Progress in Graphene Oxide Hybrids for Environmental Applications
Abstract
:1. Introduction
2. Architecture of Graphene Oxide–Metal Nanocomposites
3. Environmental Applications of Graphene Oxide
3.1. Water Purification
3.1.1. Removal of Heavy Metals
3.1.2. Removal of DYE and Removal of Organic Pollutants
3.1.3. Removal of Radioisotopes
3.2. Adsorption Equilibrium Parameters of Uranium Ions
3.3. CO2 Capture
3.4. Electromagnetic Interference (EMI)
3.5. Antimicrobial Activity
Nanocomposites | Synthesis | Particle Size | Antimicrobial Effect | Environmental Effects | Reference |
---|---|---|---|---|---|
Graphene oxide-Cu nanocomposite | Electrochemical deposition [123] | 9.5 µm particle size | The antibacterial activity is stronger in Gram-negative bacteria than in Gram-positive bacteria. | Copper nanoparticles have gained popularity due to their unique physical and chemical properties and low cost of manufacturing. | [124] |
Graphene-CuO nanocomposites | Polymerization method [125] | 4.5–14.5 nm | Stable metallic copper nanoparticles (Cu-NPs) possess a significant capacity for bacterial cell filamentation and cell death. | Copper-oxide-NP-based amperometric biosensors were used to detect adenine and guanine simultaneously. | [124] |
Graphene oxide-silver nanocomposites | Drop casting techniques [14] | 55 nm. | The therapeutic use of silver prompted the development of the first Ag(I)-NHC compound with antibacterial characteristics. | The use of phytofunctionalized silver nanoparticles is for the suppression of microbial growth and environmental remediation. | [12] |
Graphene oxide–magnetite nanocomposites | Dispersion technique [126] | 10–15 nm | NCs rGO/Fe3O4 showed antifungal activities against Trichophyton mentagrophytes and Candida albicans by the agar-well diffusion method | A variety of applications are seen, such as catalysts, adsorbents, fuel cell batteries, supercapacitors, and wastewater treatment. | [127] |
Nanocomposite | Shape | Properties | Application | Reference |
---|---|---|---|---|
GO-Cu | N/A | N/A | Carcinogenic streptococcus mutans | [128] |
Graphene-Cu-zinc oxide | Nanoflowers | Biosensor | Glucose detection | [129] |
Copper-beta cyclodextrin–graphene oxide | Nanoparticles | Biosensor | Tetracycline antibiotics | [130] |
rGO-nickel-copper | Bimetallic hollow nanoparticles | Biosensor | Glucose detection | [131] |
rGO-copper vanadate | Nanoparticles | Biosensor | Antiandrogen drug detection of nilutamide detection | [132] |
Gold–copper–phosphate–graphene oxide–chicken egg white | Nanoflowers | Biosensor | Detection of acsorbic acid | [133] |
Fe-Cu-rGO@Ag | Nanocomposite | Biosensor | Blood creatinine | [134] |
poly-T-templated copper nanoparticles (poly T-CuNPs)-graphene oxide | Nanoparticles | Label-free fluorescent biosensor | Detection of MiRNA | [135] |
GO/Cu2O | Nanocomposite | Water treatment | Catalytic degradation rate of diclofenac (DCF) | [136] |
GO/Ni | Nanocomposite | Antibacterial activity | Detection of intracellular reactive oxygen species (ROS) | [137] |
(RhB/Au/RGO) | Nanocomposite | Immunosensor | Detection of Listeria monocytogenes | [138] |
GO/TiO2/blackberry extract | Partial bone nanocomposite substitutes | Tissue engineering. | Induces an osteoinductive effect | [139] |
Material | Pressure, Bar | CO2 Adsorption, mmol/gm | Reference |
---|---|---|---|
Polymerized ionic liquid/HEG | 1 | 0.51 | [140] |
Spongy-graphene | 1.01 | 0.86 | [141] |
MOF-AGO | 1 | 0.54 | [142] |
rGO@MgO/C | 1.00 | 0.72 | [143] |
B-doped rGO | 1 | 1.8 | [144] |
3D PEI/GO | 1 | 2.54 | [145] |
N-doped graphene aerogel | 1 | 2.57 | [146] |
Nanoporous graphene | 1 | 2.89 | [147] |
ZnO/N/rGO | 1.01 | 3.55 | [148] |
Cu-MOF/rGO-1 | 1 | 8.19 | [149] |
Cu-MOF/rGO-2 | 1.01 | 8.26 | [150] |
Activated graphene-derived carbon | 20 | 21.1 | [151] |
Graphene nanoplates | 30.00 | 56.40 | [152] |
Ag@SGO | 37.00 | 7.63 | [153] |
TiO2-GO | 1.00 | 1.88 | [154] |
Fe3O4-HEG | 11.00 | 60.00 | [155] |
PANI-HEG | 11.00 | 75.00 | [156] |
CuO-ZnO-ZrO2-GO | 20 | 209.6 | [157] |
Adsorbent | Absorbate | Temp (K) | G (kJ/mol) | Δ H (kJ/mol) | ΔS (J/mol K) | Reference |
---|---|---|---|---|---|---|
Graphene oxide | U(VI) | 298 | −23.54 | 2.98 | 87.02 | [158] |
313 | −24.88 | - | - | |||
340 | −25.93 | - | - | |||
Graphene oxide | Th (IV) | 298 | −29.91 | 3.59 | 88.32 | [159] |
313 | −31.45 | - | - | |||
338 | −34.24 | - | - | |||
Graphene oxide | Cr (VI) | 298 | −771.407 | 172.32 | 57.44 | [160] |
303 | −284.504 | - | - | |||
323 | −968.688 | - | - | |||
333 | −3586.05 | - | - | |||
343 | −1198.432 | - | - | |||
Graphene oxide | Co (II) | 293 | −1.035 | 0.588 | 0.005 | [161] |
308 | −1.105 | - | - | |||
323 | −1.201 | - | - | |||
Graphene oxide | Zn (II) | 293.15 | −37.89 | −2.171 | 0.137 | [162] |
303.15 | −39.44 | - | 0.136 | |||
318.15 | −40.96 | - | 0.134 | |||
Graphene oxide | Cs(I) | 298 | −23.64 | 10.351 | 110.992 | [65] |
318 | −25.22 | - | - | |||
338 | −26.81 | - | - | |||
GO-magnesium | U(VI) | 303 | −4.42 | −1.709 | 8.946 | [163] |
313 | −4.51 | - | - | |||
323 | −4.6 | - | - | |||
333 | −4.69 | - | - | |||
Sulfonated GO | U(VI) | 288.15 | −19.94 | 18.95 | 134.97 | [164] |
293.15 | −20.62 | - | - | |||
298.15 | −21.29 | - | - | |||
303.15 | −21.97 | - | - | |||
308.15 | −22.64 | - | - | |||
313.15 | −23.62 | - | - | |||
318.15 | −23.99 | - | - | |||
323.15 | −24.67 | - | - | |||
288.15 | −23.68 | 28.56 | 181.28 | |||
293.15 | −24.58 | - | - | |||
298.15 | −25.49 | - | - | |||
303.15 | −26.4 | - | - | |||
308.15 | −27.3 | - | - | |||
313.15 | −28.21 | - | - | |||
318.15 | −29.11 | - | - | |||
323.15 | −30.02 | - | - | |||
GO-activated carbon felt | U (VI) | 298 | −20.6 | 10.9 | 105.7 | [165] |
308 | −21.7 | - | - | |||
318 | −22.7 | - | - | |||
298 | −23.3 | 5.7 | 97.2 | |||
308 | −24.3 | - | - | |||
318 | −25.2 | - | - | |||
GO-CdS composite | Cu (II) | 298 | −14.6385 | 13.8079 | 95.631 | [166] |
313 | −16.2385 | - | - | |||
328 | −17.4964 | - | - | |||
MnO2-GONRs | Th (IV) | 293 | −22.61 | 84.14 | 364.33 | [58] |
298 | −24.43 | - | - | |||
303 | −26.25 | - | - | |||
308 | −28.08 | - | - | |||
3D-SRGO | Cd (II) | 298 | −6.508 | 19.56 | 87.63 | [167] |
318 | −8.401 | - | - | |||
338 | −10.019 | - | - | |||
Magnetic GO nanocomposite | Mn (II), Zn (II) | 283.15 | −9.9598 | 20.8592 | 108.8435 | [168] |
288.15 | −10.504 | - | - | |||
293.15 | −11.0483 | - | - | |||
298.15 | −11.5925 | - | - | |||
303.15 | −12.1367 | - | - | |||
308.15 | −12.6809 | - | - | |||
283.15 | −6.2028 | 20.9902 | 96.0376 | |||
288.15 | −6.683 | - | - | |||
293.15 | −7.1632 | - | - | |||
298.15 | −7.6434 | - | - | |||
303.15 | −8.1236 | - | - | |||
308.15 | −8.6038 | - | - | |||
(GO-f) | Cd (II), Hg (II), As (III) | 298 | −7.349 | 32.919 | 165.061 | [169] |
308 | −8.7 | - | - | |||
318 | −10.05 | - | - | |||
