Biochar: Production, Applications, and Market Prospects in Portugal
Abstract
1. Introduction
2. Biochar Production Technologies
3. Biochar Applications
3.1. Agricultural Applications
3.2. Control of GHG Emissions
3.3. Wastewater Treatment
3.4. Other Emerging Applications
4. Policy & Legislative Framework
5. Overview of Current Biochar Markets
6. Biochar Potential in Alentejo
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission: Brussels, Belgium, 2010; Volume 8. [Google Scholar]
- Schmidt, H.P.; Wilson, K. The 55 Uses of Biochar. Available online: https://www.biochar-journal.org/en/ct/2 (accessed on 7 July 2022).
- Jeyasubramanian, K.; Thangagiri, B.; Sakthivel, A.; Dhaveethu Raja, J.; Seenivasan, S.; Vallinayagam, P.; Madhavan, D.; Malathi Devi, S.; Rathika, B. A Complete Review on Biochar: Production, Property, Multifaceted Applications, Interaction Mechanism and Computational Approach. Fuel 2021, 292, 120243. [Google Scholar] [CrossRef]
- United States Biochar Initiative. U.S.-Focused Biochar Report–Assessment of Biochar’s Benefits for the United States of America; Center for Energy and Environmental Security; United States Biochar Initiative: Morgantown, WV, USA, 2010. [Google Scholar]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- van Laer, T.; de Smedt, P.; Ronsse, F.; Ruysschaert, G.; Boeckx, P.; Verstraete, W.; Buysse, J.; Lavrysen, L.J. Legal Constraints and Opportunities for Biochar: A Case Analysis of EU Law. GCB Bioenergy 2015, 7, 14–24. [Google Scholar] [CrossRef]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. Biochar Horizon 2025. In Biochar in European Soils and Agriculture: Science and Practice; Routledge: London, UK, 2016; pp. 281–289. ISBN 9781134654871. [Google Scholar]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A Critical Review of the Production and Advanced Utilization of Biochar via Selective Pyrolysis of Lignocellulosic Biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Jung, J.; Liu, M.; Li, X.; Goel, A.; Chen, J.; Song, S.; Anderson, C.; Chen, D.; Leong, K.; et al. Gasification Biochar from Horticultural Waste: An Exemplar of the Circular Economy in Singapore. Sci. Total Environ. 2021, 781, 146573. [Google Scholar] [CrossRef] [PubMed]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of Torrefaction on Biomass Properties Depending on Temperature and Operation Time. Sci. Total Environ. 2020, 740, 140086. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.H.; Culaba, A.B.; et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Bevan, E.; Fu, J.; Zheng, Y. Challenges and Opportunities of Hydrothermal Carbonisation in the UK; Case Study in Chirnside. RSC Adv. 2020, 10, 31586–31610. [Google Scholar] [CrossRef] [PubMed]
- Babinszki, B.; Jakab, E.; Sebestyén, Z.; Blazsó, M.; Berényi, B.; Kumar, J.; Krishna, B.B.; Bhaskar, T.; Czégény, Z. Comparison of Hydrothermal Carbonization and Torrefaction of Azolla Biomass: Analysis of the Solid Products. J. Anal. Appl. Pyrolysis 2020, 149, 104844. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. Production and Utilization of Biochar: A Review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Ghodake, G.S.; Shinde, S.K.; Kadam, A.A.; Saratale, R.G.; Saratale, G.D.; Kumar, M.; Palem, R.R.; AL-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; et al. Review on Biomass Feedstocks, Pyrolysis Mechanism and Physicochemical Properties of Biochar: State-of-the-Art Framework to Speed up Vision of Circular Bioeconomy. J. Clean. Prod. 2021, 297, 126645. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Tan, Z.; Zou, J.; Zhang, L.; Huang, Q. Morphology, Pore Size Distribution, and Nutrient Characteristics in Biochars under Different Pyrolysis Temperatures and Atmospheres. J. Mater. Cycles Waste Manag. 2018, 20, 1036–1049. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant Nutrient Availability and PH of Biochars and Their Fractions, with the Possible Use as a Component in a Growing Media. Agronomy 2019, 10, 10. [Google Scholar] [CrossRef]
