On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
- Granitic terrain partially covered by glaciers (Huayna Potosí granite, HPG);
- Slightly metamorphosed fine-grained sandstone with bedded black shales (Cambrian to Ordovician);
- Mineralized Silurian sandstone (Catavi Formation). The Catavi Formation is mainly composed of sandstone deformed by faults and folds, which allowed mineralization to occur [29].
- Pata Khota: A natural lagoon of irregular shape that receives water from the glacier of the Huayna Potosí. It is located at 4665 m.a.s.l.
- Jankho Khota: Located at 4560 m.a.s.l., an irregular-shaped natural lagoon that receives water from the Pata Khota lagoon.
- Milluni Chico: An artificial lagoon at an altitude of 4550 m.a.s.l., having an irregular shape and receiving water from natural springs, Jankho Khota lagoon, and mines. This artificial lagoon aims to capture the acid drainage of the mines to prevent it from entering the Milluni Grande lagoon.
- Milluni Grande: Located at 4530 m.a.s.l, the Milluni Grande lagoon receives effluents from natural springs, the Milluni Chico lagoon, and mines’ drainage. It also receives water from the Jankho Khota lagoon through a bypass system. In this lagoon, there is a water storage dam for public supply, which has a high probability of contamination by heavy metals due to its tributaries.
2.2. Monitoring Program Designed for Milluni
- Objective of the monitoring program. Determine the water quality of the Milluni area.
- Purpose of the monitoring program. Becoming a control program that generates representative data and contributes to the water management of the area.
- Monitoring area. The upper part of Milluni, including its 4 lagoons: Pata Khota, Jankho Khota, Milluni Chico, and Milluni Grande.
- Sampling points. Four sampling points were determined to monitor the water quality in Milluni, and they were distributed throughout the water system. Figure 2 shows their location.
- Point 1: Used to identify the reference conditions in the watercourse system.
- Point 2: Used to determine any signs of deterioration in water quality.
- Point 3: Used to show if the body of water meets the desired quality standards because it is a water storage dam within the course system.
- Point 4: Seeks to evaluate the effectiveness of human intervention in water quality management.
- Frequency of monitoring. The samplings will be carried out three times in the dry season and three times in the rainy season with intervals of 1 month between samples.
- Variables to measure. The in situ parameters that must be monitored are pH, dissolved oxygen, conductivity, turbidity, and temperature, because they are basic control parameters established in Bolivian regulations. The ex situ parameters that must be monitored are quantities of 33 metals, due to the high susceptibility of the area to present contamination by heavy metals.
- Sampling protocol. The monitoring program adopts the Protocol established in “ISO 5667-4 [39]: 2016 Water quality-Sampling-Part 4: Guidance on the sampling of lakes, natural and artificial”.
- Determination of resources. This program considers that financial resources and trained personnel are limited. In this sense, all the components were thought to save resources.
- Evaluation and control of the program. The key to optimizing a monitoring program is to evaluate its components through the implementation of the first year of the program (pilot year). With the results of this first year, it will be possible to redefine components and seek continuous improvement within them.
2.3. Methodology
2.3.1. Coordinated Fieldwork
2.3.2. Field Work
- Measurement of parameters in situ with a HQ40D-Hach portable multimeter and a Hach 2100Q portable turbidimeter.
- Sampling, transport, and storage, following the protocol established in ISO 5667-1 [40], to avoid contamination of the samples.
- Heavy metal analytics were developed in the Services Laboratory of the University of Alicante in Spain.
2.3.3. Statistically Analyze the Results of the Pilot Year
- PH is a parameter that describes the acid–base properties of a solution [45]. In this regard, the acidic condition of metal ions leads us to understand that a low pH is related to a greater presence of metal ions.
- Pure water is not a good conductor of electricity, and dissolved ions increase its conductivity [46]. Hence, high conductivity is related to a greater presence of metal ions.
3. Results
3.1. Results of Parameters Measured In Situ and Ex Situ
- The first point, located at the headwaters of the Milluni water system, is the least polluted, verifying the values obtained with the Bolivian regulation 1333 in its Water Pollution Regulation.
- The effluent from the Milluni Chico Lagoon is the most polluted point (2), and this can be attributed to the mining activity that takes place around it, because it has an acid character and high conductivities.
- At the third point a water storage dam is located, which is supposed to have a superior water quality. The results prove that the natural water sources that are the tributaries of the Milluni Grande lagoon are negatively impacted by anthropogenic activities in the area.
- The fourth point shows that the pretreatment applied to the effluent from the dam is not adequately conditioning the water for its entrance into the purification plant, posing a risk to its correct operation.
