Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives
Abstract
:1. Introduction
2. Sources and Occurrence of MPs in the Southern Ocean
3. Microplastics in Marine Organisms and Food Webs
4. Plastic Debris in Snow, Ice and Terrestrial Ecosystems
5. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pales, A.F.; Levi, P. The Future of Petrochemicals: Towards More Sustainable Plastics and Fertilisers; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Gürlich, U.; Kladnik, V. Packaging Design for Recycling: A Global Recommendation for “Circular Economy Packaging”; World Packaging Organization: Vienna, Austria, 2021. [Google Scholar]
- Diggle, A.; Walker, T.R. Environmental and Economic Impacts of Mismanaged Plastics and Measures for Mitigation. Environments 2022, 9, 15. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.; Law, K. Production, Use, and Fate of All Plastic ever Made. Sci. Adv. 2017, 3, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Min, K.; Cuiffi, J.D.; Mathers, R.T. Ranking Environmental Degradation Trends of Plastic Marine Debris Based on Physical Properties and Molecular Structure. Nat. Commun. 2020, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suaria, G.; Perold, V.; Lee, J.R.; Lebouard, F.; Aliani, S.; Ryan, P.G. Floating Macro- and Microplastics around the Southern Ocean: Results from the Antarctic Circumnavigation Expedition. Environ. Int. 2020, 136, 105494. [Google Scholar] [CrossRef]
- Horton, A.A.; Barnes, D.K.A. Microplastic Pollution in a Rapidly Changing World: Implications for Remote and Vulnerable Marine Ecosystems. Sci. Total Environ. 2020, 738, 140349. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez-Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric Transport and Deposition of Microplastics in a Remote Mountain Catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Lui, P.; Qian, L.; Wang, H.; Zhan, X.; Lu, K.; Gu, C.; Gao, S. New Insights into the Aging Behavior of Microplastics Accelerated by Advanced Oxidation Processes. Environ. Sci. Technol. 2019, 53, 3579–3588. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y. Effects of Plastic Film Residues on Occurrence of Phthalates and Microbial Activity in Soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Clout, M.; Côté, I.M.; Daszak, P.; Depledge, M.H.; Fellman, L.; Fleishman, E.; Garthwaite, R.; Gibbons, D.W.; De Lurio, J.; et al. A Horizon Scan of Global Conservation Issues for 2010. Trends Ecol. Evol. 2010, 25, 1–7. [Google Scholar] [CrossRef]
- Cook, C.R.; Halden, R.U. Ecological and Health Issues of Plastic Waste. In Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T., Ed.; Academic Press: London, UK, 2020; pp. 513–524. [Google Scholar]
- Ajith, N.; Arumugam, S.; Parthasarthy, S.; Manupoori, S.; Janakiraman, S. Global Distribution of Microplastics and its Impacts on Marine Environment: A Review. Environ. Sci. Pollut. Res. 2020, 27, 25970–25986. [Google Scholar] [CrossRef]
- Tirelli, V.; Suaria, G.; Lusher, L. Microplastics in Polar Samples. In Handbook of Microplastics in the Environment; Rocha-Santos, T., Costa, M., Mouneyrac, C., Eds.; Springer Polar Sciences: Cham, Switzerland, 2020; pp. 1–42. [Google Scholar] [CrossRef]
- Azoulay, D.; Villa, P.; Arellano, Y.; Gordon, M.; Moon, D.; Miller, K.; Thompson, K. Plastic and Health: The Hidden Costs of a Plastic Planet; Center for International Environmental Law: Washington, DC, USA, 2019. [Google Scholar]
- Bargagli, R. Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Tin, T.; Fleming, Z.L.; Hughes, K.A.; Ainley, D.G.; Convey, P.; Moreno, C.A.; Pfeiffer, S.; Scott, J.; Snape, I. Impact of Local Human Activities on the Antarctic Environment. Antarct. Sci. 2009, 21, 3–33. [Google Scholar] [CrossRef] [Green Version]
- IAATO. Antarctic Visitor Figure 2019 Figure 2020. International Association for Antarctica Tour Operators. Available online: https://iaato.org/wp-content/uploads/2020/07/IAATO-on-Antarctic-visitor-figures-2019-20-FINAL.pdf (accessed on 1 March 2022).
