Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Processing
2.3. Wettability and Surface Energy
2.4. Biodegradability
2.5. Visual and Microscopic Assessment
2.6. Loss of Mass
2.7. Fourier Transform Infrared Spectroscopy (FTIR)
3. Results
3.1. Preliminary Processing Assessment—Thermal Stability Measurement
3.2. Films
3.3. Preliminary Biodegradability Assessment—Contact Angle and Surface Energy
3.4. Research on Biodegradability
3.4.1. Soil Activity
3.4.2. Visual and Microscopic Assessment
3.4.3. Loss of Weight
3.4.4. Fourier Transform Infrared Spectroscopy (FTIR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhiogade, A.; Kannan, M.; Devanathan, S. Degradation Kinetics Study of Poly Lactic Acid(PLA) Based Biodegradable Green Composites. Mater. Today Proc. 2020, 24, 806–814. [Google Scholar] [CrossRef]
- Polman, E.M.N.; Gruter, G.-J.M.; Parsons, J.R.; Tietema, A. Comparison of the Aerobic Biodegradation of Biopolymers and the Corresponding Bioplastics: A Review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef] [PubMed]
- Weligama Thuppahige, V.T.; Karim, M.A. A Comprehensive Review on the Properties and Functionalities of Biodegradable and Semibiodegradable Food Packaging Materials. Compr. Rev. Food Sci. Food Saf. 2022, 21, 689–718. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Li, Y.; Gong, M.; Guo, Y.; Guo, Z.; Fang, Q.; Li, X. An Environmentally Sustainable Plasticizer Toughened Polylactide. RSC Adv. 2018, 8, 11643–11651. [Google Scholar] [CrossRef] [Green Version]
- Plastics and Environmental Sustainability by Andrady, Anthony L. (9781118312605)|BrownsBfS. Available online: https://www.brownsbfs.co.uk/Product/Andrady-Anthony-L/Plastics-and-environmental-sustainability---fact-and-fiction/9781118312605 (accessed on 19 February 2022).
- Suaria, G.; Avio, C.G.; Mineo, A.; Lattin, G.; Magaldi, M.; Belmonte, G.; Moore, C.; Regoli, F.; Aliani, S. The Mediterranean Plastic Soup: Synthetic Polymers in Mediterranean Surface Waters. Sci. Rep. 2016, 6, 37551. [Google Scholar] [CrossRef] [Green Version]
- Ohkita, T.; Lee, S.-H. Thermal Degradation and Biodegradability of Poly (Lactic Acid)/Corn Starch Biocomposites. J. Appl. Polym. Sci. 2006, 100, 3009–3017. [Google Scholar] [CrossRef]
- Stasiek, A.; Raszkowska-Kaczor, A.; Janczak, K. Foaming of poylactide. Przem. Chem. 2014, 93, 117–119. [Google Scholar] [CrossRef]
- Shimao, M. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12, 242–247. [Google Scholar] [CrossRef]
- Ciriminna, R.; Pagliaro, M. Biodegradable and Compostable Plastics: A Critical Perspective on the Dawn of Their Global Adoption. ChemistryOpen 2020, 9, 8–13. [Google Scholar] [CrossRef]
- Kalita, N.K.; Damare, N.A.; Hazarika, D.; Bhagabati, P.; Kalamdhad, A.; Katiyar, V. Biodegradation and Characterization Study of Compostable PLA Bioplastic Containing Algae Biomass as Potential Degradation Accelerator. Environ. Chall. 2021, 3, 100067. [Google Scholar] [CrossRef]
- Janczak, K.; Hrynkiewicz, K.; Znajewska, Z.; Dąbrowska, G. Use of Rhizosphere Microorganisms in the Biodegradation of PLA and PET Polymers in Compost Soil. Int. Biodeterior. Biodegrad. 2018, 130, 65–75. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Insights on the Aerobic Biodegradation of Polymers by Analysis of Evolved Carbon Dioxide in Simulated Composting Conditions. Polym. Degrad. Stab. 2017, 137, 251–271. [Google Scholar] [CrossRef] [Green Version]
- ISO 846:2019—Evaluation of the Action of Microorganisms. Available online: https://www.iso.org/standard/74599.html (accessed on 19 November 2021).
