A Cross-Disciplinary Academic Evaluation of Generative AI Models in HR, Accounting, and Economics: ChatGPT-5 vs. DeepSeek
Abstract
1. Introduction
2. Literature Review
2.1. ChatGPT
2.2. DeepSeek
2.3. ChatGPT in Education
2.3.1. Pedagogical Applications
2.3.2. Advantages and Benefits
2.3.3. Risks and Limitations
2.4. DeepSeek as an Emerging AI Tool
2.5. Comparative Use in HR, Accounting, and Economics Education
3. Materials and Methods
4. Results
4.1. Accounting Prompts
4.2. Economics Prompts
4.3. HR Scenarios
4.4. Comparative Analysis:
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Accounting Prompts
- Problem 1:
- Required:
- Problem 2:
- Required:
Appendix B
Economics Prompts
- Problem 1:
- Problem 2:
- (a)
- Find all values of X that are mutually beneficial for Dan and firm N, and provide a graphical solution.
- (b)
- Suppose that X = 20. A corrupted manager from Bank M possesses information about the bank’s position and can say with certainty whether bankruptcy will take place. He offers to sell this information. What is the maximum amount that Dan is willing to pay for this information? Provide an algebraic solution and illustrate your solution on a diagram with contingent commodities.
- (c)
- Suppose that Zara faces the same problem as Dan, but she is risk-neutral. Find the maximum sum that Zara is willing to pay for the information offered by the corrupted manager described in (b) and compare it with the maximum sum that Dan is willing to pay. Illustrate on the same graph.
- (d)
- Compare the maximum prices found in (b) and (c). Would the result of this comparison be different if Dan had different preferences but the same type of risk attitude?
Appendix C
Human Resources Prompts
- Case Analysis 1:
- Questions:
- What is the interviewing method adopted by the company? Discuss the advantages associated with such an interviewing approach.
- Which form of bias affected the interviewers’ decision? What would be its consequences on the recruitment decision? Elaborate.
- What is the performance appraisal method adopted by the company to assess Hiba’s performance? How does this method affect the credibility of the results obtained?
- Do you believe that it is necessary to communicate the performance appraisal results to Hiba? How would this affect her performance? Discuss.
- Case Analysis 2:
- Questions:
- What is the job analysis method used by Kareem in analyzing the job of a financial analyst? Why do you think the HR manager considered this method inadequate?
- What is the internal recruitment method that the HR manager initially used to attract employees from within the firm to apply for the job analyst vacancy? Use evidence from the text to support your answer.
- Identify the external recruitment method used by the HR manager after realizing that no one in-house is qualified enough to fit the position. Do you believe that other external recruitment methods might be more effective in attracting the candidates?
- Why do you believe the HR manager announced the vacancy internally before he did externally? Discuss your answer.
References
- Aad, S., Dagher, G. K., & Hardey, M. (2024). How does cultural upbringing influence how university students in the Middle East utilize ChatGPT technology? Administrative Sciences, 14(12), 330. [Google Scholar] [CrossRef]
- AlAfnan, M. A. (2025). Deepseek vs. ChatGPT: A comparative evaluation of AI tools in composition, business writing, and communication tasks. Journal of Artificial Intelligence and Technology, 5, 202–210. [Google Scholar] [CrossRef]
- Albuquerque, F., & Gomes dos Santos, P. (2024). Can ChatGPT be a certified accountant? Assessing the responses of ChatGPT for the professional access exam in Portugal. Administrative Sciences, 14(7), 152. [Google Scholar] [CrossRef]