- Bargagli, R. Environmental Contamination in Antarctic Ecosystems. Sci. Total Environ. 2008, 400, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Yang, Z.; Wang, Y.; Sun, L.; Yang, W.; Yang, L.; Gao, Y. Assessment of Heavy Metal Contamination from Penguins and Anthropogenic Activities on Fildes Peninsula and Ardley Island, Antarctic. Sci. Total Environ. 2019, 646, 951–957. [Google Scholar] [CrossRef]
- Flocco, C.G.; Mac Cormack, W.P.; Smalla, K. Antarctic Soil Microbial Communities in a Changing Environment: Their Contributions to the Sustainability of Antarctic Ecosystems and the Bioremediation of Anthropogenic Pollution. In The Ecological Role of Microorganisms in the Antarctic Environment; Castro-Sowinski, S., Ed.; Springer Polar Sciences: Cham, Switzerland, 2019; pp. 133–161. [Google Scholar]
- Palmer, T.A.; Klein, A.G.; Sweet, S.T.; Montagna, P.A.; Hyde, L.J.; Wade, T.L.; Beseres Pollack, J. Anthropogenic Effects on the Marine Environment Adjacent to Palmer Station, Antarctica. Antarct. Sci. 2022, 34, 79–96. [Google Scholar] [CrossRef]
- Bonner, W.N.; McCann, T.S. Neck Collars on Fur Seals, Arctocephalus gazella, at South Georgia. Brit. Antarct. Surv. B 1982, 57, 73–77. [Google Scholar]
- Van Franeker, J.A.; Bell, P.J. Plastic Ingestion by Petrels Breeding in Antarctica. Environ. Pollut. 1988, 19, 672–674. [Google Scholar] [CrossRef]
- Huin, N.; Croxall, J.P. Fishing Gear, Oil and Marine Debris Associated with Seabirds at Bird Island, South Georgia, during 1993/1994. Mar. Ornithol. 1996, 24, 19–22. [Google Scholar]
- Hucke-Gaete, R.; Torres, D.; Valleios, V.M. Entanglement of Antarctic Fur Seals in Marine Debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1988–1997. Ser. Cient. INACH 1997, 47, 123–135. [Google Scholar]
- Walker, T.R.; Reid, K.; Arnould, J.P.Y.; Croxall, J.P. Marine Debris Surveys at Bird Island, South Georgia 1990–1995. Mar. Pollut. Bull. 1997, 34, 61–65. [Google Scholar] [CrossRef]
- Gregory, M.R.; Ryan, P.G. Pelagic Plastics and Other Seaborne Persistent Synthetic Debris: A Review of Southern Hemisphere Perspectives. In Marine Debris; Coe, J.M., Rogers, D.B., Eds.; Springer: New York, NY, USA, 1997; pp. 49–66. [Google Scholar] [CrossRef]
- Convey, P.; Barnes, D.K.A.; Morton, A. Debris Accumulation on Oceanic Island Shores of the Scotia Arc, Antarctica. Polar Biol. 2002, 25, 612–617. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Fraser, K.P.P. Rafting by Five Phyla on Man-Made Flotsam in the Southern Ocean. Mar. Ecol. Prog. Ser. 2003, 262, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, J.; Mishra, P.P. Microplastics in Polar Regions: An Early Warning to the World’s Pristine Ecosystem. Sci. Total Environ. 2021, 784, 147149. [Google Scholar] [CrossRef]
- A.T.C.M. Resolution 5: Reducing Plastic Pollution in Antarctica and the Southern Ocean. Antarctic Treaty Consultative Meeting and Committee for Environment Protection, Prague. 2019. Available online: https://www.ats.aq/devAS/Meetings/Measure/705. (accessed on 1 March 2022).
- CCAMLR Secretariat. Outcomes from a Review of the CCAMLR Marine Debris Program; SC-CAMLR-38/09; CCAMLR: Hobart, Australia, 2019. [Google Scholar]
- SCAR. Scientific Committee on Antarctic Research—Action Group Plastic in Polar Environment. 2020. Available online: https://hwww.scar.org/science/plastic/resources/ (accessed on 1 March 2022).
- Zhang, M.; Haward, M.; McGee, J. Marine Plastic Pollution in the Polar South: Responses from Antarctic Treaty. Polar Rec. 2020, 56, e36. [Google Scholar] [CrossRef]
- Waller, C.L.; Griffith, H.J.; Waluda, C.M.; Thorpe, S.E.; Loaiza, I.; Moreno, B.; Pacherres, C.O.; Hugher, K.A. Microplastics in the Antarctic Marine System: An Emerging Area of Research. Sci. Total Environ. 2017, 598, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Corsi, I.; Bergami, E.; Caruso, G. Plastics in Polar Regions. Environ. Int. 2021, 149, 106203. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Walters, A.; Gonçalves, L. Macroplastics at Sea around Antarctica. Mar. Environ. Res. 2010, 70, 250–252. [Google Scholar] [CrossRef]
