [CrossRef]
- Keiningham, T., Aksoy, L., Bruce, H. L., Cadet, F., Clennell, N., Hodgkinson, I. R., & Kearney, T. (2020). Customer experience driven business model innovation. Journal of Business Research, 116, 431–440. [Google Scholar] [CrossRef]
- Keiningham, T. L., Cooil, B., Aksoy, L., Andreassen, T. W., & Weiner, J. (2007). The value of different customer satisfaction and loyalty metrics in predicting customer retention, recommendation, and share-of-wallet. Managing Service Quality, 17(4), 361–384. [Google Scholar] [CrossRef]
- Kim, C. E., Shin, J.-S., Lee, J., Lee, Y. J., Kim, M.-r., Choi, A., Park, K. B., Lee, H.-J., & Ha, I.-H. (2017). Quality of medical service, patient satisfaction and loyalty with a focus on interpersonal-based medical service encounters and treatment effectiveness: A cross-sectional multicenter study of complementary and alternative medicine (CAM) hospitals. BMC Complementary and Alternative Medicine, 17(1), 174. [Google Scholar] [CrossRef] [PubMed]
- Kim, J., Jin, B., & Swinney, J. L. (2009). The role of etail quality, e-satisfaction and e-trust in online loyalty development process. Journal of Retailing and Consumer Services, 16(4), 239–247. [Google Scholar] [CrossRef]
- Klaus, P. P. (2022). How luxury retail will change forever—The role of atmospherics in the digital era. Journal of Retailing and Consumer Services, 68, 103057. [Google Scholar] [CrossRef]
- Koerner, M. M. (2000). The conceptual domain of service quality for inpatient nursing services. Journal of Business Research, 48(3), 267–283. [Google Scholar] [CrossRef]
- Koladycz, R., Fernandez, G., Gray, K., & Marriott, H. (2018). The net promoter score (NPS) for insight into client experiences in sexual and reproductive health clinics. Global Health Science and Practice, 6(3), 413–424. [Google Scholar] [CrossRef]
- Lee, S., Chua, B.-L., & Han, H. (2020). Variety-seeking motivations and customer behaviors for new restaurants: An empirical comparison among full-service, quick-casual, and quick-service restaurants. Journal of Hospitality and Tourism Management, 43, 220–231. [Google Scholar] [CrossRef]
- Levenburg, N. M. (2005). Delivering customer value online: An analysis of practices, applications, and performance. Journal of Retailing and Consumer Services, 12(5), 319–331. [Google Scholar] [CrossRef]
- Lian, J.-W. (2021). Determinants and consequences of service experience toward small retailer platform business model: Stimulus–organism–response perspective. Journal of Retailing and Consumer Services, 62, 102631. [Google Scholar] [CrossRef]
- Lin, S.-W., Huang, E. Y., & Cheng, K.-T. (2022). Understanding organizational reputation formation in mobile commerce. Electronic Commerce Research and Applications, 55, 101200. [Google Scholar] [CrossRef]
- Liu, R., Benitez, J., Zhang, L., Shao, Z., & Mi, J. (2024). Exploring the influence of gamification-enabled customer experience on continuance intention towards digital platforms for e-government: An empirical investigation. Information & Management, 61(5), 103986. [Google Scholar] [CrossRef]
- Llach, J., Marimon, F., Alonso-Almeida, M. d. M., & Bernardo, M. (2013). Determinants of online booking loyalties for the purchasing of airline tickets. Tourism Management, 35, 23–31. [Google Scholar] [CrossRef]
- Mahmoodjanloo, M., Tavakkoli-Moghaddam, R., Baboli, A., & Jamiri, A. (2020). A multi-modal competitive hub location pricing problem with customer loyalty and elastic demand. Computers & Operations Research, 123, 105048. [Google Scholar] [CrossRef]