- Arce, C. M., Gavilanes, J. C., Arce, E. M., Haro, E. M., & Jurado, D. B. (2025). Artificial Intelligence in higher education: Predictive analysis of attitudes and dependency among Ecuadorian university students. Sustainability, 17(17), 7741. [Google Scholar] [CrossRef]
- Batista, J., Mesquita, A., & Carnaz, G. (2024). Generative AI and higher education: Trends, challenges, and future directions from a systematic literature review. Information, 15(11), 676. [Google Scholar] [CrossRef]
- Belizón, M. J., Majarín, D., & Aguado, D. (2024). Human resources analytics in practice: A knowledge discovery process. European Management Review, 21(3), 659–677. [Google Scholar] [CrossRef]
- Borji, A. (2023). A categorical archive of ChatGPT failures. arXiv, arXiv:2302.03494. [Google Scholar] [CrossRef]
- Bou Reslan, F., & Jabbour Al Maalouf, N. (2024). Assessing the transformative impact of AI adoption on efficiency, fraud detection, and skill dynamics in accounting practices. Journal of Risk and Financial Management, 17(12), 577. [Google Scholar] [CrossRef]
- Boustani, N. M. (2025). ChatGPT—A Stormy Innovation for a sustainable business. Administrative Sciences, 15(5), 184. [Google Scholar] [CrossRef]
- Boustani, N. M., Sidani, D., & Boustany, Z. (2024). Leveraging ICT and generative AI in higher education for sustainable development: The case of a Lebanese private university. Administrative Sciences, 14(10), 251. [Google Scholar] [CrossRef]
- Brougham, D., & Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239–257. [Google Scholar]
- Chauhan, D., Singh, C., Rawat, R., & Dhawan, M. (2024). Evaluating the performance of conversational AI tools: A comparative analysis. In Conversational artificial intelligence (pp. 385–409). Wiley. [Google Scholar]
- Ciampa, K., Wolfe, Z. M., & Bronstein, B. (2023). ChatGPT in education: Transforming digital literacy practices. Journal of Adolescent & Adult Literacy, 67(3), 186–195. [Google Scholar] [CrossRef]
- Dwivedi, D. (2025). Emotional intelligence and artificial intelligence integration strategies for leadership excellence. Advances in Research, 26(1), 84–94. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. [Google Scholar] [CrossRef]
- Finstad, K. (2010). Response interpolation and scale sensitivity: Evidence against 5-point scales. Journal of Usability Studies, 5(3), 104–110. [Google Scholar]
- Fošner, A. (2024). University students’ attitudes and perceptions towards AI tools: Implications for sustainable educational practices. Sustainability, 16(19), 8668. [Google Scholar] [CrossRef]
- Geerling, W., Mateer, G. D., Wooten, J., & Damodaran, N. (2023). ChatGPT has aced the test of understanding in college economics: Now what? The American Economist, 68(2), 233–245. [Google Scholar] [CrossRef]
- Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., Fuller, S., Singh, M., Arora, P., Parlikad, A. K., Stankovski, V., Abraham, A., Ghosh, S. K., Lutfiyya, H., Kanhere, S. S., Bahsoon, R., Rana, O., Dustdar, S., Sakellariou, R., … Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging era of AI chatbots. Internet of Things and Cyber-Physical Systems, 4, 19–23. [Google Scholar] [CrossRef]
- Gu, H., Schreyer, M., Moffitt, K., & Vasarhelyi, M. (2024). Artificial intelligence co-piloted auditing. International Journal of Accounting Information Systems, 54, 100698. [Google Scholar] [CrossRef]
- Guo, D., Yang, D., Zhang, H., Song, J., Wang, P., Zhu, Q., Xu, R., Zhang, R., Ma, S., Bi, X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu, A., … Zhang, Z. (2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv, arXiv:2501.12948. [Google Scholar] [CrossRef]
- Iatrellis, O., Samaras, N., Kokkinos, K., & Panagiotakopoulos, T. (2024). Leveraging generative AI for sustainable academic advising: Enhancing educational practices through AI-driven recommendations. Sustainability, 16(17), 7829. [Google Scholar] [CrossRef]