- Kelly, A.; Lannuzel, D.; Rodemann, T.; Meiners, K.M.; Auman, H.J. Microplastic Contamination in East Antarctic Sea Ice. Mar. Pollut. Bull. 2020, 154, 111130. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Kaytsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in the Surface Waters of the Ross Sea (Antarctica): Occurrence, Distribution and Characterization by FTIR. Chemosphere 2017, 175, 391–400. [Google Scholar] [CrossRef]
- Eriksson, C.; Burton, H.; Fitch, S.; van den Hoff, J. Daily Accumulation of Marine Debris on sub-Antarctic Island Beaches. Mar. Pollut. Bull. 2013, 66, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Geilfus, X.; Munson, K.M.; Sousa, J.; Germanov, Y.; Bhugaloo, S.; Babb, D.; Wang, F. Distribution and Impacts of Microplastics Incorporation within Sea Ice. Mar. Pollut. Bull. 2019, 145, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Munari, C.; Infantini, V.; Scoponi, M.; Rastelli, E.; Corinaldesi, C.; Mistri, M. Microplastics in the Sediments of Terra Nova Bay (Rossa Sea, Antarctica). Mar. Pollut. Bull. 2017, 122, 161–165. [Google Scholar] [CrossRef]
- Anfuso, G.; Bolívar-Anillo, H.J.; Asensio-Montesinos, F.; Portantiolo Manzolli, R.; Portz, L.; Villate Daza, D.A. Beach Litter Distribution in Admiralty Bay, King George Island, Antarctica. Mar. Pollut. Bull. 2020, 160, 111657. [Google Scholar] [CrossRef]
- Reed, S.; Clark, M.; Thompson, R.; Hughes, K.A. Microplastics in Marine Sediments near Rothera Research Station, Antarctica. Mar. Pollut. Bull. 2018, 133, 460–463. [Google Scholar] [CrossRef]
- Aves, A.R.; Revell, L.E.; Gaw, S.; Ruffell, H.; Schuddeboom, A.; Wotherspoon, N.E.; LaRue, M.; McDonald, A. First Evidence of Microplastics in Antarctic Snow. Cryosphere 2022, 16, 2127–2145. [Google Scholar] [CrossRef]
- Finger, J.V.G.; Corá, D.H.; Convey, P.; Santa Cruz, F.; Petry, M.V.; Krüger, L. Anthropogenic Debris in Antarctic Specially Protected Areas in the Maritime Antarctic. Mar. Pollut. Bull. 2021, 172, 112921. [Google Scholar] [CrossRef] [PubMed]
- Perfetti-Bolaño, A.; Araneda, A.; Muñoz, K.; Barra, R.O. Occurrence and Distribution of Microplastics in Soils and Intertidal Sediments at Fildes Bay, Maritime Antarctica. Front. Mar. Sci. 2022, 8, 774055. [Google Scholar] [CrossRef]
- Bergami, E.; Rota, E.; Caruso, T.; Birarda, G.; Vaccari, L.; Corsi, I. Plastics Everywhere: First Evidence of Polystyrene Fragments Inside the Common Antarctic Collembolan Cryptopygus antarcticus. Biol. Lett. 2020, 16, 20200093. [Google Scholar] [CrossRef]
- Sfriso, A.; Tomio, Y.; Rosso, B.; Gambaro, A.; Sfriso, A.; Corami, F.; Rastelli, E.; Corinaldesi, C.; Mistri, M.; Munari, C. Microplastic Accumulation in Benthic Invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ. Int. 2020, 137, 105587. [Google Scholar] [CrossRef]
- Cappello, S.; Caruso, G.; Bergami, E.; Macrì, A.; Venuti, V.; Majolino, D.; Corsi, I. New Insights into the Structure and Function of the Prokaryotic Communities Colonizing Plastic Debris Collected in King George Island (Antarctica): Preliminary Observations from two Plastic Fragments. J. Hazard. Mat. 2021, 414, 125586. [Google Scholar] [CrossRef] [PubMed]
- Bergami, E.; Krupinski Emerenciano, A.; González-Aravena, M.; Cárdenas, C.A.; Hernández, P.; Silva, J.R.M.C.; Corsi, I. Polystirene Nanoparticles Affect the Innate Immune System of the Antarctic Sea Urchin Sterechinus neumayeri. Polar Biol. 2019, 42, 743–757. [Google Scholar] [CrossRef]
- Le Guen, C.; Suaria, G.; Sherley, R.B.; Ryan, P.G.; Aliani, P.; Boehme, L.; Brierley, A.S. Microplastic Study Reveals the Presence of Natural and Synthetic Fibres in the Diet of King Penguins (Aptenodytes patagonicus) Foraging from South Georgia. Environ. Int. 2020, 134, 105303. [Google Scholar] [CrossRef] [PubMed]
- Jones-Williams, K.; Galloway, T.; Cole, M.; Stowasser, G.; Waluda, C.; Manno, C. Close Encounter—Microplastic Availability to Pelagic Amphipods in Sub-Antarctic and Antarctic Surface Waters. Environ. Int. 2020, 140, 105792. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.; Eggers, S.L.; Allhusen, E.; Katlein, C.; Peeken, I. Interactions between the Ice Algae Fragellariopsis cylindrus and Microplastics in Sea Ice. Environ. Int. 2020, 139, 105697. [Google Scholar] [CrossRef]