- Mecredy, P., Wright, M. J., & Feetham, P. (2018). Are promoters valuable customers? An application of the net promoter scale to predict future customer spend. Australasian Marketing Journal (AMJ), 26(1), 3–9. [Google Scholar] [CrossRef]
- Menon, K., & Dubé, L. (2000). Ensuring greater satisfaction by engineering salesperson response to customer emotions. Journal of Retailing, 76(3), 285–307. [Google Scholar] [CrossRef]
- Merle, A., St-Onge, A., & Sénécal, S. (2022). Does it pay to be honest? The effect of retailer-provided negative feedback on consumers’ product choice and shopping experience. Journal of Business Research, 147, 532–543. [Google Scholar] [CrossRef]
- Mofokeng, T. E. (2023). Antecedents of trust and customer loyalty in online shopping: The moderating effects of online shopping experience and e-shopping spending. Heliyon, 9(5), e16182. [Google Scholar] [CrossRef]
- Munoz, C., Laniado, H., & Córdoba, J. (2020). Development of a robust customer satisfaction index for domestic air journeys. Research in Transportation Business & Management, 37, 100519. [Google Scholar] [CrossRef]
- Murali, S., Pugazhendhi, S., & Muralidharan, C. (2016). Modelling and Investigating the relationship of after sales service quality with customer satisfaction, retention and loyalty—A case study of home appliances business. Journal of Retailing and Consumer Services, 30, 67–83. [Google Scholar] [CrossRef]
- Mustafa, K., Ahmad, F., Qaisar, M. N., Zada, S., Jamil, S., Anwer, N., Khawaja, K. F., Vega-Muñoz, A., Contreras-Barraza, N., Hamid, S. A. R., & Mariam, S. (2022). Brand love: Role of online customer experience, value co-creation, and relationship quality. Frontiers in Psychology, 13, 897933. [Google Scholar] [CrossRef] [PubMed]
- Nair, A. J., & Manohar, S. (2024). Green service consumption: Unlocking customer expectations on technological transformations enhancing purchase experience in retail store. International Journal of Information Management Data Insights, 4(2), 100277. [Google Scholar] [CrossRef]
- Nanath, K., & Olney, L. (2023). An investigation of crowdsourcing methods in enhancing the machine learning approach for detecting online recruitment fraud. International Journal of Information Management Data Insights, 3(1), 100167. [Google Scholar] [CrossRef]
- Nelson, H. J., Pienaar, C., McKenzie, K., Williams, A. M., Swaminathan, G., & Mörelius, E. (2023). Development of the Australian hospital patient experience question set for parents. Collegian, 30(2), 213–221. [Google Scholar] [CrossRef]
- Nguyen, T. T. N. (2020). Developing and validating five-construct model of customer satisfaction in beauty and cosmetic E-commerce. Heliyon, 6(9), e04887. [Google Scholar] [CrossRef]
- Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469. [Google Scholar] [CrossRef]
- Orr, E., Arbel, T., Levy, M., Sela, Y., Weissberger, O., Liran, O., & Lewis, J. (2023). Virtual reality in the management of stress and anxiety disorders: A retrospective analysis of 61 people treated in the metaverse. Heliyon, 9(7), e17870. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Gómez, C. C., Herrera, R. F., Prieto-Osorio, J. M., & Pellicer, E. (2024). Conceptual model for implementation of digital transformation and organizational structure in the construction sector. Ain Shams Engineering Journal, 15(7), 102749. [Google Scholar] [CrossRef]
- Öztayşi, B., Kaya, T., & Kahraman, C. (2011). Performance comparison based on customer relationship management using analytic network process. Expert Systems with Applications, 38(8), 9788–9798. [Google Scholar] [CrossRef]