298 | −4.38 | 17.497 | 73.375 | |||
308 | −5.114 | - | - | |||
318 | −5.848 | - | - | |||
298 | 0.156 | 12.395 | 41.048 | |||
308 | −0.254 | - | - | |||
318 | −0.665 | - | - | |||
298 | −11.914 | 13.268 | 484.981 | |||
308 | −16.764 | - | - | |||
318 | −21.613 | - | - | |||
298 | −6.045 | 19.061 | 84.204 | |||
308 | −6.887 | - | - | |||
318 | −7.729 | - | - | |||
298 | −1.513 | 11.939 | 45.118 | |||
308 | −1.964 | - | - | |||
318 | −2.416 | - | - | |||
MnO2–Fe3O4–rGO | U(VI) | 298.15 | −2.603 | 16.25 | 63.23 | [170] |
308.15 | −3.222 | - | - | |||
318.15 | −3.872 | - | - | |||
328.15 | −4.492 | - | - | |||
ZnO-GO | Cr (VI) | 298.15 | −3.777 | 1.02 | 16.092 | [171] |
303.15 | −3.858 | - | - | |||
308.15 | −3.938 | - | - | |||
MGONRs | Th (IV) | 298 | −18.16 | 29.18 | 158.85 | [172] |
303 | −18.95 | - | - | |||
308 | −19.74 | - | - | |||
MGO | Co (II) | 293.15 | −8.64 | −40.87 | −109.97 | [173] |
298.15 | −8.09 | - | - | |||
303.15 | −7.54 | - | - | |||
308.15 | −6.99 | - | - | |||
313.15 | −6.44 | - | - | |||
MGO | Hg (II), methylene blue | 298 | −0.29 | 20.8 | 72.3 | [174] |
303 | −1.26 | - | - | |||
313 | −1.63 | - | - | |||
323 | −2.57 | - | - | |||
333 | −3.17 | - | - | |||
298 | −3.38 | 13.4 | 46.8 | |||
303 | −3.87 | - | - | |||
313 | −4.48 | - | - | |||
323 | −4.88 | - | - | |||
333 | −5.61 | - | - | |||
298 | −3.34 | 34.4 | 93.8 | |||
303 | −3.64 | - | - | |||
313 | −5.13 | - | - | |||
323 | −5.29 | - | - | |||
333 | −7.09 | - | - | |||
298 | −4.42 | 27.6 | 63.9 | |||
303 | −6.37 | - | - | |||
313 | −7.85 | - | - | |||
323 | −8.85 | - | - | |||
333 | −10.15 | - | - | |||
GO- Fe-Mg | Pb (II), Cu (II), Ag (II), Zn (II) | 288 | −19.931 | 14.3 | 118.849 | [175] |
298 | - | - | - | |||
308 | - | - | - | |||
288 | −13.315 | 25.627 | 134.878 | |||
298 | - | - | - | |||
308 | - | - | - | |||
288 | −17.347 | 43.676 | 211.442 | |||
298 | - | - | - | |||
308 | - | - | - | |||
288 | −16.481 | 33.471 | 173.023 | |||
298 | - | - | - | |||
308 | - | - | - | |||
GO-metal organic framework | Pb (II) | 293 | −9.59 | 3.69 | 0.05 | [176] |
303 | −10.03 | - | - | |||
313 | −10.49 | - | - | |||
GO | Eu (III) | 298 | −24.4503 | 14.5826 | 150.4064 | [177] |
318 | −27.6547 | 13.9978 | - | |||
338 | −30.4665 | 13.8057 | - | |||
GO | Gd (III) | 303 | −26.22 | 0.07 | 86.74 | [178] |
323 | −27.95 | - | - | |||
343 | −29.69 | - | - | |||
GO nanocomposite | Co (II) | 298 | −21.3 | −10.77 | 35.49 | [179] |
313 | −21.8 | - | - | |||
328 | −22.4 | - | - | |||
GO–Al13 | Cd (II) | 298 | −4.4 | 17.38 | 73.27 | [179] |
308 | −5.28 | - | - | |||
318 | −5.86 | - | - | |||
MGO | Eu (III) | 293 | −18.15 | 28.95 | 179.46 | [180] |
313 | −19.96 | - | - | |||
333 | −21.32 | - | - | |||
293 | −16.64 | 24.53 | 141.74 | |||
313 | −17.53 | - | - | |||
333 | −19.89 | - | - | |||
GO-MnFe2O4 | Pb (II), As (V), As (III) | 298 | −6.46 | 4.01 | - | [181] |
313 | −7.01 | - | - | |||
333 | −7.76 | - | - | |||
298 | −6.17 | 5.18 | - | |||
313 | −6.69 | - | - | |||
333 | −7.5 | - | - | |||
298 | −5.7 | 6.13 | - | |||
313 | −6.32 | - | - | |||
333 | −7.09 | - | - | |||
298 | −5.55 | 6.36 | - | |||
313 | −6.14 | - | - | |||
333 | −6.95 | - | - | |||
298 | −5.53 | 6.56 | - | |||
313 | −6.17 | - | - | |||
333 | −6.95 | - | - | |||
298 | −5.4 | 7.25 | - | |||
313 | −6.09 | - | - | |||
333 | −6.89 | - | - | |||
GO-Fe3O4 | Cr (VI) | 298 | −3.009 | −9.174 | −0.02068 | [182] |
303 | −2.905 | - | - | |||
313 | −2.699 | - | - | |||
323 | −2.492 | - | - |
Material | Temperature | Gibbs Free Energy | Reference |
---|---|---|---|
AOMGO | 298 | −22.34 | [59] |
318 | −24.73 | ||
338 | −27.59 | ||
GO/SiO2 | 298.15 | −3.4 | [60] |
298 | −8.69 | ||
308 | −9.57 | [183] | |
CoFe2O4-rGO | 318 | −10.45 | |
328 | −11.33 | ||
298.15 | −2.603 | ||
MnO2-Fe3O4-rGO | 308.15 | −3.222 | [170] |
318.15 | −3.872 | ||
328.15 | −4.492 | ||
298 | −19.58 | ||
Cucurbit [6]uril/GO-Fe3O4 | 308 | −20.76 | [184] |
318 | −21.93 | ||
328 | −23.11 | ||
298 | −8.08 | ||
NiCo2O4@rGO | 308 | −8.74 | [185] |
318 | −9.43 | ||
298 | −9.72 | ||
FG−20 | 313 | −7.05 | [186] |
323 | −5.6 | ||
333 | −5.12 | ||
298 | −9.947 | ||
mGO-PAO | 308 | −12.082 | [187] |
318 | −14.217 | ||
303 | −11.06 | ||
313 | −12.13 | ||
rGO/Fe3O4/TW | 323 | −13.2 | [188] |
333 | −14.26 | ||
303 | −4.42 | ||
313 | −4.51 | ||
GOMO | 323 | −4.6 | [163] |
333 | −4.69 | ||
298 | −26.71 | ||
Fe:Ni/GO | 308 | −27.88 | [189] |
318 | −29.68 | ||
CMC/MGOs | 301 | −23.31 | [190] |
318 | −25.29 | ||
338 | −27.97 | ||
303 | −8.2523 | ||
GO/Fe2O3/GC | 313 | −8.9065 | [191] |
323 | −9.5607 | ||
333 | −10.2149 | ||
288.15 | −5.1629 | ||
MGO-C6 | 288.12 | −6.4732 | [192] |
298.15 | −7.6856 | ||
303.15 | −9.6564 | ||
308.15 | −10.2449 | ||
GO/Fe3O4/GC | 303 | −8.2523 | [191] |
313 | −8.9065 | ||
323 | −9.5607 | ||
333 | −10.2149 | ||
MXene/graphene oxide | 298 | −399.1 | [193] |
308 | −474.5 | ||
318 | −541.4 | ||
PCN−222/GO-COOH | 298.15 | −8.29 | [194] |
303.15 | −8.55 | ||
308.15 | −8.8 | ||
313.15 | −9.05 | ||
318.15 | −9.3 | ||
323.15 | −9.55 | ||
CS-GO-DO/ZnO | 298.15 | −7.18 | [195] |
308.15 | −8.23 | ||
318.15 | −9.27 | ||
328.15 | −10.31 | ||
PdO/SiO2@GO−1.0 | 298 | –3.85 | [196] |
303 | –3.67 | ||
313 | –3.31 | ||
323 | –2.94 | ||
333 | –2.58 |
Name | Thickness (Micrometer) | Shielding Efficiency (dB) | f/GHZ | Reference |
---|---|---|---|---|
rGO | 93.1 | 61.6 | 12.4 | [197] |
Cu/LG | 8.8 | 63.29 | 18 | [198] |
Graphene/PMMA | 33 | 60 | - | [199] |
Fe3O4–rGO | 1 | 59.41 | 8.29 | [200] |
δ-MnO2-rGO | 0.3 | 39 | 8 | [201] |
BaFe12O19@RGO | 3 | 32 | - | [202] |
Graphene film | 8.4 | 20 | 8 | [203] |
CuS/RGO | 1 | 64 | 2.3 | [100] |
TiO2-Ti3C2TX/G | 5.25 | 30 | 12.4 | [204] |
rGO-Al2O3 | 3 | 38 | - | [205] |
CuNWs-TAGA- GO | 10 | 47 | - | [206] |
GO/Ag-7L | 8 | 62 | - | [207] |
Ni/GO/PVA | 2 | 87 | - | [208] |
Lignin-carbon-rGO | 2 | 70.5 | 8.2–12.4 | [209] |
CMF/rGO/Ag | 5 | 63.2 | 8.2–12.4 | [210] |
GO | 3.2 | 68 | 8.2–12.4 | [211] |
Adsorbent | Surface Area (m2/g) | Adsorption Capacity | Reference |
---|---|---|---|
MnFe2O4-rGO-MB | 95 | 105 | [212] |
MgFe2O4/rGO-MB | 35 | 24.81 | [213] |
GO-gC3N4-Fe3O4-MB | 120 | 220 | [214] |
MHAGO-MB | - | 59 | [215] |
PSGO-MB | 229 | 116.7 | [216] |
Xanthate-Fe3O4-GO-MB | 30.13 | 526.3 | [217] |
NiFe2O4@GO-MB | 76.7 | 76.0 | [218] |
CMC/GO-MB | 800.85 | 245 | [219] |
GO–MnO2-MB | - | 178.253 | [220] |
Alg/GO-MB | - | 12.5 | [221] |
AC-GO-MB | - | 1000 | [222] |
PVP/rGO/CoFe2O4-MB | 240.9 | 333.3 | [223] |
CS-Fe3O4-GO-MB | - | 261.8 | [224] |
Magnetic carbonate hydroxyapatite/GO | 105.95 | 546.4 | [225] |
4. Other Applications and Discussion
5. Conclusions and Outlook
- While GM hybrids are making progress in a variety of environmental applications under laboratory conditions, the potential for their large-scale or real-world application has yet to be explored and tested.