- Bergami, E.; Manno, C.; Cappello, S.; Vannuccini, M.L.; Corsi, I. Nanoplastics Affect Moulting and Fecal Pellets Sinking in Antarctic krill (Euphausia superba) Juveniles. Environ. Int. 2020, 143, 105999. [Google Scholar] [CrossRef]
- Habib, S.; Iruthayam, A.; Shukor, M.Y.A.; Alais, S.A.; Smykla, J.; Yasid, N.A. Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria. Polymers 2020, 12, 2616. [Google Scholar] [CrossRef]
- Jemec, A.; Horvat, P.; Kunei, U.; Bele, M.; Kržan, A. Uptake and Effects of Microplastic Textile Fibers on Freshwater Crustacean Daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef]
- Gray, A.D.; Weinstein, J.E. Size- and Shape- Dependent Effects of Microplastics Particles on Adult Daggerblade Grass Shrimp (Palaemonetes pugio). Environ. Toxicol. Chem. 2017, 36, 3074–3080. [Google Scholar] [CrossRef]
- Botterell, Z.L.R.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Bioavailability and Effects of Microplastics on Marine Zooplankton: A Review. Environ. Pollut. 2019, 245, 98–110. [Google Scholar] [CrossRef]
- Clarke, A.; Murphy, M.P.; Meredith, M.P.; King, J.C.; Peck, L.S.; Barnes, D.K.A.; Smith, R.C. Climate Change and the Marine Ecosystem of Western Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Bargagli, R. Terrestrial Ecosystems of the Antarctic Peninsula, Their Responses to Climate Changes and Anthropogenic Impacts. Ukr. Antarct. J. 2020, 2, 84–97. [Google Scholar] [CrossRef]
- Gross, M. Pristine Antarctica Exposed to Change. Curr. Biol. 2022, 32, R247–R249. [Google Scholar] [CrossRef]
- Brasier, M.J.; Barnes, D.; Bax, N.; Brandt, A.; Christianson, A.B.; Constable, A.J.; Downey, R.; Figuerola, B.; Griffiths, H.; Gutt, J.; et al. Responses of Southern Ocean Seafloor Habitats and Communities to Global and Local Drivers of Change. Front. Mar. Sci. 2021, 8, 622721. [Google Scholar] [CrossRef]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High Levels of Microplastics Pollution in a Large, Remote, Mountain Lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.I.; Kay, G.M.; du Plessis, M.; Ryan, P.G. Breaking Down the Barrier: Dispersal Across the Polar Front. Ecography 2017, 40, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, M.; Lebreton, L.C.M.; Carso, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Million Plastic Pieces Weighing Over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The Physical Oceanography of the Transport of Floating Marine Debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef] [Green Version]
- Peeken, I.; Primpke, S.; Beyer, B.; Gütermann, J.; Katlein, C.; Krumpen, T.; Bergmann, M.; Hehemann, L.; Gerdts, G. Arctic Sea Ice is an Important Temporal Sink and Means of Transport for Microplastics. Nat. Commun. 2018, 9, 1505. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.K.A.; Milner, P. Drifting Plastic and its Consequences for Sessile Organism Dispersal in the Atlantic Ocean. Mar. Biol. 2005, 146, 815–825. [Google Scholar] [CrossRef]
- Do Sul, J.A.I.; Barnes, D.K.A.; Costa, M.F.; Convey, P.; Costa, E.S.; Campos, L. Plastics in the Antarctic Environment: Are We Looking Only at the Tip of the Iceberg? Oecologia Aust. 2011, 15, 150–170. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Bergami, E.; Singh, N.; Corsi, I. Plastic Occurrence, Sources, and Impacts in Antarctic Environment and Biota. Water Biol. Secur. 2022. [Google Scholar] [CrossRef]
- Ryan, P.G. Litter Survey Detects the South Atlantic “Garbage Patch”. Mar. Pollut. Bull. 2014, 79, 220–224. [Google Scholar] [CrossRef]
- Obbard, R.W. Microplastics in Polar Regions: The Role of Long Range Transport. Curr. Opin. Environ. Sci. 2018, 1, 24–29. [Google Scholar] [CrossRef]