- Pekovic, S., & Rolland, S. (2020). Recipes for achieving customer loyalty: A qualitative comparative analysis of the dimensions of customer experience. Journal of Retailing and Consumer Services, 56, 102171. [Google Scholar] [CrossRef]
- Pereira, H. G., Salgueiro, M. d. F., & Rita, P. (2016). Online purchase determinants of loyalty: The mediating effect of satisfaction in tourism. Journal of Retailing and Consumer Services, 30, 279–291. [Google Scholar] [CrossRef]
- Pires, P. B., Prisco, M., Delgado, C., & Santos, J. D. (2024). A Conceptual approach to understanding the customer experience in e-commerce: An empirical study. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 1943–1983. [Google Scholar] [CrossRef]
- Pitchay Muthu @ Chelliah, P., Thurasamy, R., Alzahrani, A. I., Alfarraj, O., & Alalwan, N. (2016). E-Government service delivery by a local government agency: The case of E-Licensing. Telematics and Informatics, 33(4), 925–935. [Google Scholar] [CrossRef]
- Pizzi, G., Vannucci, V., Shukla, Y., & Aiello, G. (2022). Privacy concerns and justice perceptions with the disclosure of biometric versus behavioral data for personalized pricing tell me who you are, I’ll tell you how much you pay. Consumers’ fairness and privacy perceptions with personalized pricing. Journal of Business Research, 148, 420–432. [Google Scholar] [CrossRef]
- Radia, K. N., Purohit, S., Desai, S., & Nenavani, J. (2022). Psychological comfort in service relationships: A mixed-method approach. Journal of Retailing and Consumer Services, 64, 102824. [Google Scholar] [CrossRef]
- Rajala, A., Hautala-Kankaanpää, T., & Joensuu-Salo, S. (2025). Supplier experience as antecedent to supplier satisfaction—An explorative study of SMEs. Industrial Marketing Management, 125, 226–238. [Google Scholar] [CrossRef]
- Reichheld, F. F. (2003). The one number you need to grow. Harvard Business Review, 81(12), 46–55. [Google Scholar]
- Ren, G., Chen, Y., & Yang, M. (2024). Customer perception, integration behavior, and loyalty of internet of things enterprises. Technology in Society, 78, 102600. [Google Scholar] [CrossRef]
- Rodríguez, P. G., Villarreal, R., Valiño, P. C., & Blozis, S. (2020). A PLS-SEM approach to understanding E-SQ, E-Satisfaction and E-Loyalty for fashion E-Retailers in Spain. Journal of Retailing and Consumer Services, 57, 102201. [Google Scholar] [CrossRef]
- Rose, S., Clark, M., Samouel, P., & Hair, N. (2012). Online customer experience in e-retailing: An empirical model of antecedents and outcomes. Journal of Retailing, 88(2), 308–322. [Google Scholar] [CrossRef]
- Ruiz-Alba, J. L., Quero, M. J., & López-Tenorio, P. J. (2023). Institutions and business customer experience: The role of interfunctional coordination and service co-design. European Research on Management and Business Economics, 29(1), 100213. [Google Scholar] [CrossRef]
- Ryu, H.-S., & Lee, J.-N. (2018). Understanding the role of technology in service innovation: Comparison of three theoretical perspectives. Information & Management, 55(3), 294–307. [Google Scholar] [CrossRef]
- Sauro, J. (2016). Standardized usability questionnaires. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128023082000084?via%3Dihub (accessed on 2 April 2025).
- Sauro, J., & Lewis, J. R. (2012). Standardized usability questionnaires. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780123849687000084?via%3Dihub (accessed on 2 April 2025).
- Seufert, E. B. (2014). Freemium metrics. Available online: https://www.sciencedirect.com/science/article/abs/pii/B978012416690500004X?via%3Dihub (accessed on 2 April 2025).