- Angst, T.E.; Sohi, S.P. Establishing Release Dynamics for Plant Nutrients from Biochar. GCB Bioenergy 2013, 5, 221–226. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Y.; He, Y.; Xia, K.; Qiao, S.; Zhang, Q. Polycyclic Aromatic Hydrocarbons Concentration in Straw Biochar with Different Particle Size. Procedia Environ. Sci. 2016, 31, 91–97. [Google Scholar] [CrossRef][Green Version]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar Production and Applications in Agro and Forestry Systems: A Review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.; Mycorrhizas, N.B. Designing Specific Biochars to Address Soil Constraints: A Developing Industry. In Biochar and Soil Biota; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781466576513. [Google Scholar]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Pires, F.P.; Duffy, D.; Martins, J.C. The INFOSOLO Database as a First Step towards the Development of a Soil Information System in Portugal. Catena 2017, 158, 390–412. [Google Scholar] [CrossRef]
- Chavas, J.P.; Nauges, C. Uncertainty, Learning, and Technology Adoption in Agriculture. Appl. Econ. Perspect. Policy 2020, 42, 42–53. [Google Scholar] [CrossRef]
- He, R.; Jin, J.; Kuang, F.; Zhang, C.; Guan, T. Farmers’ Risk Cognition, Risk Preferences and Climate Change Adaptive Behavior: A Structural Equation Modeling Approach. Int. J. Environ. Res. Public Health 2020, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Man, K.Y.; Chow, K.L.; Man, Y.B.; Mo, W.Y.; Wong, M.H. Use of Biochar as Feed Supplements for Animal Farming. Crit. Rev. Environ. Sci. Technol. 2021, 51, 187–217. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Gnansounou, E.; Chaturvedi, P. Biochar and Environmental Sustainability: Emerging Trends and Techno-Economic Perspectives. Bioresour. Technol. 2021, 332, 125102. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Muhlack, R.; Morton, B.J.; Dunnigan, L.; Chittleborough, D.; Kwong, C.W. Pyrolysis Temperature Effects on Biochar–Water Interactions and Application for Improved Water Holding Capacity in Vineyard Soils. Soil Syst. 2019, 3, 27. [Google Scholar] [CrossRef]
- Hussien Ibrahim, M.E.; Adam Ali, A.Y.; Zhou, G.; Ibrahim Elsiddig, A.M.; Zhu, G.; Ahmed Nimir, N.E.; Ahmad, I. Biochar Application Affects Forage Sorghum under Salinity Stress. Chil. J. Agric. Res. 2020, 80, 317–325. [Google Scholar] [CrossRef]
- Mia, S.; Dijkstra, F.A.; Singh, B. Enhanced Biological Nitrogen Fixation and Competitive Advantage of Legumes in Mixed Pastures Diminish with Biochar Aging. Plant Soil 2018, 424, 639–651. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of Biochar as an Additive in Organic Waste Composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Febrisiantosa, A.; Ravindran, B.; Choi, H. The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. Sustainability 2018, 10, 795. [Google Scholar] [CrossRef]
- Margenot, A.J.; Griffin, D.E.; Alves, B.S.Q.; Rippner, D.A.; Li, C.; Parikh, S.J. Substitution of Peat Moss with Softwood Biochar for Soil-Free Marigold Growth. Ind. Crops Prod. 2018, 112, 160–169. [Google Scholar] [CrossRef]
- Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. The Effect of Paper Sludge and Biochar Addition on Brown Peat and Coir Based Growing Media Properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Biochar and Humic Acid Amendments Improve the Quality of Composted Green Waste as a Growth Medium for the Ornamental Plant Calathea Insignis. Sci. Hortic. 2014, 176, 70–78. [Google Scholar] [CrossRef]
- Huang, L.; Niu, G.; Feagley, S.E.; Gu, M. Evaluation of a Hardwood Biochar and Two Composts Mixes as Replacements for a Peat-Based Commercial Substrate. Ind. Crops Prod. 2019, 129, 549–560. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Al-Wabel, M.; et al. Biochar, a Potential Hydroponic Growth Substrate, Enhances the Nutritional Status and Growth of Leafy Vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Linhoss, J.E.; Purswell, J.L.; Street, J.T.; Rowland, M.R. Evaluation of Biochar as a Litter Amendment for Commercial Broiler Production. J. Appl. Poult. Res. 2019, 28, 1089–1098. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Kim, H.J.; Yoon, J.H.; Yang, J.E.; Ok, Y.S.; Owens, G.; Kim, K.H. Effect of Biochar on Heavy Metal Immobilization and Uptake by Lettuce (Lactuca Sativa L.) in Agricultural Soil. Environ. Earth Sci. 2015, 74, 1249–1259. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Łabaz, B.; Waroszewski, J. Wheat Straw Biochar and NPK Fertilization Efficiency in Sandy Soil Reclamation. Agronomy 2020, 10, 496. [Google Scholar] [CrossRef]