- In laboratory tests, energy configurations made from graphene nanocomposites have already shown good results. To develop high-end devices that work on a large scale, it is necessary to produce a large number of excellent graphene nanocomposites, whose electrical and chemical properties must of course remain stable throughout the operation.
- In the face of increasing water pollution from industrial waste, graphene nanocomposites are particularly attractive because they selectively degrade pollutants by light, even in the presence of natural and foreign substances. It is still too early to expect the widespread application of these nanocomposites for environmental monitoring and remediation, as important questions about the short- and long-term effects of graphene on biological systems and humans remain largely unanswered.
- Currently, large-scale applications of graphene-based achievements are possible in electrochemical energy storage and simple compounds in photovoltaics and optoelectronics. With the development of key physical sciences as well as down-to-earth methods, there will be further advanced applications due to graphene and graphene nanocomposites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bijesh, P.; Selvaraj, V.; Andal, V. A review on synthesis and applications of nano metal Oxide/porous carbon composite. Mater. Today Proc. 2021, 55, 212–219. [Google Scholar] [CrossRef]
- Li, F.; Jiang, X.; Zhao, J.; Zhang, S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 2015, 16, 488–515. [Google Scholar] [CrossRef] [Green Version]
- Bandosz, T.J.; Petit, C. MOF/graphite oxide hybrid materials: Exploring the new concept of adsorbents and catalysts. Adsorption 2010, 17, 5–16. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.X.; Ren, B.; Zhao, N.; Hu, Y.C.; Wang, X. Preparation of graphene oxide membranes by vacuum self-assembly for copper separation in water. Diam. Relat. Mater. 2021, 120, 108687. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.-T. Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sens. Actuators B Chem. 2018, 275, 332–338. [Google Scholar] [CrossRef]
- Chanda, D.; Hnát, J.; Dobrota, A.S.; Pašti, I.A.; Paidar, M.; Bouzek, K. The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2015, 17, 26864–26874. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Han, L.; Hu, P.; Dong, S. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale 2012, 4, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, G.; Chen, J.; Chen, X.; Xie, Z.; Wang, X. Synthesis of “Clean” and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695. [Google Scholar] [CrossRef]
- Ogata, C.; Koinuma, M.; Hatakeyama, K.; Tateishi, H.; Asrori, M.Z.; Taniguchi, T.; Funatsu, A.; Matsumoto, Y. Metal Permeation into Multi-layered Graphene Oxide. Sci. Rep. 2014, 4, 3647. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.T.; Neaton, J.B.; Cohen, M.L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77, 235430. [Google Scholar] [CrossRef]
- Bu, I.Y.; Huang, R. Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceram. Int. 2017, 43, 45–50. [Google Scholar] [CrossRef]
- Yadav, S.; Jain, A.; Malhotra, P. A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chem. 2019, 21, 937–955. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Chen, G. Facile Preparation of Graphene-Copper Nanoparticle Composite by in Situ Chemical Reduction for Electrochemical Sensing of Carbohydrates. Anal. Chem. 2011, 84, 171–178. [Google Scholar] [CrossRef]
- Neto, S.M.; Almeida, K.C.D.; Macedo, M.L.R.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta (BBA) -Mol. Cell Res. 2015, 1848 Pt B, 3078–3088. [Google Scholar] [CrossRef] [Green Version]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, F.; He, S.; Huang, F.; Peng, Z. Adsorption Behaviour of Reduced Graphene Oxide for Removal of Heavy Metal Ions. Asian J. Chem. 2014, 26, 4901–4906. [Google Scholar] [CrossRef]
- Su, H.; Ye, Z.; Hmidi, N. High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 161–172. [Google Scholar] [CrossRef]
- Fathy, M.; Moghny, T.A.; Mousa, M.A.; Abdou, M.M.; El-Bellihi, A.-H.A.-A.; Awadallah, A.E. Correction to: Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models. Appl. Nanosci. 2018, 8, 2105. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015, 281, 379–388. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Y.; Zhang, Y.; Niu, Z.; Li, X. Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater. Open Chem. 2020, 18, 97–107. [Google Scholar] [CrossRef]
- Wan, S.; He, F.; Wu, J.; Wan, W.; Gu, Y.; Gao, B. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J. Hazard. Mater. 2016, 314, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Naeem, H.; Ajmal, M.; Qureshi, R.B.; Muntha, S.T.; Farooq, M.; Siddiq, M. Facile synthesis of graphene oxide–silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. J. Environ. Manag. 2018, 230, 199–211. [Google Scholar] [CrossRef]
- Lotfi, Z.; Mousavi, H.Z.; Sajjadi, S.M. Covalently bonded double-charged ionic liquid on magnetic graphene oxide as a novel, efficient, magnetically separable and reusable sorbent for extraction of heavy metals from medicine capsules. RSC Adv. 2016, 6, 90360–90370. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Wang, J.; Wang, S.; Wang, Y.; Jin, D.; Chen, P.; Du, W.; Zhang, L.; Liu, B.-F. Graphene-Based Helical Micromotors Constructed by “Microscale Liquid Rope-Coil Effect” with Microfluidics. ACS Nano 2020, 14, 16600–16613. [Google Scholar] [CrossRef]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Archana, S.; Jayanna, B.; Ananda, A.; Shilpa, B.M.; Pandiarajan, D.; Muralidhara, H.; Kumar, K.Y. Synthesis of nickel oxide grafted graphene oxide nanocomposites—A systematic research on chemisorption of heavy metal ions and its antibacterial activity. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100486. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, J.; Liu, Q.; Zeng, H. Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal. Carbon 2014, 77, 710–721. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Mazon, T.; Dippel, A.-C.; Koziej, D.; Volanti, D.P. Reoxidation of graphene oxide: Impact on the structure, chemical composition, morphology and dye adsorption properties. Appl. Surf. Sci. 2021, 567, 150774. [Google Scholar] [CrossRef]
- Al-Degs, Y.; El-Barghouthi, M.; El-Sheikh, A.; Walker, G. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye. Pigment. 2008, 77, 16–23. [Google Scholar] [CrossRef]
- Sharma, P.; Das, M.R. Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. J. Chem. Eng. Data 2012, 58, 151–158. [Google Scholar] [CrossRef]
- Zang, H.; Li, Y.; Li, Y.; Chen, L.; Du, Q.; Zhou, K.; Li, H.; Wang, Y.; Ci, L. Adsorptive Removal of Cationic Dye from Aqueous Solution by Graphene Oxide/Cellulose Acetate Composite. J. Nanosci. Nanotechnol. 2019, 19, 4535–4542. [Google Scholar] [CrossRef] [PubMed]
- Naeem, H.; Ajmal, M.; Muntha, S.; Ambreen, J.; Siddiq, M. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants. RSC Adv. 2018, 8, 3599–3610. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gong, J.-L.; Zenga, G.-M.; Ou, X.-M.; Jiang, Y.; Chang, Y.-N.; Guo, M.; Zhang, C.; Liu, H.-Y. Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. Appl. Surf. Sci. 2016, 370, 335–350. [Google Scholar] [CrossRef]
- Yang, J.; Shojaei, S.; Shojaei, S. Removal of drug and dye from aqueous solutions by graphene oxide: Adsorption studies and chemometrics methods. npj Clean Water 2022, 5, 5. [Google Scholar] [CrossRef]
- Pervez, N.; He, W.; Zarra, T.; Naddeo, V.; Zhao, Y. New Sustainable Approach for the Production of Fe3O4/Graphene Oxide-Activated Persulfate System for Dye Removal in Real Wastewater. Water 2020, 12, 733. [Google Scholar] [CrossRef] [Green Version]
- Boruah, P.K.; Borah, D.J.; Handique, J.; Sharma, P.; Sengupta, P.; Das, M.R. Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: A comparative study. J. Environ. Chem. Eng. 2015, 3, 1974–1985. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Z.; Gou, J.; Dong, S. Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide nanocomposite. Arab. J. Chem. 2019, 12, 3064–3074. [Google Scholar] [CrossRef] [Green Version]
- Al-Sabahi, J.; Bora, T.; Al-Abri, M.; Dutta, J. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods. PLoS ONE 2017, 12, e0189276. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Singhania, T.; Singh, A.; Sharma, S.; Rani, S.; Neogy, A.; Yadav, S.R.; Sangal, V.K.; Garg, N. Photocatalytic Degradation of Bisphenol-A using N, Co Codoped TiO2 Catalyst under Solar Light. Sci. Rep. 2019, 9, 765. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Wu, X.; Xiang, Y.; Zhang, S.; Huang, X.; Liu, H. Binary Dye Removal from Simulated Wastewater Using Reduced Graphene Oxide Loaded with Fe-Cu Bimetallic Nanocomposites Combined with an Artificial Neural Network. Materials 2021, 14, 5268. [Google Scholar] [CrossRef]