- Cowger, W.; Booth, A.M.; Hamilton, B.M.; Thaysen, C.; Primpke, S.; Munno, K.; Lusher, A.L.; Dehaut, A.; Vaz, V.P.; Liboiron, M.; et al. Reporting Guidelines to Increase the Reproducibility and Comparability of Research on Microplastics. Appl. Spectrosc. 2020, 74, 1066–1077. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Edo, C.; Velázquez, D.; Casero-Chamorro, M.C.; Leganés, F.; Quesada, A.; Fernández-Piñas, F.; Rosal, R. First Detection of Microplastics in the Freshwater of an Antarctic Specially Protected Area. Mar. Pollut. Bull. 2020, 161, 111811. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Lacerot, G.; Edo, C.; Lozoya, J.P.; Leganés, F.; Fernández-Piñas, F.; Rosal, R.; Teixeira-de-Mello, F. A Pilot Study about Microplastics and Mesopelagic in an Antarctic Glacier. Cryosphere 2021, 15, 2531–2539. [Google Scholar] [CrossRef]
- Materić, D.; Kjær, H.A.; Vallelonga, P.; Tison, J.-L.; Röckmann, T.; Holzinger, R. Nanoplastics Measurements in Northern and Southern Polar Ice. Environ. Res. 2022, 208, 112741. [Google Scholar] [CrossRef] [PubMed]
- Absher, T.M.; Ferreira, S.L.; Kern, Y.; Ferreira, A.L., Jr.; Christo, S.W.; Ando, R.A. Incidence and Identification of Microfibers in Ocean Waters in Admiralty Bay Antarctica. Environ. Sci. Pollut. Res. 2019, 26, 292–298. [Google Scholar] [CrossRef]
- Leistenschneider, C.; Burkhardt-Holm, P.; Mani, T.; Primpke, S.; Taubner, H.; Gerdts, G. Microplastics in the Weddell Sea (Antarctica): A Forensic Approach for Discrimination between Environmental and Vessel-Induced Microplastics. Environ. Sci. Technol. 2021, 55, 15900–15911. [Google Scholar] [CrossRef]
- Lacerda, A.L.F.; Rodrigues, L.S.; van Sebille, E.; Rodrigues, F.L.; Ribeiro, L.; Secchi, E.R.; Proietti, M.C. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 2019, 9, 3977. [Google Scholar] [CrossRef] [PubMed]
- Isobe, A.; Uchiyama-Matsumoto, K.; Uchida, K.; Tokai, T. Microplastics in the Southern Ocean. Mar. Pollut. Bull. 2017, 114, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Suaria, G.; Achtypi, A.; Perold, V.; Lee, J.R.; Pierucci, A.; Bornman, T.G.; Aliani, S.; Ryan, P.G. Microfibers in Oceanic Surface Waters: A Global Characterization. Sci. Adv. 2020, 6, eaay8493. Available online: https://www.science.org/doi/10.1126/sciadv.aay8493 (accessed on 1 March 2022). [CrossRef]
- Cunningham, E.M.; Ehlers, S.M.; Dick, J.T.A.; Sigwart, J.D.; Linse, K.; Dick, J.J.; Kiriakoulakis, K. High Abundances of Microplastic Pollution in Deep-Sea Sediments: Evidence from Antarctica and the Southern Ocean. Environ. Sci. Technol. 2020, 54, 13661–13671. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. Wastewater Treatment Plant Effluent as a Source of Microplastics: Review of the Fate, Chemical Interactions and Potential Risks to Aquatic Organisms. Water Sci. Technol. 2016, 74, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Gröndal, F.; Sidenmark, J.; Thomsen, A. Survey of Waste Disposal Practices at Antarctic Research Stations. Polar Res. 2008, 28, 298–306. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Karbalei, S.; Maselli, V.; Walker, T.R. Micro(nano) Plastic Sources, Fate, and Effects: What we Know After Years of Research. J. Hazard. Mat. 2022, 6, 100057. [Google Scholar] [CrossRef]
- Duarte, B.; Gameiro, C.; Matos, A.R.; Figueiredo, A.; Silva, M.S.; Cordeiro, C.; Cacador, I.; Reis-Santos, P.; Fonseca, V.; Cabrita, M.T.; et al. First Screening of Biocides, Persistent Organic Pollutants, Pharmaceutical and Personal Care Products in Antarctic Phytoplankton from Deception Island. Chemosphere 2021, 274, 129860. [Google Scholar] [CrossRef]
- Muller-Karanassos, C.; Arundel, W.; Lindeque, P.K.; Vance, T.; Turner, A.; Cole, M. Environmental Concentrations of Antifouling Paint Particles Are Toxic to Sediment-Dwelling Invertebrates. Environ. Pollut. 2021, 268, 115754. [Google Scholar] [CrossRef]
- Pradel, A.; Gautier, M.; Bavay, D.; Gigault, J. Micro- and Nanoplastics Transfer in Freezing Saltwater: Implications for their Fate in Polar Waters. Environ. Sci. Process. Impacts 2021, 23, 1759–1770. [Google Scholar] [CrossRef]
- Almela, P.; Gonzales, S. Are Antarctic Specially Protected Areas Safe from Plastic Pollution? A Survey of Plastic Litter at Byers Peninsula, Livingston Island, Antarctica. Adv. Polar. Sci. 2020, 31, 284–290. [Google Scholar] [CrossRef]
- Waluda, C.M.; Staniland, I.J.; Dunn, M.J.; Thorpe, S.E.; Grilly, E.; Whitelaw, M.; Hughes, K.A. Thirty Years of Marine Debris in the Southern Ocean: Annual Surveys of two Island Shores in the Scotia Sea. Environ. Int. 2020, 136, 105460. [Google Scholar] [CrossRef] [PubMed]