- Shaikh, A. A., Karjaluoto, H., & Häkkinen, J. (2018). Understanding moderating effects in increasing share-of-wallet and word-of-mouth: A case study of Lidl grocery retailer. Journal of Retailing and Consumer Services, 44, 45–53. [Google Scholar] [CrossRef]
- Sharma, A., Tzokas, N., Saren, M., & Kyziridis, P. (1999). Antecedents and consequences of relationship marketing: Insights from business service salespeople. Industrial Marketing Management, 28(6), 601–611. [Google Scholar] [CrossRef]
- Shen, Y., Joppe, M., Choi, H.-S. C., & Huang, S. (2018). Domestic tourism of Chinese in Canada: Distinct differences. Journal of Destination Marketing & Management, 8, 125–136. [Google Scholar] [CrossRef]
- Shi, X., & Wei, Q. (2024). RNSC: A hierarchical deep learning model for net promoter scoring understanding by combining review and note through semantic consistency. Knowledge-Based Systems, 301, 112251. [Google Scholar] [CrossRef]
- Siering, M., Deokar, A. V., & Janze, C. (2018). Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews. Decision Support Systems, 107, 52–63. [Google Scholar] [CrossRef]
- Siqueira, J. R., Peña, N. G., ter Horst, E., & Molina, G. (2019). Spreading the word: How customer experience in a traditional retail setting influences consumer traditional and electronic word-of-mouth intention. Electronic Commerce Research and Applications, 37, 100870. [Google Scholar] [CrossRef]
- Srivastava, M., & Kaul, D. (2016). Exploring the link between customer experience–loyalty–consumer spend. Journal of Retailing and Consumer Services, 31, 277–286. [Google Scholar] [CrossRef]
- Srivastava, M., & Rai, A. K. (2018). Mechanics of engendering customer loyalty: A conceptual framework. IIMB Management Review, 30(3), 207–218. [Google Scholar] [CrossRef]
- Steffen, A., & Doppler, S. (2020). Introduction to the experience economy. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128177921000010?via%3Dihub (accessed on 21 May 2025).
- Stepanovic, M., Dabliz, R., Moss, R. J., Moles, R., Vaillancourt, R., Penm, J., & Eckel, S. F. (2025). Identification of practice gaps with the 2016 update of the Basel statements on the future of hospital pharmacy. Research in Social and Administrative Pharmacy, 21(10), 790–800. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, N., Gunasekaran, A., Yu, J., Cheng, J., & Ning, K. (2014). Customer satisfaction and competitiveness in the Chinese E-retailing: Structural equation modeling (SEM) approach to identify the role of quality factors. Expert Systems with Applications, 41(1), 69–80. [Google Scholar] [CrossRef]
- Suh, T., & Moradi, M. (2023). Transferring in-store experience to online: An omnichannel strategy for DIY customers’ enhanced brand resonance and co-creative actions. Journal of Business Research, 168, 114237. [Google Scholar] [CrossRef]
- Sundström, M., & Hjelm-Lidholm, S. (2020). Re-positioning customer loyalty in a fast moving consumer goods market. Australasian Marketing Journal (AMJ), 28(1), 30–34. [Google Scholar] [CrossRef]