- Chandra, L.; Jagadish, K.; Karthikeyarajan, V.; Jalalah, M.; Alsaiari, M.; Harraz, F.A.; Balakrishna, R.G. Nitrogenated Graphene Oxide-Decorated Metal Sulfides for Better Antifouling and Dye Removal. ACS Omega 2022, 7, 9674–9683. [Google Scholar] [CrossRef] [PubMed]
- Kanani, M.; Kanani, N.; Batooie, N.; Bozorgian, A.; Barghi, A.; Rezania, S. Removal of Rhodamine 6G dye using one-pot synthesis of magnetic manganese graphene oxide: Optimization by response surface methodology. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100709. [Google Scholar] [CrossRef]
- Ahmed, G.; Hanif, M.; Khan, A.J.; Zhao, L.; Zhang, J.; Liu, Z. ZnO flowers and graphene oxide hybridization for efficient photocatalytic degradation of o-xylene in water. Mater. Chem. Phys. 2018, 212, 479–489. [Google Scholar] [CrossRef]
- Shen, J.-H.; Li, M.-M.; Chu, L.-F.; Guo, C.-X.; Guo, Y.-J. Effect mechanism of copper ions on photocatalytic activity of TiO2/graphene oxide composites for phenol-4-sulfonic acid photodegradation. J. Colloid Interface Sci. 2020, 586, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, L.; Pei, Z.; Li, C.; Lv, J.; Xie, J.; Wen, B.; Zhang, S. Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 100–106. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Chen, C.; Tan, X.; Wang, X. Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-ray Absorption Fine Structure Spectroscopy and by Modeling Techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.N.; Yuvaraj, R.; Jena, H.; Ponraju, D. Graphene Oxide as an Adsorbent for Ruthenium from Aqueous Solution. ChemistrySelect 2022, 7, e202200078. [Google Scholar] [CrossRef]
- Erhayem, M.; Hosouna, B.; Zidan, M. Modeling and Simulation of Sorption of Pb(II) Ions onto Synthesized Graphene Oxide Surface. J. Nanosci. Nanotechnol. Appl. 2017, 3, 301. [Google Scholar] [CrossRef]
- Kuzenkova, A.S.; Romanchuk, A.Y.; Trigub, A.L.; Maslakov, K.I.; Egorov, A.V.; Amidani, L.; Kittrell, C.; Kvashnina, K.O.; Tour, J.M.; Talyzin, A.V.; et al. New insights into the mechanism of graphene oxide and radionuclide interaction. Carbon 2019, 158, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, N.; Kuzenkova, A.S.; Iakunkov, A.; Romanchuk, A.Y.; Trigub, A.L.; Egorov, A.V.; Bauters, S.; Amidani, L.; Retegan, M.; Kvashnina, K.O.; et al. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Appl. Mater. Interfaces 2020, 12, 45122–45135. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, N.; Kuzenkova, A.S.; Iakunkov, A.; Nordenström, A.; Romanchuk, A.Y.; Trigub, A.L.; Zasimov, P.V.; Prodana, M.; Enachescu, M.; Bauters, S.; et al. High Surface Area “3D Graphene Oxide” for Enhanced Sorption of Radionuclides (Adv. Mater. Interfaces 18/2022). Adv. Mater. Interfaces 2022, 9, 2270099. [Google Scholar] [CrossRef]
- Minitha, C.R.; Suresh, R.; Maity, U.K.; Haldorai, Y.; Subramaniam, V.; Manoravi, P.; Joseph, M.; Kumar, R.T.R. Magnetite Nanoparticle Decorated Reduced Graphene Oxide Composite as an Efficient and Recoverable Adsorbent for the Removal of Cesium and Strontium Ions. Ind. Eng. Chem. Res. 2018, 57, 1225–1232. [Google Scholar] [CrossRef]
- Lujanienė, G.; Šemčuk, S.; Lečinskytė, A.; Kulakauskaitė, I.; Mažeika, K.; Valiulis, D.; Pakštas, V.; Skapas, M.; Tumėnas, S. Magnetic graphene oxide based nano-composites for removal of radionuclides and metals from contaminated solutions. J. Environ. Radioact. 2017, 166, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Lujanienė, G.; Šemčuk, S.; Kulakauskaitė, I.; Mažeika, K.; Valiulis, D.; Juškėnas, R.; Tautkus, S. Sorption of radionuclides and metals to graphene oxide and magnetic graphene oxide. J. Radioanal. Nucl. Chem. Artic. 2015, 307, 2267–2275. [Google Scholar] [CrossRef]
- Wang, K.; Yan, Z.; Fu, L.; Li, D.; Gong, L.; Wang, Y.; Xiong, Y. Gemini ionic liquid modified nacre-like reduced graphene oxide click membranes for ReO4−/TcO4− removal. Sep. Purif. Technol. 2022, 302, 122073. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Q.; Xu, D.; Zhong, Y.; Luo, K.; Li, X.; Chen, H.; Zeng, G. Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supported on Modified Activated Carbon. Ind. Eng. Chem. Res. 2013, 52, 12574–12581. [Google Scholar] [CrossRef]
- Romanchuk, A.Y.; Slesarev, A.S.; Kalmykov, S.N.; Kosynkin, D.V.; Tour, J.M. Graphene oxide for effective radionuclide removal. Phys. Chem. Chem. Phys. 2012, 15, 2321–2327. [Google Scholar] [CrossRef] [PubMed]
- Xiu, T.; Liu, Z.; Wang, Y.; Wu, P.; Du, Y.; Cai, Z. Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J. Radioanal. Nucl. Chem. Artic. 2019, 319, 1059–1067. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Zhang, S.; Chen, H.; Shao, D. Efficient enrichment of uranium(vi) on amidoximated magnetite/graphene oxide composites. RSC Adv. 2013, 3, 18952–18959. [Google Scholar] [CrossRef]
- Meng, H.; Li, Z.; Ma, F.; Wang, X.; Zhou, W.; Zhang, L. Synthesis and characterization of surface ion-imprinted polymer based on SiO2-coated graphene oxide for selective adsorption of uranium(vi). RSC Adv. 2015, 5, 67662–67668. [Google Scholar] [CrossRef]
- El-Shazly, E.A.A.; Moussa, S.I.; Dakroury, G.A. Recovery of Some Rare-Earth Elements by Sorption Technique onto Graphene Oxide. J. Sustain. Met. 2022, 8, 715–731. [Google Scholar] [CrossRef]
- Aytas, S.; Yusan, S.; Sert, S.; Gok, C. Preparation and characterization of magnetic graphene oxide nanocomposite (GO-Fe3O4) for removal of strontium and cesium from aqueous solutions. Charact. Appl. Nanomater. 2021, 4, 26–39. [Google Scholar] [CrossRef]
- Xia, T.; Qi, Y.; Liu, J.; Qi, Z.; Chen, W.; Wiesner, M.R. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects. Environ. Sci. Technol. 2017, 51, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Zong, P.; Wang, S.; Zhao, Y.; Wang, H.; Pan, H.; He, C. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J. 2013, 220, 45–52. [Google Scholar] [CrossRef]
- Tan, L.; Wang, S.; Du, W.; Hu, T. Effect of water chemistries on adsorption of Cs(I) onto graphene oxide investigated by batch and modeling techniques. Chem. Eng. J. 2016, 292, 92–97. [Google Scholar] [CrossRef]
- Liu, X.; Gong, W.; Luo, J.; Zou, C.; Yang, Y.; Yang, S. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal–organic framework composite. Appl. Surf. Sci. 2016, 362, 517–524. [Google Scholar] [CrossRef]
- Dong, Y.; Dong, Z.; Zhang, Z.; Liu, Y.; Cheng, W.; Miao, H.; He, X.; Xu, Y. POM Constructed from Super-Sodalite Cage with Extra-Large 24-Membered Channels: Effective Sorbent for Uranium Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 22088–22092. [Google Scholar] [CrossRef]
- Nugroho, B.S.; Kato, A.; Kowa, C.; Nakashima, T.; Wada, A.; Wihadi, M.N.K.; Nakashima, S. Exploration of the Cs Trapping Phenomenon by Combining Graphene Oxide with α-K6P2W18O62 as Nanocomposite. Materials 2021, 14, 5577. [Google Scholar] [CrossRef]
- Kawahara, R.; Uchida, S.; Mizuno, N. Redox-Induced Reversible Uptake–Release of Cations in Porous Ionic Crystals Based on Polyoxometalate: Cooperative Migration of Electrons with Alkali Metal Ions. Chem. Mater. 2015, 27, 2092–2099. [Google Scholar] [CrossRef]
- Seino, S.; Kawahara, R.; Ogasawara, Y.; Mizuno, N.; Uchida, S. Reduction-Induced Highly Selective Uptake of Cesium Ions by an Ionic Crystal Based on Silicododecamolybdate. Angew. Chem. 2016, 128, 4055–4059. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.; Xu, Z.; Wang, S.; Kobayashi, H.; Wang, J. The Effects of Oxygen Functional Groups on Graphene Oxide on the Efficient Adsorption of Radioactive Iodine. Materials 2020, 13, 5770. [Google Scholar] [CrossRef]
- Razab, M.K.A.A.; Nawi, N.M.; Hadzuan, F.H.M.; Abdullah, N.H.; Muhamad, M.; Sunaiwi, R.; Ibrahim, F.; Zin, F.A.M.; Noor, A.M. Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan. Sustainability 2022, 14, 4492. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Zhang, G.; Yang, J.; Liu, S. Preparation of graphene-based catalysts and combined DBD reactor for VOC degradation. Environ. Sci. Pollut. Res. 2022, 29, 51717–51731. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Xu, W.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Adsorption of VOCs on reduced graphene oxide. J. Environ. Sci. 2018, 67, 171–178. [Google Scholar] [CrossRef]
- Shrivastava, S.; Thomas, S.; Sobhan, C.; Peterson, G. An experimental investigation of the CO2 adsorption performance of graphene oxide forms. Int. J. Refrig. 2018, 96, 179–190. [Google Scholar] [CrossRef]