- Tekman, M.B.; Wekerle, C.; Lorenz, C.; Primpke, S.; Hasemann, G.; Gerdts, G.; Bergmann, M. Tying up Loose Ends of Microplastic Pollution in the Arctic: Distribution from the Sea Surface, through the Water Column to Deep-Sea Sediments at the Hausgarten Observatory. Environ. Sci. Technol. 2020, 54, 4079–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Li, Y.; Wang, J. Occurrence and Ecological Impact of Microplastics in Aquaculture Ecosystems. Chemosphere 2021, 274, 129989. [Google Scholar] [CrossRef]
- Jewett, E.; Arnott, G.; Connolly, L.; Vasudevan, N.; Kevei, E. Microplastics and Their Impact on Reproduction—Can we Learn from the C. elegans Model? Front. Toxicol. 2022, 748912. [Google Scholar] [CrossRef]
- Reisser, J.; Shaw, J.; Hallegraeff, G.; Proietti, M.; Barnes, D.K.A.; Thums, M.; Wilcox, C.; Hardesty, B.D.; Pattiaratchi, C. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates. PLoS ONE 2014, 9, e100289. [Google Scholar] [CrossRef] [Green Version]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef]
- Arias-Andres, M.; Klümper, U.; Rojas-Jimenez, K.; Grossart, H.P. Microplastic Pollution Increases Gene Exchange in Aquatic Ecosystems. Environ. Pollut. 2018, 237, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Laganà, P.; Caruso, G.; Corsi, I.; Bergami, E.; Venuti, V.; Majolino, D.; La Ferla, R.; Azzaro, M.; Cappello, S. Do Plastics Serve as a Possible Vector for the Spread of Antibiotic Resistance? First Insights from Bacteria Associated to a Polystyrene Piece from King George Island (Antarctica). Int. J. Hyg. Environ. Health 2019, 222, 89–100. [Google Scholar] [CrossRef]
- Bestley, S.; Ropert-Coudert, Y.; Bengtson Nash, S.; Brooks, C.M.; Cotté, C.; Dewar, M.; Friedlaender, A.S.; Jackson, J.A.; Labrousse, S.; Lowther, A.D.; et al. Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front. Ecol. Evol. 2020, 8, 66936. [Google Scholar] [CrossRef]
- Phillips, R.A.; Waluda, C.M. Albatrosses and Petrels at South Georgia as Sentinels of Marine Debris Input from Vessel in the Southwest Atlantic Ocean. Environ. Int. 2020, 136, 105443. [Google Scholar] [CrossRef] [PubMed]
- Auman, H.J.; Woehler, E.J.; Riddle, M.J.; Burton, H. First Evidence of Plastic Debris by Seabirds at Sub-Antarctic Island. Mar. Ornithol. 2004, 32, 105–106. [Google Scholar]
- Bessa, F.; Ratcliffe, N.; Otero, V.; Sobral, P.; Marques, J.C.; Waluda, C.M.; Trathan, P.N.; Xavier, J.C. Microplastics in Gentoo Penguins from the Antarctic Region. Sci. Rep. 2019, 9, 14191. [Google Scholar] [CrossRef] [Green Version]
- Fragão, J.; Bessa, F.; Otero, V.; Barbosa, A.; Sobral, P.; Waluda, C.M.; Guimaro, H.R.; Xavier, J.C. Microplastics and Other Anthropogenic Particles in Antarctica: Using Penguins as Biological Samplers. Sci. Total Environ. 2021, 788, 147698. [Google Scholar] [CrossRef]
- Eriksson, C.; Burton, H. Origins and Biological Accumulation of Small Plastic Particles in Fur Seals from Macquarie Island. Ambio 2003, 32, 380–384. [Google Scholar] [CrossRef]
- Ryan, P.G.; Bruyn, P.J.N.; Bester, N.M. Regional Differences in Plastic Ingestion among Southern Ocean Fur Seals and Albatrosses. Mar. Pollut. Bull. 2016, 104, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garin, O.; Garcia-Cuevas, I.; Drago, M.; Rita, D.; Parga, M.; Gazo, M.; Cradona, L. No Evidence of Microplastics in Antarctic Fur Seals Scats from a Hotspot of Human Activity in Western Antarctica. Sci. Total Environ. 2020, 737, 140210. [Google Scholar] [CrossRef] [PubMed]
- Von Friesen, L.W.; Granberg, M.E.; Pavlova, O.; Magnusson, K.; Hassellöv, M.; Gabrielsen, G.W. Summer Sea Ice Melt and Wastewater are Important Local Sources of Microlitter to Svalbard Waters. Environ. Int. 2020, 139, 105511. [Google Scholar] [CrossRef] [PubMed]
- Kohlbach, D.; Lange, B.A.; Schaafsma, F.L.; David, C.; Vortkamp, M.; Graeve, M.; Van Franeker, J.A.; Krumpen, T.; Flores, H. Ice Algae-Produced Carbon is Critical for Overwintering of Antarctic Krill Euphausia superba. Front. Mar. Sci. 2017, 4, 310. [Google Scholar] [CrossRef] [Green Version]