- Swinyard, W. R. (2003). The effects of salesperson mood, shopper behavior, and store type on customer service. Journal of Retailing and Consumer Services, 10(6), 323–333. [Google Scholar] [CrossRef]
- Töllner, A., Blut, M., & Holzmüller, H. H. (2011). Customer solutions in the capital goods industry: Examining the impact of the buying center. Industrial Marketing Management, 40(5), 712–722. [Google Scholar] [CrossRef]
- Ungar, T., Norman, C. D., & Knaak, S. (2017). Think you can shrink? A proof-of-concept study for men’s health education through edutainment. Journal of Technology in Behavioral Science, 2(2), 71–76. [Google Scholar] [CrossRef]
- Vivaldini, M., & Vivaldini, L. R. (2025). Reflection on faster and faster deliveries: Possible social changes arising from logistical immediacy. Technological Forecasting and Social Change, 212, 123989. [Google Scholar] [CrossRef]
- von Janda, S., Polthier, A., & Kuester, S. (2021). Do they see the signs? Organizational response behavior to customer complaint messages. Journal of Business Research, 137, 116–127. [Google Scholar] [CrossRef]
- Wang, J.-N., Du, J., Chiu, Y.-L., & Li, J. (2018). Dynamic effects of customer experience levels on durable product satisfaction: Price and popularity moderation. Electronic Commerce Research and Applications, 28, 16–29. [Google Scholar] [CrossRef]
- Wang, Z., Li, M., Lu, J., & Cheng, X. (2022). Business innovation based on artificial intelligence and blockchain technology. Information Processing & Management, 59(1), 102759. [Google Scholar] [CrossRef]
- Wieland, D. A. C., Ivens, B. S., Kutschma, E., & Rauschnabel, P. A. (2024). Augmented and virtual reality in managing B2B customer experiences. Industrial Marketing Management, 119, 193–205. [Google Scholar] [CrossRef]
- Williams, L., Buoye, A., Keiningham, T. L., & Aksoy, L. (2020). The practitioners’ path to customer loyalty: Memorable experiences or frictionless experiences? Journal of Retailing and Consumer Services, 57, 102215. [Google Scholar] [CrossRef]
- Wirtz, J. (2020). Organizational ambidexterity: Cost-effective service excellence, service robots, and artificial intelligence. Organizational Dynamics, 49(3), 100719. [Google Scholar] [CrossRef]
- Xu, X., & Gursoy, D. (2015). Influence of sustainable hospitality supply chain management on customers’ attitudes and behaviors. International Journal of Hospitality Management, 49, 105–116. [Google Scholar] [CrossRef]
- Xu, X., & Jackson, J. E. (2019). Investigating the influential factors of return channel loyalty in omni-channel retailing. International Journal of Production Economics, 216, 118–132. [Google Scholar] [CrossRef]
- Zhou, C., Zhang, X., & Kaner, J. (2024). Examining the factors affecting sustained use in smart interactive cabinet design: A comparative analysis using SEM and fsQCA. Heliyon, 10(21), e39715. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L., Gao, Y., Chen, W., & Ren, H. (2022). Consumer satisfaction-oriented emotional marketing in foreign trade. Frontiers in Psychology, 13, 960042. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X., Lu, Z., Wu, G., & Tian, H. (2024). How to acquire customer loyalty in online retailing industry? An empirical study from service recovery perspective. Electronic Commerce Research and Applications, 65, 101385. [Google Scholar] [CrossRef]