- Vijay, S.; Ju, W.; Brückner, S.; Tsang, S.-C.; Strasser, P.; Chan, K. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 2021, 4, 1024–1031. [Google Scholar] [CrossRef]
- Alves, D.C.B.; Silva, R.; Voiry, D.; Asefa, T.; Chhowalla, M. Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater. Renew. Sustain. Energy 2015, 4, 2. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2018, 231, 368–380. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, Y.; Kumar, U.; Singhal, N.; Kaushal, M.; Jaiswal, M.; Jain, S.L.; Roy, S.C. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. Appl. Surf. Sci. 2019, 485, 48–55. [Google Scholar] [CrossRef]
- Shown, I.; Hsu, H.-C.; Chang, Y.-C.; Lin, C.-H.; Roy, P.K.; Ganguly, A.; Wang, C.-H.; Chang, J.-K.; Wu, C.-I.; Chen, L.-C.; et al. Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Lett. 2014, 14, 6097–6103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Han, Y.; Chen, C.; Ding, Z.; Long, J.; Hou, Y. Reduced Graphene Oxide-Cadmium Sulfide Nanorods Decorated with Silver Nanoparticles for Efficient Photocatalytic Reduction Carbon Dioxide Under Visible Light. ChemCatChem 2018, 10, 1627–1634. [Google Scholar] [CrossRef]
- Deerattrakul, V.; Dittanet, P.; Sawangphruk, M.; Kongkachuichay, P. CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J. CO2 Util. 2016, 16, 104–113. [Google Scholar] [CrossRef]
- Yue, T.; Huang, H.; Chang, Y.; Jia, J.; Jia, M. Controlled assembly of nitrogen-doped iron carbide nanoparticles on reduced graphene oxide for electrochemical reduction of carbon dioxide to syngas. J. Colloid Interface Sci. 2021, 601, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ahmad, F.; Zhao, W.; Yan, W.; Zhang, W.; Huang, H.; Ma, C.; Zeng, J. Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide. Nano Lett. 2019, 19, 4029–4034. [Google Scholar] [CrossRef] [PubMed]
- Saquib, M.; Halder, A. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide. J. Nanopart. Res. 2018, 20, 46. [Google Scholar] [CrossRef]
- Wu, D.; Chen, W.; Wang, X.; Fu, X.-Z.; Luo, J.-L. Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles. J. CO2 Util. 2020, 37, 353–359. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, M.; Wu, G.; Wang, X.; Zhou, J.; Cen, K. Photoelectrocatalytic Reduction of CO2 into Chemicals Using Pt-Modified Reduced Graphene Oxide Combined with Pt-Modified TiO2 Nanotubes. Environ. Sci. Technol. 2014, 48, 7076–7084. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mungse, H.P.; Khatri, O.P.; Jain, S.L. Nitrogen-doped graphene-supported copper complex: A novel photocatalyst for CO2 reduction under visible light irradiation. RSC Adv. 2015, 5, 54929–54935. [Google Scholar] [CrossRef]
- Shang, S.; Tao, Z.; Yang, C.; Hanif, A.; Li, L.; Tsang, D.C.; Gu, Q.; Shang, J. Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chem. Eng. J. 2020, 393, 124666. [Google Scholar] [CrossRef]
- Altass, H.M.; Morad, M.; Khder, A.E.-R.S.; Mannaa, M.A.; Jassas, R.S.; Alsimaree, A.A.; Ahmed, S.A.; Salama, R.S. Enhanced Catalytic Activity for CO Oxidation by Highly Active Pd Nanoparticles Supported on Reduced Graphene Oxide /Copper Metal Organic Framework. J. Taiwan Inst. Chem. Eng. 2021, 128, 194–208. [Google Scholar] [CrossRef]
- Gunathilake, C.A.; Ranathunge, G.G.T.A.; Dassanayake, R.S.; Illesinghe, S.D.; Manchanda, A.S.; Kalpage, C.S.; Rajapakse, R.M.G.; Karunaratne, D.G.G.P. Emerging investigator series: Synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures. Environ. Sci. Nano 2020, 7, 1225–1239. [Google Scholar] [CrossRef]
- Minitha, C.R.; Anithaa, V.S.; Subramaniam, V.; Kumar, R.T.R. Impact of Oxygen Functional Groups on Reduced Graphene Oxide-Based Sensors for Ammonia and Toluene Detection at Room Temperature. ACS Omega 2018, 3, 4105–4112. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.T.; Kim, J.H.; Lee, C.Y.; Koo, S.; Jerng, D.-W.; Wongwises, S.; Ahn, H.S. Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability. Sci. Rep. 2019, 9, 10922. [Google Scholar] [CrossRef] [Green Version]
- Faghihi-Zarandi, A.; Rakhtshah, J.; Yarahmadi, B.B.; Shirkhanloo, H. A rapid removal of xylene vapor from environmental air based on bismuth oxide coupled to heterogeneous graphene/ graphene oxide by UV photo-catalectic degradation-adsorption procedure. J. Environ. Chem. Eng. 2020, 8, 104193. [Google Scholar] [CrossRef]
- Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B Environ. 2018, 224, 563–571. [Google Scholar] [CrossRef]
- Xi, J.; Li, Y.; Zhou, E.; Liu, Y.; Gao, W.; Guo, Y.; Ying, J.; Chen, Z.; Chen, G.; Gao, C. Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 2018, 135, 44–51. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Wang, L.; Xue, J.; Hou, S. Large-scale preparation of graphene oxide film and its application for electromagnetic interference shielding. RSC Adv. 2021, 11, 33302–33308. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Su, J.; Liang, H.; Hu, K.; Xu, J. Highly optically transparent graphene mesh for electromagnetic interference shielding. Diam. Relat. Mater. 2022, 123, 108849. [Google Scholar] [CrossRef]
- Ghosh, K.; Srivastava, S.K. Enhanced Supercapacitor Performance and Electromagnetic Interference Shielding Effectiveness of CuS Quantum Dots Grown on Reduced Graphene Oxide Sheets. ACS Omega 2021, 6, 4582–4596. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, L.; Yuan, Y.; Li, Y.; He, X. Mechanically strong, thermally conductive and flexible graphene composite paper for exceptional electromagnetic interference shielding. Mater. Sci. Eng. B 2020, 263, 114893. [Google Scholar] [CrossRef]
- Kumar, P.; Shahzad, F.; Hong, S.M.; Koo, C.M. A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Adv. 2016, 6, 101283–101287. [Google Scholar] [CrossRef]
- Fu, P.; Huan, X.; Luo, J.; Ren, S.; Jia, X.; Yang, X. Magnetically Aligned Fe3O4 Nanowires-Reduced Graphene Oxide for Gas Barrier, Microwave Absorption, and EMI Shielding. ACS Appl. Nano Mater. 2020, 3, 9340–9355. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, Y.; Wang, W.; Yu, D. Robust magnetic and electromagnetic wave absorption performance of reduced graphene oxide loaded magnetic metal nanoparticle composites. Adv. Powder Technol. 2020, 32, 194–203. [Google Scholar] [CrossRef]
- Torrisi, L.; Silipigni, L.; Cutroneo, M. Graphene oxide as a radiation sensitive material for XPS dosimetry. Vacuum 2020, 173, 109175. [Google Scholar] [CrossRef]
- Silipigni, L.; Cutroneo, M.; Salvato, G.; Torrisi, L. In-situ soft X-ray effects on graphene oxide films. Radiat. Eff. Defects Solids 2018, 173, 740–750. [Google Scholar] [CrossRef]
- Malinský, P.; Macková, A.; Florianová, M.; Cutroneo, M.; Hnatowicz, V.; Boháčová, M.; Szőkölová, K.; Böttger, R.; Sofer, Z. The Structural and Compositional Changes of Graphene Oxide Induced by Irradiation With 500 keV Helium and Gallium Ions. Phys. Status Solidi (b) 2018, 256, 1800409. [Google Scholar] [CrossRef]
- Malinský, P.; Cutroneo, M.; Sofer, Z.; Szőkölová, K.; Böttger, R.; Akhmadaliev, S.; Macková, A. Structural and compositional modification of graphene oxide by means of medium and heavy ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 460, 201–208. [Google Scholar] [CrossRef]
- Kumar, P.; Shahzad, F.; Yu, S.; Hong, S.M.; Kim, Y.-H.; Koo, C.M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494–500. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Askari, M.; Ezzati, S.N. X-ray attenuating nanocomposite based on polyaniline using Pb nanoparticles. Synth. Met. 2014, 196, 68–75. [Google Scholar] [CrossRef]
- Zarei, M.; Sina, S.; Hashemi, S.A. Superior X-ray radiation shielding of biocompatible platform based on reinforced polyaniline by decorated graphene oxide with interconnected tungsten–bismuth–tin complex. Radiat. Phys. Chem. 2021, 188, 109588. [Google Scholar] [CrossRef]
- Kwon, D.-J.; Kwon, I.-J.; Milam-Guerrero, J.; Yang, S.B.; Yeum, J.H.; Choi, H.H. Aramid nanofiber-reinforced multilayer electromagnetic-interference (EMI) shielding composites with high interfacial durability. Mater. Des. 2022, 215, 110452. [Google Scholar] [CrossRef]
- Xie, F.; Gao, K.; Zhuo, L.; Jia, F.; Ma, Q.; Lu, Z. Robust Ti3C2Tx/RGO/ANFs hybrid aerogel with outstanding electromagnetic shielding performance and compression resilience. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107049. [Google Scholar] [CrossRef]
- Rodríguez-Otamendi, D.I.; Meza-Laguna, V.; Acosta, D.; Álvarez-Zauco, E.; Huerta, L.; Basiuk, V.A.; Basiuk, E.V. Eco-friendly synthesis of graphene oxidesilver nanoparticles hybrids: The effect of amine derivatization. Diam. Relat. Mater. 2021, 111, 108208. [Google Scholar] [CrossRef]