3.2. Analysis of Sampling Frequency at Different Points
3.3. Search for Indicators for High Metal Concentration
3.3.1. Validation of the Hypothesis on the Effect of pH
3.3.2. Hypothesis Validation of the Effect of Measured Conductivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Haider, L.J.; Boonstra, W.J.; Peterson, G.D.; Schlüter, M. Traps and Sustainable Development in Rural Areas: A Review. World Dev. 2018, 101, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Ha, P.T.T.; Kokutse, N.; Duchesne, S.; Villeneuve, J.-P.; Bélanger, A.; Hien, H.N.; Toumbou, B.; Bach, D.N. Assessing and selecting interventions for river water quality improvement within the context of population growth and urbanization: A case study of the Cau River basin in Vietnam. Environ. Dev. Sustain. 2016, 19, 1701–1729. [Google Scholar] [CrossRef]
- Slaughter, A.; Hughes, D.; Retief, D.; Mantel, S. A management-oriented water quality model for data scarce catchments. Environ. Model. Softw. 2017, 97, 93–111. [Google Scholar] [CrossRef]
- Francisco, R.R.; Xiomara, M.Q. Acuerdos de Monitoreo de Calidad del Agua en Estados Unidos de Norte América: Estado del Arte. Vis. Gerenc. 2011, 173–187. Available online: https://www.redalyc.org/articulo.oa?id=465545890013 (accessed on 23 January 2021).
- Loucks, D.P.; van Beek, E. Water Resources Planning and Management: An Overview. In Water Resource Systems Planning and Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Cairns, M.R. Metering water: Analyzing the concurrent pressures of conservation, sustainability, health impact, and equity in use. World Dev. 2018, 110, 411–421. [Google Scholar] [CrossRef]
- Langergraber, G.; Muellegger, E. Ecological Sanitation—A way to solve global sanitation problems? Environ. Int. 2005, 31, 433–444. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The General Assembly Adopts the 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-la-agenda-2030-para-el-desarrollo-sostenible/ (accessed on 25 June 2021).
- Foro Consultivo Científico y Tecnológico, AC. Diagnóstico del agua en las Américas; The InterAmerican Network of Academies of Sciences: Irvine, CA, USA, 2012; ISBN 978-607-9217-04-4. Available online: https://www.ianas.org/water/book/mexico.pdf (accessed on 20 February 2021).
- Chatelain, D.; Wittinton, H.M. Evaluación de los Recursos Hídricos en Bolivia, Sur América. In Seminario de los Recursos Hídricos en Bolivia y su Dimensión Ambiental: Políticas, Planificación, Aspectos Legales, Aprovechamiento y Calidad de Aguas, Manejo de Cuencas, Degradación, Contaminación y Estudios; Ricaldi, V., Flores, C., Anaya, L., Eds.; AROL: Cochabamba, Bolivia, 1992; pp. 133–136. [Google Scholar]
- Pereira, M.A.; Marques, R.C. The ‘Sustainable Public Health Index’: What if public health and sustainable development are compatible? World Dev. 2021, 149, 105708. [Google Scholar] [CrossRef]
- AECID. Programa de Gestión Integral del Agua en Areas Urbanas; AECID: La Paz, Bolivia, 2020. [Google Scholar]
- WHO. Proporción de la Población que Usa Instalaciones de Saneamiento Mejoradas. 2015. Available online: https://www.esglobal.org/bolivia-agua-una-relacion-complicada/ (accessed on 7 November 2021).
- WHO. Agua y Saneamiento. Joint Monitoring Programme, JMP. 2017. Available online: https://www.paho.org/es/temas/agua-saneamiento (accessed on 7 November 2021).
- WHO. World Health Organization Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 2021; Volume 1. [Google Scholar]
- Chapman, D.V.; World Health Organization; Unesco & United Nations Environment Programme. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; Chapman, D., Ed.; E & FN Spon: London, UK, 1996; Available online: https://apps.who.int/iris/handle/10665/41850 (accessed on 15 February 2021).
- Autoridad Nacional del Agua, ANA. Protocolo de Monitoreo de la Calidad de los Recursos Hídricos. 2011. Available online: https://www.gwp.org/globalassets/global/gwp-sam_files/publicaciones/varios/2011-protocolo-anaperu.pdf (accessed on 15 January 2021).
- Fu, H.-Z.; Wang, M.-H.; Ho, Y.-S. Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Sci. Total Environ. 2013, 443, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, M.P.; Dourado, P.L.R.; Cardoso, C.A.L.; Candido, L.S.; Pereira, J.G.; De Oliveira, K.M.P.; Grisolia, A.B. Tools for monitoring aquatic environments to identify anthropic effects. Environ. Monit. Assess. 2018, 190, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivero, N.P.P.; Morais, D.C.; Pereira, L.D.S. Assessment of actions to tackle the shortages of water in La Paz, Bolivia. Hydrol. Res. 2020, 22, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Alvizuri Tintaya, P.A.; Torregrosa López, J.I.; Lo Iacono Ferreira, V.G.; Salinas Villafañe, O.R. Heavy metals problem in micro basin that feeds a drinking water dam, Milluni—Bolivia case. In Proceedings of the XXIII International Congress on Project Management and Engineering, Málaga, Spain, 10–12 July 2019; Available online: http://dspace.aeipro.com/xmlui/handle/123456789/2396 (accessed on 20 June 2021).