- Stepczyńska, M.; Rytlewski, P. Enzymatic Degradation of Flax-Fibers Reinforced Polylactide. Int. Biodeterior. Biodegrad. 2018, 126, 160–166. [Google Scholar] [CrossRef]
- Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Pasanphan, W.; Haema, K.; Kongkaoroptham, P.; Phongtamrug, S.; Piroonpan, T. Glycidyl Methacrylate Functionalized Star-Shaped Polylactide for Electron Beam Modification of Polylactic Acid: Synthesis, Irradiation Effects and Microwave-Resistant Studies. Polym. Degrad. Stab. 2021, 189, 109619. [Google Scholar] [CrossRef]
- Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, Biodegradation and Biomedical Applications of Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid) Micro and Nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. [Google Scholar] [CrossRef]
- Hammiche, D.; Amar, B.; Bettache, A.; Budtova, T.; Guermazi, N. Characterization of Polylactic Acid Green Composites and Its Biodegradation in a Bacterial Environment. Int. J. Polym. Anal. Charact. 2019, 24, 236–244. [Google Scholar] [CrossRef]
- Janczak, K.; Dąbrowska, G.B.; Raszkowska-Kaczor, A.; Kaczor, D.; Hrynkiewicz, K.; Richert, A. Biodegradation of the Plastics PLA and PET in Cultivated Soil with the Participation of Microorganisms and Plants. Int. Biodeterior. Biodegrad. 2020, 155, 105087. [Google Scholar] [CrossRef]
- Sinclair, R.G. The Case for Polylactic Acid as a Commodity Packaging Plastic. J. Macromol. Sci. Part A 1996, 33, 585–597. [Google Scholar] [CrossRef]
- Mousa, N.; Galiwango, E.; Haris, S.; Al-Marzouqi, A.H.; Abu-Jdayil, B.; Caires, Y.L. A New Green Composite Based on Plasticized Polylactic Acid Mixed with Date Palm Waste for Single-Use Plastics Applications. Polymers 2022, 14, 574. [Google Scholar] [CrossRef]
- Młotek, M.; Gadomska-Gajadhur, A.; Sobczak, A.; Kruk, A.; Perron, M.; Krawczyk, K. Modification of PLA Scaffold Surface for Medical Applications. Appl. Sci. 2021, 11, 1815. [Google Scholar] [CrossRef]
- Fiedurek, K.; Szroeder, P.; Macko, M.; Raszkowska-Kaczor, A.; Puszczykowska, N. Influence of the Parameters of the Extrusion Process on the Properties of PLA Composites with the Addition of Graphite. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1199, 012057. [Google Scholar] [CrossRef]
- Królikowski, B.; Kaczmarek, H.; Klimiec, E.; Chylińska, M.; Bajer, D. Wpływ struktury na właściwości piezoelektryczne elektretów polipropylen-montmorylonit. Polimery 2019, 64, 493–498. [Google Scholar] [CrossRef]
- Zenker, B.; Dannemann, M.; Geller, S.; Holeczek, K.; Weißenborn, O.; Altinsoy, M.E.; Modler, N. Structure-Integrated Loudspeaker Using Fiber-Reinforced Plastics and Piezoelectric Transducers—Design, Manufacturing and Validation. Appl. Sci. 2020, 10, 3438. [Google Scholar] [CrossRef]
- Kovalcik, A.; Pérez-Camargo, R.A.; Fürst, C.; Kucharczyk, P.; Müller, A.J. Nucleating Efficiency and Thermal Stability of Industrial Non-Purified Lignins and Ultrafine Talc in Poly(Lactic Acid) (PLA). Polym. Degrad. Stab. 2017, 142, 244–254. [Google Scholar] [CrossRef]
- Shakoor, A.; Thomas, N.L. Talc as a Nucleating Agent and Reinforcing Filler in Poly(Lactic Acid) Composites. Polym. Eng. Sci. 2014, 54, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Hu, X.; Zhang, Q.; Peng, X.; Xiang, Y. Improved Piezoelectricity of Polylactide Using Vitamin B2 for Poling-Free Mechanical and Acoustic Nanogenerators. J. Mater. Sci. 2021, 56, 902–912. [Google Scholar] [CrossRef]
- ISO 1133-1:2011—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. Available online: https://www.iso.org/standard/44273.html (accessed on 19 November 2021).
- PN-EN ISO 11358:2004—Thermogravimetry (TG) of Polymers. Available online: https://sklep.pkn.pl/pn-en-iso-11358-2004p.html (accessed on 19 November 2021).
- PN-ISO 4593:1999—Plastics—Film and Sheeting—Determination of Thickness by Mechanical Scanning. Available online: https://sklep.pkn.pl/pn-iso-4593-1999p.html (accessed on 19 November 2021).