- Western Development Commision. Biochar & Activated Carbon Market Study for the Island of Ireland; Western Development Commision: Roscommon, Ireland, 2019. [Google Scholar]
- Jung, S.; Park, Y.-K.; Kwon, E.E. Strategic Use of Biochar for CO2 Capture and Sequestration. J. CO2 Util. 2019, 32, 128–139. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Rubiera, F.; Pevida, C. Sustainable Biomass-Based Carbon Adsorbents for Post-Combustion CO2 Capture. Chem. Eng. J. 2013, 230, 456–465. [Google Scholar] [CrossRef]
- Coromina, H.M.; Walsh, D.A.; Mokaya, R. Biomass-Derived Activated Carbon with Simultaneously Enhanced CO2 Uptake for Both Pre and Post Combustion Capture Applications. J. Mater. Chem. A 2015, 4, 280–289. [Google Scholar] [CrossRef]
- Case, S.D.C.; Mcnamara, N.P.; Reay, D.S.; Whitaker, J. Can Biochar Reduce Soil Greenhouse Gas Emissions from a Miscanthus Bioenergy Crop? GCB Bioenergy 2014, 6, 76–89. [Google Scholar] [CrossRef]
- Fidel, R.; Laird, D.; Parkin, T. Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef]
- Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular Biochar Compared with Activated Carbon for Wastewater Treatment and Resource Recovery. Water Res. 2016, 94, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of Emerging Contaminants from Water and Wastewater by Modified Biochar: A Review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yan, X.; Xu, Y.; Yoza, B.A.; Wang, X.; Kou, Y.; Ye, H.; Wang, Q.; Li, Q.X. Activated Petroleum Waste Sludge Biochar for Efficient Catalytic Ozonation of Refinery Wastewater. Sci. Total Environ. 2019, 651, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Poonam; Bharti, S.K.; Kumar, N. Kinetic Study of Lead (Pb2+) Removal from Battery Manufacturing Wastewater Using Bagasse Biochar as Biosorbent. Appl. Water Sci. 2018, 8, 119. [Google Scholar] [CrossRef]
- Hefny, R.; Ibrahim, M.M.; Morad, D. Study of Adsorption Performance of Biochar for Heavy Metals Removal. J. Eng. Res. Rep. 2020, 19, 27–40. [Google Scholar] [CrossRef]
- Ghezzehei, T.A.; Sarkhot, D.V.; Berhe, A.A. Biochar Can Be Used to Capture Essential Nutrients from Dairy Wastewater and Improve Soil Physico-Chemical Properties. Solid Earth 2014, 5, 953–962. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, B.; Wester, A.E.; Chen, J.; He, F.; Chen, H.; Gao, B. Reclaiming Phosphorus from Secondary Treated Municipal Wastewater with Engineered Biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of Sulfamethoxazole (SMX) and Sulfapyridine (SPY) from Aqueous Solutions by Biochars Derived from Anaerobically Digested Bagasse. Environ. Sci. Pollut. Res. 2018, 25, 25659–25667. [Google Scholar] [CrossRef]
- Wathukarage, A.; Herath, I.; Iqbal, M.C.M.; Vithanage, M. Mechanistic Understanding of Crystal Violet Dye Sorption by Woody Biochar: Implications for Wastewater Treatment. Environ. Geochem. Health 2019, 41, 1647–1661. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Valenca, R.; Berger, A.W.; Yu, I.K.M.; Xiong, X.; Saunders, T.M.; Tsang, D.C.W. Plenty of Room for Carbon on the Ground: Potential Applications of Biochar for Stormwater Treatment. Sci. Total Environ. 2018, 625, 1644–1658. [Google Scholar] [CrossRef]
- Guo, X.; Cui, X.; Li, H. Effects of Fillers Combined with Biosorbents on Nutrient and Heavy Metal Removal from Biogas Slurry in Constructed Wetlands. Sci. Total Environ. 2020, 703, 134788. [Google Scholar] [CrossRef]
- Kasak, K.; Truu, J.; Ostonen, I.; Sarjas, J.; Oopkaup, K.; Paiste, P.; Kõiv-Vainik, M.; Mander, Ü.; Truu, M. Biochar Enhances Plant Growth and Nutrient Removal in Horizontal Subsurface Flow Constructed Wetlands. Sci. Total Environ. 2018, 639, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A Review of Non-Soil Biochar Applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef]
- Draper, K.; Schmidt, H. Biochar Paper-Elevating Biochar from Novelty to Ubiquity. Available online: https://www.biochar-journal.org/en/ct/15 (accessed on 7 July 2022).
- Hulse, V. Biochar as A Substitute for Carbon Black in Lithographic Ink Production, M.Sc Dissertation; Rochester Institute of Technology: Rochester, NY, USA, 2019; Available online: https://scholarworks.rit.edu/theses/10130/ (accessed on 5 March 2021).