- Menazea, A.; Ahmed, M. Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J. Mol. Struct. 2020, 1218, 128536. [Google Scholar] [CrossRef]
- Menazea, A.; Ahmed, M. Silver and copper oxide nanoparticles-decorated graphene oxide via pulsed laser ablation technique: Preparation, characterization, and photoactivated antibacterial activity. Nano-Struct. Nano-Objects 2020, 22, 100464. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Tripathy, S.; Chandra, S.; Roy, S.; Sahu, S.K. A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv. 2015, 5, 49420–49428. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, L.; Chen, B.; Qiao, Y.; Cao, H.; Zhu, H.; Liu, X. Graphene oxide as a dual Zn/Mg ion carrier and release platform: Enhanced osteogenic activity and antibacterial properties. J. Mater. Chem. B 2018, 6, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Lyu, H.; He, Z.; Chan, Y.K.; He, X.; Yu, Y.; Deng, Y. Hierarchical ZnO Nanotube/Graphene Oxide Nanostructures Endow Pure Zn Implant with Synergistic Bactericidal Activity and Osteogenicity. Ind. Eng. Chem. Res. 2019, 58, 19377–19385. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J.-H.; Liu, Y.; Wang, H. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 2014, 6, 2791–2798. [Google Scholar] [CrossRef] [PubMed]
- Vanithakumari, S.; Jena, G.; Sofia, S.; Thinaharan, C.; George, R.; Philip, J. Fabrication of superhydrophobic titanium surfaces with superior antibacterial properties using graphene oxide and silanized silica nanoparticles. Surf. Coat. Technol. 2020, 400, 126074. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wu, W.; Chen, J.; Chu, G.; Zou, H. Synthesis and characterizations of graphene–copper nanocomposites and their antifriction application. J. Ind. Eng. Chem. 2014, 20, 2043–2049. [Google Scholar] [CrossRef]
- Rubilar, O.; Rai, M.; Tortella, G.; Diez, M.C.; Seabra, A.B.; Durán, N. Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett. 2013, 35, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Suh, J.M.; Lee, T.H.; Cha, J.H.; Choi, J.-W.; Jang, H.W.; Varma, R.S.; Shokouhimehr, M. Copper oxide–graphene oxide nanocomposite: Efficient catalyst for hydrogenation of nitroaromatics in water. Nano Converg. 2019, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A. Study of organic pollutant removal capacity for magnetite@ graphene oxide nanocomposites. Vacuum 2018, 157, 524–529. [Google Scholar] [CrossRef]
- Haseen, U.; Ahmad, H.; Umar, K.; Parveen, T. Application of magnetite–graphene oxide for wastewater treatment. In Graphene-Based Nanotechnologies for Energy and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 195–203. [Google Scholar] [CrossRef]
- Mao, M.; Zhang, W.; Huang, Z.; Huang, J.; Wang, J.; Li, W.; Gu, S. Graphene Oxide-Copper Nanocomposites Suppress Cariogenic Streptococcus mutans Biofilm Formation. Int. J. Nanomed. 2021, 16, 7727–7739. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.; Gong, H.; Xu, J.; Yu, Z.; Wei, Q.; Tang, D. Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers. J. Mater. Chem. B 2021, 9, 6818–6824. [Google Scholar] [CrossRef] [PubMed]
- Yakout, A.A.; Alshitari, W.; Akhdhar, A. Synergistic effect of Cu-nanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics. Carbohydr. Polym. 2021, 273, 118528. [Google Scholar] [CrossRef]
- Xu, X.; Tan, R.; Lv, X.; Geng, C.; Li, Y.; Cui, B.; Fang, Y. Non-enzymatic electrochemical detection of glucose using Ni–Cu bimetallic alloy nanoparticles loaded on reduced graphene oxide through a one-step synthesis strategy. Anal. Methods 2021, 13, 5628–5637. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.S.K.; Hwa, K.-Y. Rational design and preparation of copper vanadate anchored on sulfur doped reduced graphene oxide nanocomposite for electrochemical sensing of antiandrogen drug nilutamide using flexible electrodes. J. Hazard. Mater. 2021, 410, 124659. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, H.; Wu, K.; Yan, J.; Tong, C. A novel nonenzymatic ascorbic acid electrochemical sensor based on gold nanoparticals-chicken egg white-copper phosphate-graphene oxide hybrid nanoflowers. Nanotechnology 2021, 32, 325504. [Google Scholar] [CrossRef]
- Singh, P.; Mandal, S.; Roy, D.; Chanda, N. Facile Detection of Blood Creatinine Using Binary Copper–Iron Oxide and rGO-Based Nanocomposite on 3D Printed Ag-Electrode under POC Settings. ACS Biomater. Sci. Eng. 2021, 7, 3446–3458. [Google Scholar] [CrossRef]
- Xu, F.; Qiao, Z.; Luo, L.; He, X.; Lei, Y.; Tang, J.; Shi, H.; Wang, K. A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 2022, 243, 123323. [Google Scholar] [CrossRef]
- Huang, J.; He, J.; Xu, K.; Xiang, Y.; Luo, Y. Diclofenac degradation by activating peroxydisulfate via well-dispersed GO/Cu2O nano-composite. Environ. Sci. Pollut. Res. 2022, 29, 41776–41787. [Google Scholar] [CrossRef] [PubMed]
- Lou, G.; Chen, Y.; Xu, J.; Qian, Y.; Cheng, H.; Wei, Z.; Yang, Y.; Shen, L.; Shuai, C. Preparation of Graphene Oxide-loaded Nickel with Excellent Antibacterial Property by Magnetic Field-Assisted Scanning Jet Electrodeposition. Int. J. Bioprint. 2021, 8, 432. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Cai, S.; Liu, X.; Huang, X.; Chen, J.; Wang, S.; Zhang, S. A novel electrochemical sandwich-like immunosensor based on carboxyl Ti3C2Tx MXene and rhodamine b/gold/reduced graphene oxide for Listeria monocytogenes. Anal. Methods 2022, 14, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Llano, C.H.; Solano, M.A.; Grande-Tovar, C.D. Nanocomposites of Chitosan/Graphene Oxide/Titanium Dioxide Nanoparticles/Blackberry Waste Extract as Potential Bone Substitutes. Polymers 2021, 13, 3877. [Google Scholar] [CrossRef] [PubMed]
- Tamilarasan, P.; Ramaprabhu, S. Integration of polymerized ionic liquid with graphene for enhanced CO2 adsorption. J. Mater. Chem. A 2014, 3, 101–108. [Google Scholar] [CrossRef]
- Kostoglou, N.; Constantinides, G.; Charalambopoulou, G.; Steriotis, T.; Polychronopoulou, K.; Li, Y.; Liao, K.; Ryzhkov, V.; Mitterer, C.; Rebholz, C. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation. Thin Solid Films 2015, 596, 242–249. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, H.; Zhong, Q. Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Appl. Surf. Sci. 2013, 284, 138–144. [Google Scholar] [CrossRef]
- Li, P.; Zeng, H.C. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2 Capture. Environ. Sci. Technol. 2017, 51, 12998–13007. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Mo, Y.-H.; Le, V.-D.; Lee, S.; Han, J.; Park, G.; Kim, Y.-H.; Park, S.-E.; Park, S. Borane-modified graphene-based materials as CO2 adsorbents. Carbon 2014, 79, 450–456. [Google Scholar] [CrossRef]
- Sui, Z.-Y.; Cui, Y.; Zhu, J.-H.; Han, B.-H. Preparation of Three-Dimensional Graphene Oxide–Polyethylenimine Porous Materials as Dye and Gas Adsorbents. ACS Appl. Mater. Interfaces 2013, 5, 9172–9179. [Google Scholar] [CrossRef]
- Sui, Z.-Y.; Meng, Y.-N.; Xiao, P.-W.; Zhao, Z.-Q.; Wei, Z.-X.; Han, B.-H. Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents. ACS Appl. Mater. Interfaces 2015, 7, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Balasubramanian, R. Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets. J. CO2 Util. 2016, 13, 50–60. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.; Jiang, X.; Liu, Q. Highly selective CO2 adsorption of ZnO based N-doped reduced graphene oxide porous nanomaterial. Appl. Surf. Sci. 2016, 360, 143–147. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, X.; Xia, Q.; Peng, J.; Wang, H.; Li, Z. Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4. Ind. Eng. Chem. Res. 2014, 53, 11176–11184. [Google Scholar] [CrossRef]
- Liu, S.; Sun, L.; Xu, F.; Zhang, J.; Jiao, C.; Li, F.; Li, Z.; Wang, S.; Wang, Z.; Jiang, X.; et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 2013, 6, 818–823. [Google Scholar] [CrossRef]
- Ganesan, A.; Shaijumon, M.M. Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 2016, 220, 21–27. [Google Scholar] [CrossRef]
- Meng, L.-Y.; Park, S.-J. Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J. Colloid Interface Sci. 2012, 386, 285–290. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, F. Hydrate-based CO2 capture: Kinetic improvement via graphene-carried –SO3− and Ag nanoparticles. J. Mater. Chem. A 2018, 6, 22619–22625. [Google Scholar] [CrossRef]