| Construct | Items | Adapted from (Authors) |
|---|---|---|
| CES | How easy was it for you to complete your purchase? | (Dixon et al., 2010) |
| CX |
| (Pires et al., 2024) |
| CSAT | How would you rate your overall satisfaction with the online shop? | (Oliver, 1980) |
| CLI * |
| (Cossío-Silva et al., 2019) |
| NPS | How likely are you to recommend the online shop to a friend or colleague? | (Reichheld, 2003) |
| Age | Gender | Education Level | ||||||
|---|---|---|---|---|---|---|---|---|
| 18–34 Years Old | 35–54 Years Old | 55 Years Old or Older | Female | Male | I Prefer Not to Answer | Primary Education | Secondary Education | Higher Education |
| 267 | 62 | 30 | 206 | 151 | 2 | 4 | 114 | 241 |
| 74.37% | 17.27% | 8.36% | 57.38% | 42.06% | 0.56% | 1.11% | 31.75% | 67.13% |
| Constructs | Indicators | Outer Loadings | Cronbach’s Alpha | rho_A | Composite Reliability | AVE |
|---|---|---|---|---|---|---|
| CES | 1 | 1 | 1 | 1 | 1 | 1 |
| CX | 1 | 0.948 | 0.934 | 0.934 | 0.958 | 0.883 |
| 2 | 0.944 | |||||
| 3 | 0.927 | |||||
| CSAT | 1 | 1 | 1 | 1 | 1 | 1 |
| CLI | 1 | 1 | 1 | 1 | 1 | 1 |
| NPS | 1 | 1 | 1 | 1 | 1 | 1 |
| CES | CLI | CSAT | CX | NPS | |
|---|---|---|---|---|---|
| CES | 1 | ||||
| CLI | 0.486 | 1 | |||
| CSAT | 0.543 | 0.600 | 1 | ||
| CX | 0.570 | 0.595 | 0.645 | 0.940 | |
| NPS | 0.446 | 0.654 | 0.565 | 0.477 | 1 |
| CES | CLI | CSAT | CX | NPS | |
|---|---|---|---|---|---|
| CES | |||||
| CLI | 0.486 | ||||
| CSAT | 0.543 | 0.600 | |||
| CX | 0.590 | 0.616 | 0.667 | ||
| NPS | 0.446 | 0.654 | 0.565 | 0.494 |
| CES | CLI | CSAT | CX | NPS | |
|---|---|---|---|---|---|
| CES | 1 | 0.486 | 0.543 | 0.570 | 0.446 |
| CLI | 0.486 | 1 | 0.60 | 0.595 | 0.654 |
| CSAT | 0.543 | 0.600 | 1 | 0.645 | 0.565 |
| CX1 | 0.526 | 0.585 | 0.615 | 0.948 | 0.465 |
| CX2 | 0.554 | 0.536 | 0.577 | 0.944 | 0.405 |
| CX3 | 0.528 | 0.557 | 0.625 | 0.927 | 0.475 |
| NPS | 0.446 | 0.654 | 0.565 | 0.477 | 1 |
| CES | CLI | CSAT | CX | NPS | |
|---|---|---|---|---|---|
| 1 | |||||
| CES | |||||
| CLI | 1 | 1 | |||
| CSAT | 1 | ||||
| CX |
| Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
|---|---|---|---|---|---|
| CES ⟶ CX | 0.570 | 0.571 | 0.039 | 14.621 | 0 |
| CSAT ⟶ CLI | 0.600 | 0.598 | 0.051 | 11.841 | 0 |
| CSAT ⟶ NPS | 0.565 | 0.565 | 0.055 | 10.256 | 0 |
| CX ⟶ CSAT | 0.645 | 0.645 | 0.043 | 14.990 | 0 |
| Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
|---|---|---|---|---|---|
| CX ⟶ CSAT ⟶ CLI | 0.387 | 0.387 | 0.052 | 7.383 | 0 |
| CX ⟶ CSAT ⟶ NPS | 0.364 | 0.364 | 0.040 | 9.064 | 0 |
| CES ⟶ CX ⟶ CSAT | 0.368 | 0.369 | 0.041 | 9.078 | 0 |
| CES ⟶ CX ⟶ CSAT ⟶ CLI | 0.221 | 0.222 | 0.038 | 5.796 | 0 |
| CES ⟶ CX ⟶ CSAT ⟶ NPS | 0.208 | 0.208 | 0.030 | 6.919 | 0 |
| Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
|---|---|---|---|---|---|
| CES ⟶ CLI | 0.221 | 0.222 | 0.038 | 5.796 | 0 |