- Edberg, J.; Brooke, R.; Hosseinaei, O.; Fall, A.; Wijeratne, K.; Sandberg, M. Laser-Induced Graphitization of a Forest-Based Ink for Use in Flexible and Printed Electronics. npj Flex. Electron. 2020, 4, 17. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. [Google Scholar] [CrossRef]
- Adilla Rashidi, N.; Yusup, S. A Mini Review of Biochar Synthesis, Characterization, and Related Standardization and Legislation. In Applications of Biochar for Environmental Safety; IntechOpen: London, UK, 2020; Volume 32, pp. 1–16. ISBN 9781626239777. [Google Scholar]
- Meyer, S.; Genesio, L.; Vogel, I.; Schmidt, H.-P.; Soja, G.; Someus, E.; Shackley, S.; Verheijen, F.G.A.; Glaser, B. Biochar Standardization and Legislation Harmonization. J. Environ. Eng. Landsc. Manag. 2017, 25, 175–191. [Google Scholar] [CrossRef]
- Gollenbeek, L.; Ehlert, P.; Buisonjé, F. Perspectives of Ecochar in Europe: Uses and Regulatory Requirements; Wageningen Livestock Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Parlamento Europeu e o Conselho da União Europeia. Regulamento (CE) No 1907/2006 de 18 de Dezembro de 2006 (REACH); European Union: Maastricht, The Netherlands, 2006; pp. 3–275. [Google Scholar]
- European Biochar Industry European Biochar Market Report 2021/2022. Available online: https://www.biochar-industry.com/2022/european-biochar-market-report-2021-2022-available-now/ (accessed on 6 July 2022).
- González-Pernas, F.M.; Grajera-Antolín, C.; García-Cámara, O.; González-Lucas, M.; Martín, M.T.; González-Egido, S.; Aguirre, J.L. Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate. Energies 2022, 15, 3407. [Google Scholar] [CrossRef]
- Governo de Portugal. Resolução Do Conselho de Ministros No 163/2017–Plano Nacional Para a Promoção Das Biorrefinarias; Governo de Portugal: Lisboa, Portugal, 2017. [Google Scholar]
- Soka, O.; Oyekola, O. A Feasibility Assessment of the Production of Char Using the Slow Pyrolysis Process. Heliyon 2020, 6, e04346. [Google Scholar] [CrossRef]
- Askeland, M.; Clarke, B.; Paz-Ferreiro, J. Comparative Characterization of Biochars Produced at Three Selected Pyrolysis Temperatures from Common Woody and Herbaceous Waste Streams. PeerJ 2019, 7, e6784. [Google Scholar] [CrossRef] [PubMed]
- Ibero Massa Florestal Estudo Do Poder Calorífico de Biomassa Agrícola e Florestal Carbonizado Pelo Processo de Pirólise. Available online: https://www.imflorestal.com/docs/5.1.-Estudo-do-poder-calorífico-de-biomassa-agrícola-e-florestal-carbonizado-pelo-processo-de-pirólise.pdf (accessed on 8 July 2022).
- Zabaniotou, A.; Ioannidou, O.; Antonakou, E.; Lappas, A. Experimental Study of Pyrolysis for Potential Energy, Hydrogen and Carbon Material Production from Lignocellulosic Biomass. Int. J. Hydrogen Energy 2008, 33, 2433–2444. [Google Scholar] [CrossRef]
- Park, J.H.; Ok, Y.S.; Kim, S.H.; Kang, S.W.; Cho, J.S.; Heo, J.S.; Delaune, R.D.; Seo, D.C. Characteristics of Biochars Derived from Fruit Tree Pruning Wastes and Their Effects on Lead Adsorption. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 751–760. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Hunt, J.; McIntosh, C. The Big California Biochar Model: Forest Biomass Management, Carbon Drawdown, Drought Resiliency, and Nitrogen Conservation on a Statewide Scale. Available online: https://pacificbiochar.com/resources/the-big-california-biochar-model/ (accessed on 10 July 2022).
- Chiaramonti, D.; Panoutsou, C. Policy Measures for Sustainable Sunflower Cropping in EU-MED Marginal Lands Amended by Biochar: Case Study in Tuscany, Italy. Biomass Bioenergy 2019, 126, 199–210. [Google Scholar] [CrossRef]
- Instituto Nacional De Estatística Recenseamento Agrícola–Análise Dos Principais Resultados. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=437178558&PUBLICACOEStema=55505&PUBLICACOESmodo=2 (accessed on 6 July 2022).