- Isiaku, L., Kwala, A. F., Sambo, K. U., & Isiaku, H. H. (2024). Academic evolution in the age of ChatGPT: An in-depth qualitative exploration of its influence on research, learning, and ethics in higher education. Journal of University Teaching and Learning Practice, 21(6), 67–91. [Google Scholar] [CrossRef]
- Jahin, A., Zidan, A. H., Zhang, W., Bao, Y., & Liu, T. (2025). Evaluating mathematical reasoning across large language models: A fine-grained approach. arXiv, arXiv:2503.10573. [Google Scholar] [CrossRef]
- Jiang, Q., Gao, Z., & Karniadakis, G. E. (2025). DeepSeek vs. ChatGPT vs. Claude: A comparative study for scientific computing and scientific machine learning tasks. Theoretical and Applied Mechanics Letters, 15, 100583. [Google Scholar] [CrossRef]
- Jin, I., Tangsrivimol, J. A., Darzi, E., Hassan Virk, H. U., Wang, Z., Egger, J., Hacking, S., Glicksberg, B. S., Strauss, M., & Krittanawong, C. (2025). DeepSeek vs. ChatGPT: Prospects and challenges. Frontiers in Artificial Intelligence, 8, 1576992. [Google Scholar] [CrossRef] [PubMed]
- Jo, H. (2024). From concerns to benefits: A comprehensive study of ChatGPT usage in education. International Journal of Educational Technology in Higher Education, 21(1), 35. [Google Scholar] [CrossRef]
- Karakose, T., Demirkol, M., Yirci, R., Polat, H., Ozdemir, T. Y., & Tülübaş, T. (2023). A conversation with ChatGPT about digital leadership and technology integration: Comparative analysis based on human–AI collaboration. Administrative Sciences, 13(7), 157. [Google Scholar] [CrossRef]
- Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. [Google Scholar] [CrossRef]
- Khan, M. S., & Umer, H. (2024). ChatGPT in finance: Applications, challenges, and solutions. Heliyon, 10(2), e24890. [Google Scholar] [CrossRef]
- Kocoń, J., Cichecki, I., Kaszyca, O., Kochanek, M., Szydło, D., Baran, J., Bielaniewicz, J., Gruza, M., Janz, A., Kanclerz, K., Kocoń, A., Koptyra, B., Mieleszczenko-Kowszewicz, W., Miłkowski, P., Oleksy, M., Piasecki, M., Radliński, Ł., Wojtasik, K., Woźniak, S., & Kazienko, P. (2023). ChatGPT: Jack of all trades, master of none. Information Fusion, 99, 101861. [Google Scholar] [CrossRef]
- Kotsis, K. T. (2025). ChatGPT and DeepSeek evaluate one another for science education. EIKI Journal of Effective Teaching Methods, 3(1), 98–102. [Google Scholar] [CrossRef]
- Küçükuncular, A., & Ertugan, A. (2025). Teaching in the AI era: Sustainable digital education through ethical integration and teacher empowerment. Sustainability, 17(16), 7405. [Google Scholar] [CrossRef]
- Landis, J. R., & Koch, G. G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 33(2), 363–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J., & Kim, H. (2024). Few-shot is enough: Exploring ChatGPT prompt engineering method for automatic question generation in English education. Education and Information Technologies, 29(9), 11483–11515. [Google Scholar] [CrossRef]
- Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo, F., … Pan, Z. (2024). Deepseek-v3 technical report. arXiv, arXiv:2412.19437. [Google Scholar] [CrossRef]
- Lu, H., Liu, W., Zhang, B., Wang, B., Dong, K., Liu, B., Sun, J., Ren, T., Li, Z., Yang, H., Sun, Y., Deng, C., Xu, H., Xie, Z., & Ruan, C. (2024). Deepseek-vl: Towards real-world vision-language understanding. arXiv, arXiv:2403.05525. [Google Scholar] [CrossRef]
- Luckin, R. (2025). Nurturing human intelligence in the age of AI: Rethinking education for the future. Development and Learning in Organizations: An International Journal, 39(1), 1–4. [Google Scholar]