- Dawson, A.; Huston, W.; Kawaguchi, S.; King, C.; Cropp, R.; Wild, S.; Eisenmann, P.; Townsend, K.; Nash, S.B. Uptake and Depuration Kinetics Influence Microplastic Bioaccumulation and Toxicity in Antarctic Krill (Euphausia superba). Environ. Sci. Technol. 2018, 52, 3195–3201. [Google Scholar] [CrossRef]
- Dawson, A.L.; Kawaguchi, S.; King, C.K.; Townsend, K.A.; King, R.; Huston, W.M.; Nash, S.M.B. Turning Microplastics into Nanoplastics through Digestive Fragmentation by Antarctic Krill. Nat. Commun. 2018, 9, 1001. [Google Scholar] [CrossRef] [PubMed]
- Fabry, V.; McClintock, J.; Mathis, J.; Grebemeier, J. Ocean Acidification at High Latitudes: The Bellwether. Oceanography 2011, 22, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, S.; Kurihara, H.; King, R.; Hale, L.; Berli, T.; Robinson, J.P.; Ishida, A.; Wakita, M.; Virtue, P.; Nicol, S.; et al. Will Krill Fare Well under Southern Ocean Acidification? Biol. Lett. 2011, 7, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Ericson, J.A.; Hellessey, N.; Kawaguchi, S.; Nicol, S.; Nichols, P.D.; Hoem, N.; Virtue, P. Adult Antarctic Krill Proves Resilient in a Simulated High CO2 Ocean. Commun. Biol. 2018, 1, 190. [Google Scholar] [CrossRef] [PubMed]
- Rowland, E.; Galloway, T.; Cole, M.; Lewis, C.; Peck, V.; Thorpe, S.; Manno, C. The Effects of Combined Ocean Acidification and Nanoplastics Exposures on the Embryonic Development of Antarctic Krill. Front. Mar. Sci. 2021, 8, 1080. [Google Scholar] [CrossRef]
- Manno, C.; Peck, V.L.; Corsi, I.; Bergami, E. Under Pressure: Nanoplastics as a Further Stressor for sub-Antarctic Pteropods Already Tackling Ocean Acidification. Mar. Pollut. Bull. 2022, 174, 113176. [Google Scholar] [CrossRef]
- Evangeliou, N.; Tichŷ, O.; Eckardt, S.; Groot Zwaaftink, C.; Brahney, J. Sources and Fate of Atmospheric Microplastics Revealed from Inverse and Dispersion Modelling: From Global Emissions to Deposition. J. Hazard. Mater. 2022, 432, 128585. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Baladima, F.; Phoenix, V.R.; Thomas, J.L.; Le Roux, G.; Sonke, J.E. Evidence of Free Tropospheric and Long-Range Transport of Microplastic at Pic du Midi Observatory. Nat. Commun. 2021, 12, 7242. [Google Scholar] [CrossRef]
- Revell, L.E.; Kuma, P.; Le Ru, E.C.; Somerville, W.R.C.; Gaw, S. Direct Radiative Effects of Airborne Microplastics. Nature 2021, 598, 462–467. [Google Scholar] [CrossRef]
- McKay, O.; Pold, G.; Martin, P.; Sistla, S. Macroplastic Fragment Contamination of Agricultural Soils a Distinct Microbial Hotspot. Front. Environ. Sci. 2022, 10, 838455. [Google Scholar] [CrossRef]
- Onink, V.; Jongedijk, C.E.; Hoffman, M.J.; van Sebille, E.; Laufkötter, C. Global Simulations of Marine Plastic Transport Show Plastic Trapping in Coastal Zones. Environ. Res. Lett. 2021, 16, 064053. [Google Scholar] [CrossRef]
- Vighi, M.; Bayo, J.; Fernández-Piñas, F.; Gago, J.; Gómez, M.; Hernández-Borges, J.; Herrera, A.; Landaburu, J.; Muniategui-Lorenzo, S.; Román-Muñoz, A.; et al. Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. Rev. Environ. Contam. Toxicol. 2021, 257, 163–218. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.I.; Morrison, A.K.; Hogg, A.M.; Macaya, E.C.; van Sebille, E.; Ryan, P.G.; Padovan, A.; Jack, C.; Valdivia, N.; Waters, J.M. Antarctica’s Ecological Isolation will be Broken by Storm-Driven Dispersal and Warming. Nat. Clim. Chang. 2018, 8, 704–708. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.M.; Waller, C.L.; Morley, S.A.; Barnes, K.A.; Brasier, M.J.; Double, M.C.; Griffiths, H.J.; Hughes, K.A.; Jackson, J.A.; Waluda, C.M.; et al. Local Drivers of Change in Southern Ocean Ecosystems: Human Activities and Policy Implications. Front. Ecol. Evol. 2021, 9, 624518. [Google Scholar] [CrossRef]
Matrix | Location | Depth | Collection Identification | Shape | Size | Concentration (Items) | Ref. |
---|---|---|---|---|---|---|---|
Snow | East Antarctica, Ross Island (McMurdo and Scott Base, up to 20 km away) | 0–2 cm | Manual μFTIR * | Fibers (61%), Fragments, Films | Mean: 606 μm Range: 50–3510 μm | Mean: 29.4 ± 4.7 L−1 (of melted snow) Range: 4–82 L−1 | [48] |