- Lehmann, J.; Abiven, S.; Kleber, M.; Pan, G.; Singh, B.P.; Sohi, S. Persistence of Biochar in Soil Johannes. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; pp. 212–260. ISBN 9780203762264. [Google Scholar]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Leng, R.A.; Preston, T.R.; Inthapanya, S. Biochar Reduces Enteric Methane and Improves Growth and Feed Conversion in Local “Yellow” Cattle Fed Cassava Root Chips and Fresh Cassava Foliage. Livest. Res. Rural Dev. 2012, 24, 1–7. [Google Scholar]
- United States Department of Agriculture. Unlock the Secrets in the Soil: Soil Health Key Points; United States Department of Agriculture: Washington, DC, USA, 2015.
- ERSAR Entidade Reguladora Dos Serviços de Água e Resíduos. Available online: https://www.ersar.pt/pt (accessed on 6 July 2022).
- Hestrin, R.; Torres-Rojas, D.; Dynes, J.J.; Hook, J.M.; Regier, T.Z.; Gillespie, A.W.; Smernik, R.J.; Lehmann, J. Fire-Derived Organic Matter Retains Ammonia through Covalent Bond Formation. Nat. Commun. 2019, 10, 664. [Google Scholar] [CrossRef]
- Agência Portuguesa do Ambiente. Plano de Gestão Das Bacias Hidrográficas Integradas Na Região Hidrográfica Do Sado e Mira (RH6)–Parte 2; Agência Portuguesa do Ambiente: Bairro do Zambujal, Alfragide, 2012. [Google Scholar]
- Agência Portuguesa do Ambiente. Plano de Gestão Das Bacias Hidrográficas Integradas Na Região Hidrográfica Do Guadiana (RH7)–Parte 2; Agência Portuguesa do Ambiente: Bairro do Zambujal, Alfragide, 2012. [Google Scholar]
Process | Temperature (°C) | Residence Time (min) | Pressure (atm) | Other Conditions | Biochar Yield (%) |
---|---|---|---|---|---|
Slow pyrolysis | 300–800 | >60 | 1 | No oxygen; Moisture content < 15–20%; Heating rate < 10 °C/min | 30–55 |
Fast pyrolysis | 450–600 | ~0.02 | 1 | No oxygen; Moisture content < 15–20%; Heating rate ≥ 200 °C/min | 10–25 |
Gasification | 750–1000 | 0.2–0.4 | 1–3 | Limited oxygen supply Moisture content 10–20%; Heating rate ~1000 °C/min | 14–25 |
Torrefaction | 200–300 | 15–60 | 1 | No oxygen; Moisture content < 10%; Heating rate < 50 °C/min | 70–80 |
HTC | 180–300 | 5–240 | 1–200 | Moisture content 75–90% | 50–80 |
Property | SSA (m2g−1) | CEC (cmol kg−1) | AEC (cmol kg−1) | CCE (%) | PV (m3 t−1) | APS (nm) | Ash (%) | pH | EC (dS m−1) |
---|---|---|---|---|---|---|---|---|---|
Pyrolysis type | |||||||||
Slow | 183 | 44.9 | 4.90 | 6.10 | 2.04 | 52.3 | 19.2 | 8.7 | 4.45 |
Fast | 98.6 | 48.1 | 5.33 | 11.2 | 3.66 | 1190 | 22.0 | 8.7 | 5.85 |
Feedstock | |||||||||
Wood-based | 184 | 23.9 | 5.65 | 9.04 | 7.01 | 74.6 | 10.2 | 8.3 | 6.20 |
Crop wastes | 98.2 | 56.3 | 4.51 | 6.12 | 2.05 | 2320 | 21.1 | 8.9 | 5.72 |
Other grasses | 63.4 | 63.3 | 5.05 | n.d. | 3.36 | 268 | 18.0 | 8.9 | 5.20 |
Manures/biosolids | 52.2 | 66.1 | 7.77 | 14.2 | 0.82 | 27.3 | 44.6 | 8.9 | 3.98 |
Process temperature (°C) | |||||||||
<300 | 27.1 | 44.4 | n.d. | 7.16 | 0.06 | 8.16 | 12.3 | 6.0 | 3.60 |
300–399 | 57.2 | 52.8 | 3.65 | 9.17 | 3.45 | 2340 | 17.8 | 7.8 | 5.72 |
400–499 | 108 | 35.0 | n.d. | 9.08 | 1.18 | 78.0 | 19.0 | 8.5 | 2.77 |
500–599 | 97.2 | 56.4 | 3.38 | 10.1 | 4.68 | 1140 | 23.2 | 9.0 | 8.05 |
600–699 | 178 | 33.7 | n.d. | 9.50 | 1.77 | 2000 | 23.5 | 9.5 | 4.85 |
700–799 | 204 | 53.0 | 5.27 | 12.9 | 8.87 | 9.19 | 26.6 | 10.0 | 4.29 |
>800 | 208 | 85.3 | 8.83 | 19.6 | 0.09 | 8.45 | 28.5 | 9.9 | 6.44 |
Biochar Use | Application Conditions | Obtained Results | References |
---|---|---|---|
Soil amendment | Grapevine pruning biochar was applied to vineyard clay soils |
| Marshall et al. (2019) [34] |
Biochar was applied to sandy loam soils at 5% (w/w) and 12.6 dS m−1 salinity rate |
| Ibrahim et al. (2020) [35] | |
Eucalyptus wood waste biochar (550 °C) applied to different soils of mixture grassland (10 t ha−1) |
| Mia et al. (2018) [36] | |