- Chowdhury, S.; Parshetti, G.K.; Balasubramanian, R. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chem. Eng. J. 2015, 263, 374–384. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramaprabhu, S. Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. J. Appl. Phys. 2014, 116, 064306. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramaprabhu, S. Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J. Mater. Chem. 2012, 22, 3708–3712. [Google Scholar] [CrossRef]
- Witoon, T.; Numpilai, T.; Phongamwong, T.; Donphai, W.; Boonyuen, C.; Warakulwit, C.; Chareonpanich, M.; Limtrakul, J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem. Eng. J. 2018, 334, 1781–1791. [Google Scholar] [CrossRef]
- Wang, C.L.; Li, Y.; Liu, C.L. Sorption of uranium from aqueous solutions with graphene oxide. J. Radioanal. Nucl. Chem. Artic. 2015, 304, 1017–1025. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Guo, Z.; Liu, C.; Wu, W. Sorption of thorium(IV) from aqueous solutions by graphene oxide. J. Radioanal. Nucl. Chem. 2014, 299, 1683–1691. [Google Scholar] [CrossRef]
- Mondal, N.K.; Chakraborty, S. Adsorption of Cr(VI) from aqueous solution on graphene oxide (GO) prepared from graphite: Equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. 2020, 10, 61. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; Choi, Y.-L.; Chang, Y.-Y.; Yang, J.-K. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90–96. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Yang, A.; Zhu, Y.; Huang, C.P. Facile preparation and adsorption performance of graphene oxide-manganese oxide composite for uranium. Sci. Rep. 2018, 8, 9058. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-B.; Qiu, Y.-F.; Dai, Y.; Wang, P.-F.; Gao, B.; Dong, Z.-M.; Cao, X.-H.; Liu, Y.-H.; Le, Z.-G. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(VI) from aqueous solutions. J. Radioanal. Nucl. Chem. Artic. 2016, 310, 547–557. [Google Scholar] [CrossRef]
- Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J. Environ. Radioact. 2013, 126, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Liu, W.; Mao, Y.; Zhang, L.; Cheng, J.; Gong, M.; Zhao, H.; Dai, L.; Zhang, S.; Zhao, Q. Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite. Chem. Eng. J. 2014, 259, 603–610. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, K.; Wang, X.; Jia, Y.; Sun, B.; Luo, T.; Meng, F.; Jin, Z.; Lin, D.; Shen, W.; et al. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem. Eng. J. 2014, 262, 1292–1302. [Google Scholar] [CrossRef]
- Bulin, C.; Ma, Z.; Guo, T.; Li, B.; Zhang, Y.; Zhang, B.; Xing, R.; Ge, X. Magnetic graphene oxide nanocomposite: One-pot preparation, adsorption performance and mechanism for aqueous Mn(II) and Zn(II). J. Phys. Chem. Solids 2021, 156, 110130. [Google Scholar] [CrossRef]
- Alimohammady, M.; Jahangiri, M.; Kiani, F.; Tahermansouri, H. Correction: Highly efficient simultaneous adsorption of Cd(ii), Hg(ii) and As(iii) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: Central composite design optimization. New J. Chem. 2019, 43, 19437. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Wang, J.; Liu, Q.; Sun, Y.; Jing, X.; Liu, L.; Liu, J.; Song, D. The synthesis of a manganese dioxide–iron oxide–graphene magnetic nanocomposite for enhanced uranium(vi) removal. New J. Chem. 2014, 39, 868–876. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.G.; Khasnabis, S.; Kumar, V.; Nath, B.; Adiga, V.; Naik, T.S.K.; Subramanian, S.; Kumar, V.; Singh, J.; et al. Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. Environ. Res. 2021, 203, 111891. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Y.; Hu, X.; Yuan, D.; Liu, Y.; Liu, Z. Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J. Radioanal. Nucl. Chem. Artic. 2018, 319, 1111–1118. [Google Scholar] [CrossRef]
- Bulin, C.; Zhang, Y.; Li, B.; Zhang, B. Removal performance of aqueous Co(II) by magnetic graphene oxide and adsorption mechanism. J. Phys. Chem. Solids 2020, 144, 109483. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, J.; Zhu, J.; Zhou, X.; Bai, R. Removal of mercury(ii) and methylene blue from a wastewater environment with magnetic graphene oxide: Adsorption kinetics, isotherms and mechanism. RSC Adv. 2016, 6, 82523–82536. [Google Scholar] [CrossRef]
- Huang, D.; Li, B.; Wu, M.; Kuga, S. Graphene Oxide-Based Fe–Mg (Hydr)oxide Nanocomposite as Heavy Metals Adsorbent. J. Chem. Eng. Data 2018, 63, 2097–2105. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, S.; Kim, Y.; Her, N.; Heo, J.; Han, J.; Jang, M.; Park, C.M.; Yoon, Y. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere 2019, 231, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Hu, Q.; Li, X.; Pan, H.; Tang, X.; Chen, C.; Huang, C. Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide. J. Mol. Liq. 2017, 229, 6–14. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Zhuo, M.; Wang, Y.; Fu, S.; Li, Y.; Wu, S. Reusable colloidal graphene oxide suspensions combined with dialysis bags for recovery of trace Y(iii) from aqueous solutions. RSC Adv. 2014, 4, 58778–58787. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, Q.; Jiang, T.; Liu, X.; Li, Y.; Fang, W.; Yin, H. Adsorption characteristics and behavior of a graphene oxide–Al13 composite for cadmium ion removal from aqueous solutions. RSC Adv. 2015, 5, 67372–67379. [Google Scholar] [CrossRef]
- Li, D.; Zhang, B.; Xuan, F. The sorption of Eu(III) from aqueous solutions by magnetic graphene oxides: A combined experimental and modeling studies. J. Mol. Liq. 2015, 211, 203–209. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide–MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Neolaka, Y.A.; Lawa, Y.; Naat, J.N.; Riwu, A.A.; Iqbal, M.; Darmokoesoemo, H.; Kusuma, H.S. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J. Mater. Res. Technol. 2020, 9, 6544–6556. [Google Scholar] [CrossRef]
- Tan, L.; Liu, Q.; Song, D.; Jing, X.; Liu, J.; Li, R.; Hu, S.; Liu, L.; Wang, J. Uranium extraction using a magnetic CoFe2O4–graphene nanocomposite: Kinetics and thermodynamics studies. New J. Chem. 2015, 39, 2832–2838. [Google Scholar] [CrossRef]
- Shao, L.; Wang, X.; Ren, Y.; Wang, S.; Zhong, J.; Chu, M.; Tang, H.; Luo, L.; Xie, D. Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chem. Eng. J. 2016, 286, 311–319. [Google Scholar] [CrossRef]
- Song, X.; Tan, L.; Sun, X.; Ma, H.; Zhu, L.; Yi, X.; Dong, Q.; Gao, J. Facile preparation of NiCo2O4@rGO composites for the removal of uranium ions from aqueous solutions. Dalton Trans. 2016, 45, 16931–16937. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabi, H.; Abdelmaged, S.M.; Nada, A.; Zahran, F.; El-Wahab, S.A.; Yahea, D.; Hussein, G.; Atrees, M. Magnetic graphene based nanocomposite for uranium scavenging. J. Hazard. Mater. 2016, 322, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Sun, Y.; Zhang, H.; Ding, D.; Li, L. Highly Efficient Removal of Uranium(VI) from Wastewater by Polyamidoxime/Polyethyleneimine Magnetic Graphene Oxide. J. Chem. Eng. Data 2019, 64, 5797–5805. [Google Scholar] [CrossRef]
- Yang, A.; Zhu, Y.; Li, P.; Huang, C.P. Preparation of a magnetic reduced-graphene oxide/tea waste composite for high-efficiency sorption of uranium. Sci. Rep. 2019, 9, 6471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhao, D.; Ding, Y.; Chen, Y.; Li, F.; Alsaedi, A.; Hayat, T.; Chen, C. Synthesis of Fe–Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution. J. Clean. Prod. 2019, 230, 1305–1315. [Google Scholar] [CrossRef]
- Zong, P.; Cao, D.; Cheng, Y.; Wang, S.; Zhang, J.; Guo, Z.; Hayat, T.; Alharbi, N.S.; He, C. Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions. Cellulose 2019, 26, 4039–4060. [Google Scholar] [CrossRef]
- Yang, A.; Wang, Z.; Zhu, Y. Facile preparation and highly efficient sorption of magnetic composite graphene oxide/Fe3O4/GC for uranium removal. Sci. Rep. 2021, 11, 8440. [Google Scholar] [CrossRef]
- Lu, W.; Li, L.; Ding, D.; Dai, Z.; Tang, S.; Cao, C.; Liu, L.; Chen, D.T. Selective Adsorption of Uranium (VI) by Calix[6]arene-Modified Magnetic Graphene Oxide. J. Nanosci. Nanotechnol. 2018, 18, 8160–8168. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xiong, T.; Liao, J.; Lei, Y.; Zhang, Y.; Zhu, W. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chem. Eng. J. 2022, 433, 134449. [Google Scholar] [CrossRef]
- Bi, C.; Zhang, C.; Ma, F.; Zhang, X.; Yang, M.; Nian, J.; Liu, L.; Dong, H.; Zhu, L.; Wang, Q.; et al. Growth of a mesoporous Zr-MOF on functionalized graphene oxide as an efficient adsorbent for recovering uranium (VI) from wastewater. Microporous Mesoporous Mater. 2021, 323, 111223. [Google Scholar] [CrossRef]