- Luo, P. W., Liu, J. W., Xie, X., Jiang, J. W., Huo, X. Y., Chen, Z. L., Huang, Z. C., Jiang, S. Q., & Li, M. Q. (2025). DeepSeek vs. ChatGPT: A comparison study of their performance in answering prostate cancer radiotherapy questions in multiple languages. American Journal of Clinical and Experimental Urology, 13(2), 176. [Google Scholar] [CrossRef]
- Mai, D. T. T., Da, C. V., & Hanh, N. V. (2024). The use of ChatGPT in teaching and learning: A systematic review through SWOT analysis approach. Frontiers in Education, 9, 1328769. [Google Scholar] [CrossRef]
- Mansoor, M., Ibrahim, A., & Hamide, A. (2025). Performance of DeepSeek and GPT models on pediatric board preparation questions: Comparative evaluation. JMIR AI, 4, e76056. [Google Scholar] [CrossRef]
- Maresova, P., Stemberkova, R., & Fadeyi, O. (2019). Models, processes, and roles of universities in technology transfer management: A systematic review. Administrative Sciences, 9(3), 67. [Google Scholar] [CrossRef]
- Mourtajji, L., & Arts-Chiss, N. (2024). Unleashing ChatGPT: Redefining technology acceptance and digital transformation in higher education. Administrative Sciences, 14(12), 325. [Google Scholar] [CrossRef]
- Nahar, M., Seo, H., Lee, E. J., Xiong, A., & Lee, D. (2024). Fakes of varying shades: How warning affects human perception and engagement regarding LLM hallucinations. arXiv, arXiv:2404.03745. [Google Scholar] [CrossRef]
- Okulich-Kazarin, V., Artyukhov, A., Skowron, Ł., Artyukhova, N., & Wołowiec, T. (2024). When artificial intelligence tools meet” non-violent” learning environments (SDG 4.3): Crossroads with smart education. Sustainability, 16(17), 7695. [Google Scholar] [CrossRef]
- Palincsar, A. S. (2012). Social constructivist perspectives on teaching and learning. In An introduction to Vygotsky (pp. 290–319). Routledge. [Google Scholar]
- Ranta, M., Ylinen, M., & Järvenpää, M. (2023). Machine learning in management accounting research: Literature review and pathways for the future. European Accounting Review, 32(3), 607–636. [Google Scholar] [CrossRef]
- Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D., & Demir, I. (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), 596. [Google Scholar] [CrossRef]
- Sapkota, R., Raza, S., & Karkee, M. (2025). Comprehensive analysis of transparency and accessibility of ChatGPT, DeepSeek, and other SoTA large language models. arXiv, arXiv:2502.18505. [Google Scholar] [CrossRef]
- Selwyn, N. (2024). On the limits of artificial intelligence (AI) in education. Nordisk tidsskrift for pedagogikk og kritikk, 10(1), 3–14. [Google Scholar] [CrossRef]
- Shafee, S., Bessani, A., & Ferreira, P. M. (2024). Evaluation of LLM chatbots for OSINT-based cyber threat awareness. arXiv, arXiv:2401.15127. [Google Scholar] [CrossRef]
- Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Physical Therapy, 85(3), 257–268. [Google Scholar] [CrossRef]
- Susnjak, T. (2024). Beyond predictive learning analytics modelling and onto explainable artificial intelligence with prescriptive analytics and ChatGPT. International Journal of Artificial Intelligence in Education, 34(2), 452–482. [Google Scholar] [CrossRef]
- Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation (Vol. 55, pp. 37–76). Academic Press. [Google Scholar]
- Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8(4), 351–362. [Google Scholar] [CrossRef]
- Treves, L. (2025). Artificial intelligence of things: Unlocking new business sustainability possibilities or opening Pandora’s box? In Digital transformation and business sustainability (pp. 31–46). Routledge. [Google Scholar]
- Vieira, S. M., Kaymak, U., & Sousa, J. M. (2010, July). Cohen’s kappa coefficient as a performance measure for feature selection. In International conference on fuzzy systems (pp. 1–8). IEEE. [Google Scholar]
- Yan, G., Peng, K., Wang, Y., Tan, H., Du, J., & Wu, H. (2025). AdaFT: An efficient domain-adaptive fine-tuning framework for sentiment analysis in Chinese financial texts. Applied Intelligence, 55(7), 701. [Google Scholar] [CrossRef]