The addition of biochar to soils promoted an increase in crop yields |
| Jeffery et al. (2011) [37] Huang and Gu (2019) [38] | |
Composting additive | Biochar was applied at a 10% rate (wt.%) |
| Sanchez-Monedero et al. (2017) [39] |
Woody biochar (550 °C) was applied at a 10% rate (wt.%) to a mixture of slaughter waste, swine slurry, and sawdust compost |
| Febrisiantosa et al. (2018) [40] | |
Peat substitute & Growing medium | Biochar as a peat substitute |
| A.J. Margenot (2018) [41] |
| Méndez et al. (2015) [42] | ||
| Zhang et al. (2014) [43] | ||
| Huang et al. (2019) [44] | ||
Mixtures of Biochar (at 0, 20, and 35%), humic acid (at 0, 0.5, and 0.7%), and composted green waste |
| Zhang et al. (2014) [43] | |
Rice husk biochar mixed with perlite (1:1) as hydroponics growing medium |
| Awad et al. (2017) [45] | |
Bedding litter | Addition of biochar at 10 to 20 wt.% to pine shavings for poultry bedding |
| Linhoss et al. (2019) [46] |
Feed Additive | <1% of daily rice husk biochar diet to ruminants, goats, and pigs; 2–6% of daily woody biochar feed to ducks and poultry |
| Man et al. (2021) [32] |
Heavy metal immobilization | Biochar was applied (up to 10% rate) to heavy metal-contaminated soils. |
| Kim et al. (2015) [47] |
Soil reclamation | Wheat straw biochar and NPK added for sandy soil reclamation |
| Bednick et al. (2020) [48] |
Biochar Use | Application Conditions | Relevant Results | Reference |
---|---|---|---|
CO2-capture |
| CO2 adsorption performance was better for biochar from olive stones at 25 °C (3 mmol g−1). Good regeneration capabilities were found for both biochars. | González et al. (2013) [51] |
CO2-capture |
| Adsorption results were similar for both feedstocks and ranged between 3–21 mmol g−1, with the highest results achieved when the pressure increased. | Coromina et al. (2015) [52] |
GHG mitigation |
| Soils amended with biochar presented a reduction of CO2 emissions of 33% and a global reduction of GHGs (CO2, N2O, and CH4) of 37%. | Case et al. (2014) [53] |
| No significant variations in CO2 emissions were observed for all crop types, but N2O emissions were suppressed by 27% with corn crops. | Fidel et al. (2019) [54] |
Biochar Use | Application Conditions | Obtained Results | References |
---|---|---|---|
Wastewater treatment | Catalytic ozonation of refinery wastewater with activated biochar from petroleum waste sludge. | Removal efficiencies for the following contaminants: total organic carbon (53.5%), Ox (33.4%), NOx (58.2%), and OxS contaminants (12.5%). | Chen et al. (2019) [57] |
Removal of heavy metals | Pb2+ removal from battery manufacturing wastewater using bagasse biochar. | Maximum removal efficiency of 12.7 mg g−1 (75.4%) of Pb2+ was reached. | Poonam and Kumar (2018) [58] |
Jazaurin, ficus, orange, and mango biochars were used as filter media to retain several heavy metals. | Biochars were more effective with particle sizes <0.1 cm and initial concentrations between 50–150 mg L−1, generating 99% of removal efficiencies for Cu2+, Cd2+, Pb2+, and Zn2+. | Hefny et al. (2020) [59] | |
Removal of nitrogen and phosphorus | Dairy manure runoff batch sorption using biochars produced from biomass | Adsorption results of 20–43% of ammonium and 19–65% of phosphate were achieved within 24 h | Ghezzehei et al. (2014) [60] |
Phosphorous removal from treated municipal wastewater | Phosphorous was removed effectively with relatively fast kinetics (<8 h) and a good adsorption capacity (8.34 g kg−1) | Zheng et al. (2019) [61] | |
Removal of organic contaminants | Biochar was produced by thermal activation (600 °C) from anaerobically digested bagasse | Sulfamethoxazole and sulfapyridin were removed from aqueous solutions with maximum adsorption capacities of 54.38 mg g−1 and 8.60 mg g−1, respectively | Yao et al. (2018) [62] |