- Żenkiewicz, M. Methods for the Calculation of Surface Free Energy of Solids. J. Achiev. Mater. Manuf. Eng. 2007, 24, 137–145. [Google Scholar]
- Rytlewski, P.; Żenkiewicz, M. Applications of Lasers in Metallization of Thermoplastic and Thermosetting Polymers. J. Achiev. Mater. Manuf. Eng. 2013, 57, 9. [Google Scholar]
- Bajer, K.; Richert, A.; Bajer, D.; Korol, J. Biodegradation of Plastified Starch Obtained by Corotation Twin-Screw Extrusion. Polym. Eng. Sci. 2012, 52, 2537–2542. [Google Scholar] [CrossRef]
- Hockaday, W.C.; Grannas, A.M.; Kim, S.; Hatcher, P.G. The Transformation and Mobility of Charcoal in a Fire-Impacted Watershed. Geochim. Cosmochim. Acta 2007, 71, 3432–3445. [Google Scholar] [CrossRef]
- Bajer, K.; Kaczmarek, H. Metody badania biodegradacji materiałów polimerowych. Cz. II. Techniki eksperymentalne. Polimery 2007, 52, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, S.; Rajakumar, P.R. Infrared Spectral Analysis of Waste Pet Samples. Int. Lett. Chem. Phys. Astron. 2012, 4, 58–65. [Google Scholar] [CrossRef]
- Piga, L.; Villieras, F.; Yvon, J. Thermogravimetric Analysis of a Talc Mixture. Thermochim. Acta 1992, 211, 155–162. [Google Scholar] [CrossRef]
- Lee, C.; Pang, M.M.; Koay, S.C.; Choo, H.L.; Tshai, K.Y. Talc Filled Polylactic-Acid Biobased Polymer Composites: Tensile, Thermal and Morphological Properties. SN Appl. Sci. 2020, 2, 354. [Google Scholar] [CrossRef] [Green Version]
- Sedničková, M.; Pekařová, S.; Kucharczyk, P.; Bočkaj, J.; Janigová, I.; Kleinová, A.; Jochec-Mošková, D.; Omaníková, L.; Perďochová, D.; Koutný, M.; et al. Changes of Physical Properties of PLA-Based Blends during Early Stage of Biodegradation in Compost. Int. J. Biol. Macromol. 2018, 113, 434–442. [Google Scholar] [CrossRef]
- Boey, J.Y.; Mohamad, L.; Khok, Y.S.; Tay, G.S.; Baidurah, S. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(Lactic Acid) and Its Composites. Polymers 2021, 13, 1544. [Google Scholar] [CrossRef]
- Rudeekit, Y.; Numnoi, J.; Tajan, M.; Chaiwutthinan, P.; Leejarkpai, T. Determining Biodegradability of Polylactic Acid under Different Environments. J Met. Mater. Min. 2008, 18, 83–87. [Google Scholar]
- ISO 14855:2018 Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by analysis of Evolved Carbon Dioxide. Available online: https://www.iso.org/standard/72046.html (accessed on 19 November 2021).
- Kumar, S.; Maiti, P. Controlled Biodegradation of Polymers Using Nanoparticles and Its Application. RSC Adv. 2016, 6, 67449–67480. [Google Scholar] [CrossRef]
- Milošević, M.; Krkobabić, A.; Radoičić, M.; Šaponjić, Z.; Radetić, T.; Radetić, M. Biodegradation of Cotton and Cotton/Polyester Fabrics Impregnated with Ag/TiO2 Nanoparticles in Soil. Carbohydr. Polym. 2017, 158, 77–84. [Google Scholar] [CrossRef]
- Tarani, E.; Črešnar, K.P.; Zemljič, L.; Chrissafis, K.; Papageorgiou, G.; Lambropoulou, D.; Zamboulis, A.; Bikiaris, D.N.; Terzopoulou, Z. Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers. Appl. Sci. 2021, 11, 3004. [Google Scholar] [CrossRef]
- Calmon, A.; Dusserre-Bresson, L.; Bellon-Maurel, V.; Feuilloley, P.; Silvestre, F. An Automated Test for Measuring Polymer Biodegradation. Chemosphere 2000, 41, 645–651. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Narayan, R.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Dos and Do Nots When Assessing the Biodegradation of Plastics. Environ. Sci. Technol. 2019, 53, 9967–9969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, Y.; An, Y.-J. Current Research Trends on Plastic Pollution and Ecological Impacts on the Soil Ecosystem: A Review. Environ. Pollut. Barking Essex 1987 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef]
- Misic, C.; Covazzi Harriague, A. Development of Marine Biofilm on Plastic: Ecological Features in Different Seasons, Temperatures, and Light Regimes. Hydrobiologia 2019, 835, 129–145. [Google Scholar] [CrossRef]