- Liu, N.; Liang, H.; Tian, W.; Li, C.; Gao, Q.; Wang, N.; Guo, R.; Mo, Z. An antibacterial and antifouling amidoxime-functionalized graphene oxide aerogel for selective uranium adsorption in Salt Lake water. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129367. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, B.; Lu, Y.; Wang, L.; Tao, W.; Teng, X.; Ning, W.; Zhang, Z. Adsorption desulfurization performance of PdO/SiO2@graphene oxide hybrid aerogel: Influence of graphene oxide. J. Hazard. Mater. 2021, 421, 126680. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Luxa, J.; Bouša, D.; Sofer, Z.; Gusmão, R. Electromagnetic Interference Shielding by Reduced Graphene Oxide Foils. ACS Appl. Nano Mater. 2022, 5, 6792–6800. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, B.; Wang, Q.; Yu, J.; Dai, J.; Song, R.; Pu, Z.; He, D.; Wu, Z.; Mu, S. Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness. Small 2018, 14, e1704332. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, C.; Carbone, M.G.P.; Manikas, A.C.; Trakakis, G.; Koral, C.; Papari, G.; Andreone, A.; Galiotis, C. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 2021, 12, 4655. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, T.; Nandhakumar, M.; Mathew, N.K.; Kulangara, R.V.; Asapu, V.K.; Padmanapan, S.; Thangaian, D.T.; Subramanian, B. Electromagnetic shielding performance of reduced graphene oxide reinforced iron oxide nanostructured materials prepared by polyol method. J. Mater. Res. 2022, 37, 1216–1230. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Srivastava, A.; Yadav, A.N.; Haldar, K.; Gupta, V.; Singh, K. Lightweight reduced graphene oxide-ZnO nanocomposite for enhanced dielectric loss and excellent electromagnetic interference shielding. Compos. Part B Eng. 2019, 172, 234–242. [Google Scholar] [CrossRef]
- Verma, M.; Singh, A.P.; Sambyal, P.; Singh, B.P.; Dhawan, S.K.; Choudhary, V. Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys. Chem. Chem. Phys. 2014, 17, 1610–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, B.; Zhai, W.; Zheng, W. Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding. Adv. Funct. Mater. 2014, 24, 4542–4548. [Google Scholar] [CrossRef]
- Xiang, C.; Guo, R.; Lin, S.; Jiang, S.; Lan, J.; Wang, C.; Cui, C.; Xiao, H.; Zhang, Y. Lightweight and ultrathin TiO2-Ti3C2TX/graphene film with electromagnetic interference shielding. Chem. Eng. J. 2018, 360, 1158–1166. [Google Scholar] [CrossRef]
- Song, P.; Liang, C.; Wang, L.; Qiu, H.; Gu, H.; Kong, J.; Gu, J. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 181, 107698. [Google Scholar] [CrossRef]
- Yang, X.; Fan, S.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2019, 128, 105670. [Google Scholar] [CrossRef]
- Jia, H.; Yang, X.; Kong, Q.-Q.; Xie, L.-J.; Guo, Q.-G.; Song, G.; Liang, L.-L.; Chen, J.-P.; Li, Y.; Chen, C.-M. Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J. Mater. Chem. A 2020, 9, 1180–1191. [Google Scholar] [CrossRef]
- Li, D.-S.; Wang, S.-J.; Zhou, Y.; Jiang, L. Lightweight and hydrophobic Ni/GO/PVA composite aerogels for ultrahigh performance electromagnetic interference shielding. Nanotechnol. Rev. 2022, 11, 1722–1732. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, Y.; Ma, X.Y.D.; Shahabadi, S.I.S.; Che, B.; Wang, P.; Lu, X. Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon 2018, 140, 227–236. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, Z.; Wei, J.; Xu, Y.; Wan, Y.; Zhao, T.; Zeng, X.; Hu, Y.; Sun, R. Facile synthesis of ultra-lightweight silver/reduced graphene oxide (rGO) coated carbonized-melamine foams with high electromagnetic interference shielding effectiveness and high absorption coefficient. Carbon 2021, 186, 9–18. [Google Scholar] [CrossRef]
- Liu, X.; Wu, W.; Guo, B.; Cui, M.; Ma, H.; Zhang, Z.; Zhang, R. Facile fabrication of ultrathin graphene film with ultrahigh electrical conductivity and superb electromagnetic interference shielding effectiveness. J. Mater. Chem. C 2020, 9, 214–222. [Google Scholar] [CrossRef]
- Abdel-Wahed, M.S.; El-Kalliny, A.S.; Badawy, M.I.; Attia, M.S.; Gad-Allah, T.A. Core double-shell MnFe2O4@rGO@TiO2 superparamagnetic photocatalyst for wastewater treatment under solar light. Chem. Eng. J. 2019, 382, 122936. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Mohamed, A.A. Synthesis and characterization of magnetically separable and recyclable crumbled MgFe2O4/reduced graphene oxide nanoparticles for removal of methylene blue dye from aqueous solutions. J. Phys. Chem. Solids 2020, 149, 109760. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Padhiari, S.; Biswal, S.; Panda, B.; Hota, G. Fe3O4 nanoparticles functionalized GO/g-C3N4 nanocomposite: An efficient magnetic nanoadsorbent for adsorptive removal of organic pollutants. Mater. Chem. Phys. 2020, 244, 122710. [Google Scholar] [CrossRef]
- Li, D.; Hua, T.; Yuan, J.; Xu, F. Methylene blue adsorption from an aqueous solution by a magnetic graphene oxide/humic acid composite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127171. [Google Scholar] [CrossRef]
- De Farias, L.M.; Ghislandi, M.G.; de Aguiar, M.F.; Silva, D.B.; Leal, A.N.; Silva, F.d.A.; Fraga, T.J.; de Melo, C.P.; Alves, K.G. Electrospun polystyrene/graphene oxide fibers applied to the remediation of dye wastewater. Mater. Chem. Phys. 2021, 276, 125356. [Google Scholar] [CrossRef]
- Cui, L.; Guo, X.; Wei, Q.; Wang, Y.; Gao, L.; Yan, L.; Yan, T.; Du, B. Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: Sorption kinetic and uptake mechanism. J. Colloid Interface Sci. 2015, 439, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Bayantong, A.R.B.; Shih, Y.-J.; Ong, D.C.; Abarca, R.R.M.; Dong, C.-D.; de Luna, M.D.G. Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere 2020, 274, 129518. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, X.; Jiang, K.; Liu, F.; You, F.; Yao, C. Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue. Nanomaterials 2021, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Tyagi, I.; Kumar, V.; Goel, S.; Vaya, D.; Kim, H. Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: Kinetics, isotherm, and reusability. J. Environ. Chem. Eng. 2021, 9, 106045. [Google Scholar] [CrossRef]
- Ajeel, S.J.; Beddai, A.A.; Almohaisen, A.M.N. Preparation of alginate/graphene oxide composite for methylene blue removal. Mater. Today Proc. 2021, 51, 289–297. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Ghorai, S.; Rana, D.; Roy, I.; Sarkar, G.; Saha, N.R.; Orasugh, J.T.; De, S.; Sadhukhan, S.; Chattopadhyay, D. Design of an efficient and selective adsorbent of cationic dye through activated carbon—Graphene oxide nanocomposite: Study on mechanism and synergy. Mater. Chem. Phys. 2020, 260, 124090. [Google Scholar] [CrossRef]
- Du, R.; Cao, H.; Wang, G.; Dou, K.; Tsidaeva, N.; Wang, W. PVP modified rGO/CoFe2O4 magnetic adsorbents with a unique sandwich structure and superior adsorption performance for anionic and cationic dyes. Sep. Purif. Technol. 2022, 286, 120484. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Abouelreash, Y.G.; AlReshaidan, S.; Naglah, A.M. Application of Novel Modified Chitosan Hydrogel Composite for the Efficient Removal of Eriochrome Black T and Methylene Blue Dyes from Aqueous Media. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1142–1158. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Hu, L.; Gao, L.; Du, B.; Wei, Q. Mechanism of Pb(ii) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv. 2015, 5, 9759–9770. [Google Scholar] [CrossRef]
- Kiranakumar, H.V.; Thejas, R.; Naveen, C.S.; Khan, M.I.; Prasanna, G.D.; Reddy, S.; Oreijah, M.; Guedri, K.; Bafakeeh, O.T.; Jameel, M. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefin. 2022, 1–11. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview. Sensors 2021, 21, 1352. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Xu, Y.; Yue, W.; Adolfsson, K.H.; Wu, M. Recent progress in the use of graphene/po lymer composites to remove oil contaminants from water. New Carbon Mater. 2021, 36, 235–252. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joel, E.F.; Lujanienė, G. Progress in Graphene Oxide Hybrids for Environmental Applications. Environments 2022, 9, 153. https://doi.org/10.3390/environments9120153
Joel EF, Lujanienė G. Progress in Graphene Oxide Hybrids for Environmental Applications. Environments. 2022; 9(12):153. https://doi.org/10.3390/environments9120153
Chicago/Turabian StyleJoel, Edith Flora, and Galina Lujanienė. 2022. "Progress in Graphene Oxide Hybrids for Environmental Applications" Environments 9, no. 12: 153. https://doi.org/10.3390/environments9120153
APA StyleJoel, E. F., & Lujanienė, G. (2022). Progress in Graphene Oxide Hybrids for Environmental Applications. Environments, 9(12), 153. https://doi.org/10.3390/environments9120153