- Yan, L., Greiff, S., Teuber, Z., & Gašević, D. (2024). Promises and challenges of generative artificial intelligence for human learning. Nature Human Behaviour, 8(10), 1839–1850. [Google Scholar] [CrossRef]
- Zawacki-Richter, O., Bai, J. Y., Lee, K., Slagter van Tryon, P. J., & Prinsloo, P. (2024). New advances in artificial intelligence applications in higher education? International Journal of Educational Technology in Higher Education, 21(1), 32. [Google Scholar] [CrossRef]
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27. [Google Scholar] [CrossRef]




| Dimension | R1 | R2 | R3 | R4 | Cohen’s Kappa | ||
|---|---|---|---|---|---|---|---|
| ChatGPT 5.0 | Accuracy | 2 | 2 | 2 | 2 | 2.0 | 0.67 |
| Clarity | 2 | 2 | 2 | 2 | 2.0 | ||
| Conciseness | 2 | 1 | 2 | 1 | 1.5 | ||
| Systematic Reasoning | 2 | 2 | 1 | 1 | 1.5 | ||
| Potential for Bias | 3 | 1 | 1 | 1 | 1.5 | ||
| DeepSeek | Accuracy | 1 | 1 | 2 | 2 | 1.5 | 0.65 |
| Clarity | 1 | 1 | 2 | 2 | 1.5 | ||
| Conciseness | 1 | 1 | 1 | 1 | 1.0 | ||
| Systematic Reasoning | 1 | 2 | 1 | 1 | 1.25 | ||
| Potential for Bias | 1 | 1 | 1 | 1 | 1.0 |
| Dimension | R1 | R2 | R3 | R4 | Cohen’s Kappa | ||
|---|---|---|---|---|---|---|---|
| ChatGPT 5.0 | Accuracy | 2 | 2 | 2 | 2 | 2.0 | 0.76 |
| Clarity | 2 | 1 | 2 | 2 | 1.75 | ||
| Conciseness | 2 | 2 | 2 | 2 | 2.0 | ||
| Systematic Reasoning | 2 | 2 | 3 | 2 | 2.25 | ||
| Potential for Bias | 1 | 2 | 2 | 2 | 1.75 | ||
| DeepSeek | Accuracy | 3 | 3 | 3 | 3 | 3.0 | 0.91 |
| Clarity | 3 | 3 | 3 | 3 | 3.0 | ||
| Conciseness | 3 | 3 | 2 | 3 | 2.75 | ||
| Systematic Reasoning | 3 | 2 | 3 | 3 | 2.75 | ||
| Potential for Bias | 3 | 3 | 3 | 3 | 3.0 |
| Dimension | R1 | R2 | R3 | R4 | Cohen’s Kappa | ||
|---|---|---|---|---|---|---|---|
| ChatGPT5.0 | Accuracy | 3 | 3 | 3 | 3 | 3.0 | 0.92 |
| Clarity | 3 | 3 | 3 | 3 | 3.0 | ||
| Conciseness | 3 | 3 | 3 | 2 | 2.75 | ||
| Systematic Reasoning | 3 | 3 | 3 | 3 | 3.0 | ||
| Potential for Bias | 2 | 3 | 3 | 2 | 2.5 | ||
| DeepSeek | Accuracy | 1 | 3 | 3 | 1 | 2.0 | 0.61 |
| Clarity | 2 | 2 | 2 | 2 | 2.0 | ||
| Conciseness | 2 | 3 | 3 | 2 | 2.5 | ||
| Systematic Reasoning | 2 | 2 | 2 | 2 | 2.0 | ||
| Potential for Bias | 2 | 2 | 2 | 2 | 2.0 |
| Model | Domain | Accuracy | Clarity | Conciseness | Reasoning | Bias | |
|---|---|---|---|---|---|---|---|
| ChatGPT | Accounting | 2.0 | 2.0 | 1.5 | 1.5 | 1.5 | 1.70 |
| Economics | 2.0 | 1.75 | 2.0 | 2.25 | 1.75 | 1.95 | |
| HR | 3.0 | 3.0 | 2.75 | 3.0 | 2.5 | 2.85 | |
| DeepSeek | Accounting | 1.5 | 1.5 | 1.0 | 1.25 | 1.0 | 1.25 |
| Economics | 3.0 | 3.0 | 2.75 | 2.75 | 3.0 | 2.90 | |
| HR | 2.0 | 2.0 | 2.5 | 2.0 | 2.0 | 2.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bou Zakhem, N.; Bou Diab, M.; Tahan, S. A Cross-Disciplinary Academic Evaluation of Generative AI Models in HR, Accounting, and Economics: ChatGPT-5 vs. DeepSeek. Adm. Sci. 2025, 15, 412. https://doi.org/10.3390/admsci15110412
Bou Zakhem N, Bou Diab M, Tahan S. A Cross-Disciplinary Academic Evaluation of Generative AI Models in HR, Accounting, and Economics: ChatGPT-5 vs. DeepSeek. Administrative Sciences. 2025; 15(11):412. https://doi.org/10.3390/admsci15110412
Chicago/Turabian StyleBou Zakhem, Najib, Malak Bou Diab, and Suha Tahan. 2025. "A Cross-Disciplinary Academic Evaluation of Generative AI Models in HR, Accounting, and Economics: ChatGPT-5 vs. DeepSeek" Administrative Sciences 15, no. 11: 412. https://doi.org/10.3390/admsci15110412
APA StyleBou Zakhem, N., Bou Diab, M., & Tahan, S. (2025). A Cross-Disciplinary Academic Evaluation of Generative AI Models in HR, Accounting, and Economics: ChatGPT-5 vs. DeepSeek. Administrative Sciences, 15(11), 412. https://doi.org/10.3390/admsci15110412