- Loredo-Treviño, A.; Garcia, G.; Velasco-Téllez, A.; Rodríguez-Herrera, R.; Aguilar, C.N. Polyurethane Foam as Substrate for Fungal Strains. Adv. Biosci. Biotechnol. 2011, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Valapa, R.B.; Pugazhenthi, G.; Katiyar, V. Hydrolytic Degradation Behaviour of Sucrose Palmitate Reinforced Poly(Lactic Acid) Nanocomposites. Int. J. Biol. Macromol. 2016, 89, 70–80. [Google Scholar] [CrossRef]
- Dąbrowska, G.B.; Janczak, K.; Richert, A. Combined Use of Bacillus Strains and Miscanthus for Accelerating Biodegradation of Poly (Lactic Acid) and Poly (Ethylene Terephthalate). PeerJ 2021, 9, e10957. [Google Scholar] [CrossRef]
- Kannahi, M.; Thamizhmarai, T. Biodegradation of Plastic by Aspergillus sp. Int. J. Trend Sci. Res. Dev. 2018, 2, 683–690. [Google Scholar]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and Biodegradation of Poly(Lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Nagendran, R.; Lee, K.J.; Lee, W.H.; Kim, S.Z. Influence of Plant Growth Promoting Bacteria and Cr6+ on the Growth of Indian Mustard. Chemosphere 2006, 62, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Kalitkiewicz, A.; Kępczyńska, E. The Use of Rhizobacteria in Plant Growth Promoting Process. Biotechnologia 2008, 2, 102–114. [Google Scholar]
- Lv, S.; Liu, X.; Gu, J.; Jiang, Y.; Tan, H.; Zhang, Y. Microstructure Analysis of Polylactic Acid-Based Composites during Degradation in Soil. Int. Biodeterior. Biodegrad. 2017, 122, 53–60. [Google Scholar] [CrossRef]
- Varesano, A.; Dall’Acqua, L.; Tonin, C. A Study on the Electrical Conductivity Decay of Polypyrrole Coated Wool Textiles. Polym. Degrad. Stab. 2005, 89, 125–132. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, I.Y.; Song, W.S. Biodegradation of Polylactic Acid (PLA) Fibers Using Different Enzymes. Macromol. Res. 2014, 22, 657–663. [Google Scholar] [CrossRef]
- Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and Role of Polylactic Acid-Degrading Bacteria on Degrading Enzymes Productions and PLA Biodegradability at Mesophilic Conditions. Polym. Degrad. Stab. 2018, 152, 75–85. [Google Scholar] [CrossRef]
- Morawska, M.; Krasowska, K. Degradability of Polylactide Films by Commercial Microbiological Preparations for Household Composters. Pol. J. Chem. Technol. 2017, 19, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Vince, J.; Hardesty, B.D. Plastic Pollution Challenges in Marine and Coastal Environments: From Local to Global Governance. Restor. Ecol. 2017, 25, 123–128. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Temperature of zone I (°C) | 175 |
Temperature of zone II (°C) | 180 |
Temperature of zone III (°C) | 185 |
Rotational speed (revs/min−1) | 100 |
Sample | PLA (wt%) | Talc (wt%) | Riboflavin (wt%) |
---|---|---|---|
0 | 100 | - | - |
A1 | 99 | 1 | - |
A2 | 95 | 5 | - |
A3 | 80 | 20 | - |
B1 | 99 | - | 1 |
B2 | 95 | - | 5 |
B3 | 80 | - | 20 |
Parameter | Value |
---|---|
Temperature of zone I (°C) | 180° |
Temperature of zone II (°C) | 180 |
Temperature of zone III (°C) | 180 |
Head temperature (°C) | 180 |
Rotational speed (revs/min−1) | 20–40 |
Sample | Contact Angle (o) | Surface Energy (mJ/m2) |
---|---|---|
0 | 77.0 ± 0.4 | 36.8 |
A1 | 76.9 ± 0.5 | 36.8 |
A2 | 72.5 ± 0.7 | 39.6 |
A3 | 72.8 ± 0.7 | 39.4 |
B1 | 76.5 ± 0.2 | 37.1 |
B2 | 76.4 ± 0.3 | 37.2 |
B3 | 75.4 ± 0.5 | 38.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puszczykowska, N.; Rytlewski, P.; Macko, M.; Fiedurek, K.; Janczak, K. Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments 2022, 9, 56. https://doi.org/10.3390/environments9050056
Puszczykowska N, Rytlewski P, Macko M, Fiedurek K, Janczak K. Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments. 2022; 9(5):56. https://doi.org/10.3390/environments9050056
Chicago/Turabian StylePuszczykowska, Natalia, Piotr Rytlewski, Marek Macko, Kacper Fiedurek, and Katarzyna Janczak. 2022. "Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers" Environments 9, no. 5: 56. https://doi.org/10.3390/environments9050056
APA StylePuszczykowska, N., Rytlewski, P., Macko, M., Fiedurek, K., & Janczak, K. (2022). Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments, 9(5), 56. https://doi.org/10.3390/environments9050056