| CES ⟶ CSAT | 0.368 | 0.369 | 0.041 | 9.078 | 0 |
| CES ⟶ NPS | 0.208 | 0.208 | 0.030 | 6.919 | 0 |
| CX ⟶ CLI | 0.387 | 0.387 | 0.052 | 7.383 | 0 |
| CX ⟶ NPS | 0.364 | 0.364 | 0.040 | 9.064 | 0 |
| CLI | CSAT | CX | NPS | ||
|---|---|---|---|---|---|
| R Square | Original Sample | 0.36 | 0.416 | 0.325 | 0.319 |
| Sample Mean | 0.36 | 0.418 | 0.327 | 0.322 | |
| p Values | 0 | 0 | 0 | 0 | |
| R Square Adjusted | Original Sample | 0.358 | 0.414 | 0.323 | 0.317 |
| Sample Mean | 0.358 | 0.416 | 0.325 | 0.32 | |
| p Values | 0 | 0 | 0 | 0 |
| Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
|---|---|---|---|---|---|
| CES ⟶ CX | 0.482 | 0.493 | 0.100 | 4.807 | 0 |
| CSAT ⟶ CLI | 0.562 | 0.577 | 0.152 | 3.695 | 0 |
| CSAT ⟶ NPS | 0.469 | 0.488 | 0.140 | 3.358 | 0.001 |
| CX ⟶ CSAT | 0.713 | 0.734 | 0.171 | 4.160 | 0 |
| MV Predict | LV Predict | ||||||
|---|---|---|---|---|---|---|---|
| PLS | LM | PLS | |||||
| RMSE | Q2_Predict | RMSE | Q2_Predict | RMSE | MAE | Q2_Predict | |
| CLI | 15.993 | 0.161 | 15.335 | 0.228 | 0.931 | 0.654 | 0.161 |
| CSAT | 0.582 | 0.260 | 0.571 | 0.287 | 0.871 | 0.714 | 0.261 |
| CX1 | 0.579 | 0.270 | 0.580 | 0.270 | 0.832 | 0.646 | 0.32 |
| CX2 | 0.576 | 0.302 | 0.576 | 0.302 | |||
| CX3 | 0.625 | 0.273 | 0.625 | 0.272 | |||
| NPS | 1.635 | 0.138 | 1.585 | 0.190 | 0.939 | 0.699 | 0.139 |
| Saturated Model | Estimated Model | |
|---|---|---|
| SRMR | 0.025 | 0.123 |
| d_ULS | 0.018 | 0.424 |
| d_G | 0.041 | 0.142 |
| Chi-Square | 90.081 | 263.082 |
| NFI | 0.948 | 0.849 |
| rms Theta | 0.357 | |
| H | Constructs | Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | Results |
|---|---|---|---|---|---|---|---|
| H1 | CES ⟶ CX | 0.570 | 0.571 | 0.039 | 14.621 | 0 | Supported |
| H2 | CX ⟶ CSAT | 0.645 | 0.645 | 0.043 | 14.99 | 0 | Supported |
| H3 | CSAT ⟶ CLI | 0.600 | 0.598 | 0.051 | 11.841 | 0 | Supported |
| H4 | CSAT ⟶ NPS | 0.565 | 0.565 | 0.055 | 10.256 | 0 | Supported |
| H5 | CX ⟶ CSAT ⟶ CLI | 0.387 | 0.387 | 0.052 | 7.383 | 0 | Supported |
| H6 | CX ⟶ CSAT ⟶ NPS | 0.364 | 0.364 | 0.040 | 9.064 | 0 | Supported |
| H7 | CES ⟶ CX ⟶ CSAT | 0.368 | 0.369 | 0.041 | 9.078 | 0 | Supported |
| H8a | CES ⟶ CX ⟶ CSAT ⟶ CLI | 0.221 | 0.222 | 0.038 | 5.796 | 0 | Supported |
| H8b | CES ⟶ CX ⟶ CSAT ⟶ NPS | 0.208 | 0.208 | 0.030 | 6.919 | 0 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, P.B.; Perestrelo, B.M.; Santos, J.D. Measuring Customer Experience in E-Retail. Adm. Sci. 2025, 15, 434. https://doi.org/10.3390/admsci15110434
Pires PB, Perestrelo BM, Santos JD. Measuring Customer Experience in E-Retail. Administrative Sciences. 2025; 15(11):434. https://doi.org/10.3390/admsci15110434
Chicago/Turabian StylePires, Paulo Botelho, Beatriz Martins Perestrelo, and José Duarte Santos. 2025. "Measuring Customer Experience in E-Retail" Administrative Sciences 15, no. 11: 434. https://doi.org/10.3390/admsci15110434
APA StylePires, P. B., Perestrelo, B. M., & Santos, J. D. (2025). Measuring Customer Experience in E-Retail. Administrative Sciences, 15(11), 434. https://doi.org/10.3390/admsci15110434
