Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Microplastic Extraction
2.3. Microplastic Constatation
2.4. Microplastic Identification
2.5. Soil Characterization by Using Organic Carbon Content, Moisture Content, and pH
2.6. Data Analysis
2.7. Geostatistical Analysis
- nugget variance: the random variation of the short distance.
- sill: the maximum value of the semi-variogram.
- range: the separation distance at probable spatial dependence.
3. Results
3.1. Microplastic Particles in Soils by City District
3.2. Microplastic Size Distribution by City District
3.3. Microplastic Types
3.4. Soil Microplastics, Organic Carbon Content, Moisture Content, and pH Prediction in the Soils of Amsterdam
4. Discussion
4.1. Microplastic Concentration in City Districts
4.2. Size Distribution of Microplastic Particles in Amsterdam
4.3. Microplastic Types
4.4. Microplastics and Soil Organic Matter, pH, and Moisture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Foley, C.J.; Feiner, Z.S.; Malinich, T.D.; Höök, T.O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 2018, 631–632, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; Gautam, A. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20360–20371. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.A.d.S.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616–617, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Restrepo-Flórez, J.M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1–6. [Google Scholar]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; Ploeg, M.v.d.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.R.; Nizzetto, L. Fate and occurence of micro (nano) plastics in soils: Knowledge gaps and possible risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef]
- Teil, M.J.; Blanchard, M.; Chevreuil, M. Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci. Total Environ. 2006, 354, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Zukin, S. The social production of urban cultural heritage: Identity and ecosystem on an Amsterdam shopping street. City Cult. Soc. 2012, 3, 281–291. [Google Scholar] [CrossRef]
- Gerritsma, R. Overcrowded Amsterdam: Striving for a balance between trade, tolerance and tourism. In Overtourism: Excesses, Discontents and Measures in Travel and Tourism; Cheer and Marina Novelli: Wallingford, UK, 2019; pp. 125–147. [Google Scholar]
- Essonanawe, M.; Fruergaard, T.; Pivnenko, K.; Edjabou, M.; Boldrin, A.; Astrup, T. Challenge of Material Recycling at Large Public Events. In Proceedings of the 16th International Waste Management and Landfill Symposium, Sardinia, Italy, 2–7 October 2017. [Google Scholar]
- Gans, W.D. Handboek voor een Afvalvrij Festival. 2017. Available online: https://www.metabolic.nl/publications/handboek-voor-een-afvalvrij-festival/ (accessed on 27 December 2021).
- Bevolkingsprognoses Amsterdam. Onderzoek, Informatie en Statistiek. Available online: https://data.amsterdam.nl/datasets/Y1Uw9Zh-qZyZAQ/bevolkingsprognoses-amsterdam/ (accessed on 30 April 2020).
- Afvalverwerking in Amsterdam. Gemeente Amsterdam, Onderzoek, Informatie en Statistiek. Available online: https://data.amsterdam.nl/datasets/zIe2GGF-IVNxAQ/afvalverwerking-in-amsterdam/ (accessed on 30 April 2020).
- Folmer, A.; Revier, H.; Cupido, T. Sustainable tourism development and the world heritage status of the Wadden Sea: The case of Terschelling. Res. Hosp. Manag. 2016, 6, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Yukioka, S.; Tanaka, S.; Nabetani, Y.; Suzuki, Y.; Ushijima, T.; Fujii, S.; Takada, H.; Tran, Q.v.; Singh, S. Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environ. Pollut. 2020, 256, 113447. [Google Scholar] [CrossRef]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Wang, J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Sci. Total Environ. 2019, 694, 133798. [Google Scholar] [CrossRef]
- Gans, W.D. De Bodem onder Amsterdam: Een Geologische Stadswandeling; Utrecht TNO Geologische Dienst Nederland: Utrecht, The Netherlands, 2011. [Google Scholar]
- Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends Anal. Chem. 2019, 111, 62–72. [Google Scholar] [CrossRef]
- Hanvey, J.S.; Lewis, P.J.; Lavers, J.L.; Crosbie, N.D.; Pozo, K.; Clarke, B.O. A review of analytical techniques for quantifying microplastics in sediments. Anal. Methods 2017, 9, 1369–1383. [Google Scholar] [CrossRef]
- Berg, P.v.d.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Schinner, F. Monitoring and Assessing Soil Bioremediation; Springer: Berlin/Heidelberg, Germany, 2005; Volume 5. [Google Scholar]
- Nelson, D.W. Chapter 34 Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Wiley: Madison, WI, USA, 1996; p. 53711. [Google Scholar]
- Huerta Lwanga, E.; Vega, J.M.; Quej, V.K.; Chi, J.d.l.A. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Waart, S.d.; Jong, W.d.; Tijs, M. Zwerfafval; Milieu Center: Sacramento, CA, USA, 2015. [Google Scholar]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Thapa, B.; Yang, X.; Gertsen, H.; Salánki, T.; Geissen, V.; Garbeva, P. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Sci. Total Environ. 2018, 624, 753–757. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Kabasci, S. Chapter 4—Biobased plastics. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 67–96. [Google Scholar]
- Havstad, M.R. Chapter 5—Biodegradable plastics. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 97–129. [Google Scholar]
- Geyer, R. Chapter 2—Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 13–32. [Google Scholar]
- Letcher, T.M. Chapter 1—Introduction to plastic waste and recycling. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 3–12. [Google Scholar]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, Q.M.; Glaese, M.; Meng, K.; Geissen, V.; Huerta-Lwanga, E. Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands. Environments 2022, 9, 5. https://doi.org/10.3390/environments9010005
Cohen QM, Glaese M, Meng K, Geissen V, Huerta-Lwanga E. Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands. Environments. 2022; 9(1):5. https://doi.org/10.3390/environments9010005
Chicago/Turabian StyleCohen, Quirine M., Mae Glaese, Ke Meng, Violette Geissen, and Esperanza Huerta-Lwanga. 2022. "Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands" Environments 9, no. 1: 5. https://doi.org/10.3390/environments9010005
APA StyleCohen, Q. M., Glaese, M., Meng, K., Geissen, V., & Huerta-Lwanga, E. (2022). Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands. Environments, 9(1), 5. https://doi.org/10.3390/environments9010005