Gliricidia sepium biochar was used in batch sorption studies to remove aqueous dyes | Biochars produced at higher temperatures presented better adsorption efficiencies | Wathukarage et al. (2017) [63] | |
Stormwater management | Use of sand and biochar filters |
| Mohanty et al. (2018) [64] |
Use of biochar in enhanced bio infiltration/bioretention system |
| ||
Constructed wetlands | Biochar was prepared from cattail and introduced into constructed wetlands | Results showed an improvement in removal efficiencies of chemical oxygen demand, NH4+ and total nitrogen, and a reduction of N2O emissions. Heavy metals such as As2+, Zn2+,, and Cu2+ were retained with rates of 35.4–83.9%, 8.2–23.7%, and 0.3–0.9%, respectively | Guo et al. (2020) [65] |
Biochar derived from wood was placed in a horizontal subsurface flow constructed wetland | Nutrient uptake by plant roots, plant biomass growth, and nutrient removal from wastewater were all enhanced with the biochar system. A pH reduction induced by plants in filter media was observed | Kasak et al. (2018) [66] |
Biochar Use | Application Conditions | Obtained Results | References |
---|---|---|---|
Biochar paper and cardboard | Biochar (up to 30%) and paper pulp were blended |
| Draper and Schmidt (2014) [68] |
Biochar ink | Biochar was used as a substitute for carbon black in ink production | Similar visual density results were obtained as the standard carbon black ink | Hulse (2019) [69] |
Production of a biochar-based conductive ink | The product is compatible with printed electronics | Edberg et al. (2020) [70] | |
Biochar as construction material | Biochar was added to pavement bitumen (5–15%) | This application resulted in improved moisture and cracking resistance, as well as in an increased viscosity of the product | Gupta and Kua (2017) [71] |
Biochar applied at 5% cement replacement in mortar |
| ||
A composite of biochar–clay plaster (30–50 wt.%) was mixed with clay and sand |
| ||
Biochar composites | Biochar (10 wt.%) was added as a filler to glass fibre reinforced composite | Compared to glass fiber reinforced polymer, the new composite material presented:
| Dahal et al. (2019) [72] |
European Regulation | National Regulation | Voluntary Regulation | |
---|---|---|---|
Not in force yet. Proposals are being developed and are expected to be implemented soon. It is anticipated that carbon and nutrient-rich biochars will be regulated by “end-of-waste criteria”. | In force in Germany, Austria, Switzerland, and Italy. Biochar of vegetable origin only. | In other EU countries, free trade is only possible after obtaining registration or a permit. | Serves certification but does not have a legal basis. There are three main organizations: European Biochar Certificate (EBC); Biochar Quality Mandate (BQM); and International Biochar Initiative (IBI-BS). |
Parameter | Units | IBI-BS | EBC | BQM | ||
---|---|---|---|---|---|---|
Basic | Premium | Standard | High Grade | |||
Organic C | % | ≥10 | ≥50 | ≥10 | ||
H/C | --- | ≤0.7 | ≤0.7 | ≤0.7 | ||
O/C | --- | ≤0.4 | --- | |||
Moisture | % | --- | ≥30 | ≥20 | ||
Ash | √ | √ | √ | |||
EC | mS m−1 | √ | √ | Optional | ||
Liming | --- | √ | --- | --- | ||
pH | √ | √ | √ | |||
PSD | mm | √ | --- | √ | ||
SSA | m2g−1 | --- | √ | Optional | ||
AWC | % | --- | √ | Optional | ||
VM | Optional | √ | --- | |||
Germination | - | Pass/Fail | Optional | --- | ||
Total N | % | √ | √ | √ | ||
P, K, Mg, Ca | Optional | √ | Total P&K | |||
PAH | mg kg−1, db | ≤300 | <12 | <4 | <20 | |
B(a)P | ≤3 | --- | --- | |||
PCB | ≤1 | <0.2 | <0.5 | |||
PCDD/F | ≤17 | <20 | <20 | |||
As | mg kg−1, db (max.) | 12–100 | --- | 100 | 10 | |
Cd | 1.4–39 | 1.5 | 1 | 39 | 3 | |
Cr | 64–1200 | 90 | 80 | 100 | 15 | |
Co | 40–150 | --- | -- | |||