Freshwater | ASPA 126 Livingston Island (Byers Peninsula) | 0 m | Drifting nets (333 μm and 100 μm mesh) μFTIR * | Fibers, films | Mean: 1118 μm Range: 400–3546 μm | Range: 4.7–14.3 × 10−4 m−3 (EPS) | [78] |
Ice | King George Island (Bellingshausen Dome; “Collins Glacier”) | ------------ | Visual and manual FTIR ** and μFTIR * | Fragments | Range: 2.3–12.6 mm | Mean: 9.5 × 10−4 m−3 Range: 0.17–0.33 m−2 | [79] |
Coastal landfast sea ice | East Antarctica (North Casey Station) | 0–115 cm | Stainless-steel corer Automated μFTIR * | ------------ | Mean: 56.7 μm Range: 20–325 μm | Mean: 20.4 L−1 (of melted ice) Range: 6–33 L−1 | [41] |
Coastal landfast sea ice | East Antarctica Ross Sea, Cape Evans | 0–150 cm | Stainless-steel corer TD-PTR-MS *** | ------------ | <200 nm | Top of the core: 67 ng mL−1 Bottom: 37.7 ng mL−1 | [80] |
Seawater | King George Island (Admiralty Bay) | 0–30 m | Neuston net (150 μm mesh) μRaman | Fibers | Range: ca. 2–5 mm | Mean: 0.024 ± 0.0457 m−3 | [81] |
Seawater | East Antarctica, Ross Sea (near-shore and offshore) | 5 m | Pumped water (each sample from 600 to 2000 m3) μFTIR * | Fragments (72%), Fibers (13%) | >60 μm | Mean: 0.17 ± 0.34 m−3 Range: 0.0032–1.18 m−3 | [42] |
Seawater | Mid Scotia Sea and Adelaide Island (55°S to 67°S) | Surface waters | Microplastic net (300 μm mesh) μFTIR * | Fragments (93%), Film (7%) | 90% <300 μm | Mean: 0.013 ± 0.005 m−3 (5056 ± 2158 km−2) Maximum: 0.054 m−3 | [56] |
Seawater | Weddell Sea | Surface waters Subsurface (11.2 m) | Manta net (300 μm mesh) FTIR ** Pumped and filtered (300 μm) FTIR ** | Fragments (90.2%), Lines (8.8%), Fragments (100%) | 74% <900 μm 64% <700 μm | Mean: 0.01 ± 0.01 m−3 Range: 0–0.04 m−3 Mean: 0.04 ± 0.1 m−3 Range: 0–0.47 m−3 | [82] |
Seawater | Off the Antarctic Peninsula | Surface waters | Manta net (330 μm mesh) FTIR ** | Fragments (51.3%), “Line” (42.3%),“Sphere” (6.4%) | <5 mm (54%) >5–200 mm (46%) | Mean: 1794 km−2 (0.008 items m−3) Range: 755–3524 km−2 | [83] |
Seawater | Southern Ocean | Surface waters | Neuston net (350 μm mesh) FTIR ** | Fragments | <5 mm | Range: 0.03–0.09 m−3 | [84] |
Seawater | Southern Ocean | Surface waters | Neuston net (200 μm mesh) μFTIR * | Fragments | Mean: 3.03 mm Range: 0.68–21.5 mm | Mean: 188 km−2 | [8] |
Seawater | Southern Ocean | Surface and subsurface (5 m) waters | Stainless-steel bucket/Ship underway pump μFTIR * | Fibers (72.9% cellulose) | Median: approx. 0.9 mm | Median: 1.7 L−1 Q1–Q3: 0.4–3.5 L−1 | [85] |
Sediment | East Antarctica, Ross Sea (Terra Nova Bay) | 25, 70 and 140 m | Van Veen grab FTIR ** | Fibers (42.8%), Film (35%), Fragments (22.2%) | 78.4% < 5 mm | Range: 5–1705 m−2 | [45] |
Sediment | Antarctic Peninsula Adelaide Island (Rothera Station) | 0–20 m | Diving or box coring FTIR ** | Fibers (nearly all) | <5 mm | Range: 0–3 mL−1 | [47] |
Sediment | King George Island (Admiralty Bay) | 6–60 m | Van Veen grab and SCUB FTIR ** | Fibers and Fragments | <5 mm | Range: 16–766 m−2 | [38] |
Sediment (cores) | Antarctic Peninsula, South Sandwich Islands, South Georgia Island | 136–3633 m | OKTOPUS Multicores Manual μFTIR * | Fragments (56%),Fibers (39%) | <2 mm | Mean: Antarctic Pen. 1.30 ± 0.51 g−1, S Sandwich Is. 1.09 ± 0.22 g−1, S Georgia Is. 1.04 ± 0.39 g−1 | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rota, E.; Bergami, E.; Corsi, I.; Bargagli, R. Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. Environments 2022, 9, 93. https://doi.org/10.3390/environments9070093
Rota E, Bergami E, Corsi I, Bargagli R. Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. Environments. 2022; 9(7):93. https://doi.org/10.3390/environments9070093
Chicago/Turabian StyleRota, Emilia, Elisa Bergami, Ilaria Corsi, and Roberto Bargagli. 2022. "Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives" Environments 9, no. 7: 93. https://doi.org/10.3390/environments9070093
APA StyleRota, E., Bergami, E., Corsi, I., & Bargagli, R. (2022). Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. Environments, 9(7), 93. https://doi.org/10.3390/environments9070093