Cu | 65–1500 | 100 | 1500 | 40 | ||
Pb | 70–500 | 150 | 120 | 500 | 60 | |
Hg | 1–17 | 1 | 17 | 1 | ||
Mn | --- | --- | --- | 3500 | ||
Mo | 5–20 | --- | 75 | 10 | ||
Ni | 47–600 | 50 | 30 | 600 | 10 | |
Se | 2–36 | --- | 100 | 5 | ||
Zn | 200–7000 | 400 | 2800 | 150 | ||
B | √ | --- | --- | |||
Cl | ||||||
Na |
Market | Current Biochar Production |
---|---|
China | >300,000 (up to 500,000) t/y and rapidly growing |
USA | ~50,000 t/y and growing |
Europe | >20,000 t/y and growing |
Australia | ~5000 t/y and growing |
Feedstock Type | Amount (kt/y) [79] | Biochar Yield (wt.%) | Biochar Production (kt/y) |
---|---|---|---|
Agricultural wastes | |||
Corn stalks | 768.8 | 28.0 [80] | 215.3 |
Rice straw | 129.0 | 25.0 [81] | 32.3 |
Vine prunings | 296.1 | 30.0 [82] | 88.8 |
Olive prunings | 188.1 | 10.0 [83] | 18.8 |
Fruit tree prunings | 32.7 | 23.6 [84] | 7.71 |
Forestry wastes | |||
Pine | 84.5 | 21.0 [81] | 17.7 |
Eucalyptus | 124.4 | 22.0 [82] | 27.4 |
Cork oak | 130.4 | 24.5 [82] | 32.0 |
Green herbaceous wastes | 89.0 | 27.8 [85] | 24.7 |
Shrubs | 129.6 | 20.0 [82] | 25.9 |
Total | 1 972.6 | - | 490.9 |
Parameter | Value | Remarks |
Biochar application in agricultural land | ||
Biochar application rate (t/ha) | 5 | Biochar application rate from Chiaramonti and Panoutsou (2019) [87] |
Land covered (ha/y) | 98,104 | |
Time until 100% coverage (y) | 22 | Total agricultural land in Alentejo: 2.14 Mha [88]. |
Direct carbon sequestration | ||
Carbon sequestration potential, C (kt-C) | 441.8 | Direct carbon sequestration of 3.12 t-CO2/t-biochar. Calculated from Lehmann et al. (2015) [89] |
Carbon sequestration potential, CO2 (kt-CO2-eq) | 1529 | |
GHG emissions reduction (ER)—ancillary | ||
GHG ER, Enteric fermentation (kt-CO2-eq) | 348.9 | GHG emission reductions of 22%, 20%, and 36% for enteric fermentation, manure management, and soil, respectively [90,91]. |
GHG ER, Manure management (kt-CO2-eq) | 37.60 | |
GHG ER, Soil (annual) (kt-CO2-eq) | 11.20 | |
GHG ER, Combined ancillary benefits (kt-CO2-eq) | 397.7 | |
GHG ER + Direct sequestration (kt-CO2-eq) | 1927 | |
Cost per t of CO2drawdown | ||
Direct sequestration (€/t-CO2-eq) | 257 | Considering an average biochar price of 800 €/t [78]. |
GHG ER, Ancillary (€/t-CO2-eq) | 987 | |
Total of direct and ancillary (€/t-CO2-eq) | 204 | |
Water conservation | ||
Increased WHC (million m3) | 6.20 | Considering that soil WHC improves by 62 m3/ha (+ 0.25–1% SOM, top 15 cm) [92]. Soil bulk density is taken from INFOSOLO database [29]. |
Days of water use in Alentejo (d) | 46 | Residential water consumption is taken from ERSAR [93]. |
Nitrogen management | ||
Maximum nitrogen retention capacity (kt-N) | 88.36 | N retention capacity of 0.18 g-N/g-biochar from Hestrin et al. (2019) [94]. |
N Leaching reduction, agricultural land (t-N/y) | 127.0 | N-leaching from agriculture in Alentejo: 10 830 t-N/y [95,96]. |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, B.; Alves, O.; Rijo, B.; Lourinho, G.; Nobre, C. Biochar: Production, Applications, and Market Prospects in Portugal. Environments 2022, 9, 95. https://doi.org/10.3390/environments9080095
Garcia B, Alves O, Rijo B, Lourinho G, Nobre C. Biochar: Production, Applications, and Market Prospects in Portugal. Environments. 2022; 9(8):95. https://doi.org/10.3390/environments9080095
Chicago/Turabian StyleGarcia, Bruno, Octávio Alves, Bruna Rijo, Gonçalo Lourinho, and Catarina Nobre. 2022. "Biochar: Production, Applications, and Market Prospects in Portugal" Environments 9, no. 8: 95. https://doi.org/10.3390/environments9080095
APA StyleGarcia, B., Alves, O., Rijo, B., Lourinho, G., & Nobre, C. (2022). Biochar: Production, Applications, and Market Prospects in Portugal. Environments, 9(8), 95. https://doi.org/10.3390/environments9080095