- Public Social Company of Water Sanitation EPSAS. Capacidad de Fuentes. 2013. Available online: https://www.epsas.com.bo/web/ (accessed on 8 April 2021).
- Salvarredy-Aranguren, M.M.; Probst, A.; Roulet, M.; Isaure, M.-P. Contamination of surface waters by mining wastes in the Milluni Valley (Cordillera Real, Bolivia): Mineralogical and hydrological influences. Appl. Geochemestry 2008, 23, 1299–1324. [Google Scholar] [CrossRef]
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fan, W.; Zhou, T.; Li, X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci. Total Environ. 2019, 678, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Corporación Andina de Fomento. Agua y Saneamiento en el Estado Plurinacional de Bolivia. 2017. Available online: https://scioteca.caf.com/handle/123456789/1081?show=full (accessed on 7 November 2021).
- Alvizuri Tintaya, P.A.; Villena Martínez, E.M.; Torregrosa López, J.I.; Lo Iacono Ferreira, V.G.; Lora Garcia, J. Design of a monitoring program with the application of Bolivian Standard NB/ISO 5667-4: A case study of Milluni, Bolivia. In Proceedings of the XXIV International Congress on Project Management and Engineering, Alcoy, Spain, 7–10 July 2020; Available online: http://dspace.aeipro.com/xmlui/handle/123456789/2499 (accessed on 20 July 2021).
- Ahlfeld, F.; Schneider-Scherbina, A. Los Yacimientos Minerales y de Hidrocarburos de Bolivia; Departamento Nacional de Geología, Ministerio de Minas y Petróleo: La Paz, Bolivia, 1964. [Google Scholar]
- Peñarrieta, L. Estudio del tratamiento de las aguas ácidas provenientes de los pasivos ambientales y desagües de la mina de la cuenca de Milluni del departamento de la Paz-Bolivia. Método de Biodsorción. Reutilización sostenible del espacio minero. In I Simposio Red REUSE y Seminario Internacional de Reconversión de Territorios; Instituto Juan Herrera: Madrid, Spain, 2012; pp. 129–135. Available online: https://www.academia.edu/23257074/Minera%C3%A7%C3%A2o_em_Minas_Gerais_territ%C3%B3rio_e_paisagem_cultural (accessed on 20 May 2021).
- SENAMHI. Base de Datos Meteorológico del Servicio Nacional de Meteorología e Hidrología-SISMET. Bolivia. 2021. Available online: http://senamhi.gob.bo/index.php/inicio (accessed on 7 November 2021).
- Miranda, A.; Arancibia, H.; Quispe, R. Reconocimiento del Patrimonio Geológico y Minero de la Región de Milluni en La Paz Bolivia. 2010, pp. 74–76. Available online: https://www.slideshare.net/neocien/patrimonio-geolgico-y-minero-de-la-regin-de-milluni-enla-paz-bolivia (accessed on 7 November 2021).
- Lehmann, B. Memoria explicativa del mapa geológico de Milluni, Cordillera Real (Bolivia). Rev. Geocien. Univ. Mayor San Andrés 1978, 2, 187–257. [Google Scholar]
- Ríos, C.G. Estudio de la Contaminación Ambiental por las Descargas Mineras de COMSUR en la Represa de Milluni; Universidad Mayor de San Andrés: La Paz, Bolivia, 1985. [Google Scholar]
- Raffaillac, E. Estudio in Situ de la Contaminación Minera de la Cuenca Milluni, Mémoire de Stage en Aguas del Illimani; Inédito: La Paz, Bolivia, 2002; p. 96. [Google Scholar]
- Iltis, A. Datos Sobre las Lagunas Altura de la Región de la Paz (Bolivie); ORSTOM: La Paz, Bolivia, 1988; 50p, Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/doc34-05/26148.pdf (accessed on 15 February 2021).
- Saavedra, C. Plan Nacional de Cuencas de Bolivia. Conference: La Gestión Integral de Cuencas en Los Andes. 2015. Available online: https://www.researchgate.net/publication/281244646_Plan_Nacional_de_Cuencas_de_Bolivia (accessed on 20 January 2021).
- United Nations Environment Programme and World Health Organization, UNEP/WHO. Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; Bartram, J., Balance, R., Eds.; United Nations Environment Programme and the World Health Organization: Geneva, Switzerland, 1996; ISBN 0419223207. Available online: https://www.who.int/water_sanitation_health/resourcesquality/waterqualmonitor.pdf (accessed on 18 February 2021).
- International Organization for Standardization. ISO 5667-4: Water Quality—Sampling—Part 4: Guidance on Sampling from Lakes, Natural and Man-Made; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- International Organization for Standardization. ISO 5667-1: Water Quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Saha, N.; Rahman, M.S. Multivariate statistical analysis of metal contamination in surface water around Dhaka export processing industrial zone, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2018, 10, 206–211. [Google Scholar] [CrossRef]
- Adeleke, B.; Robertson-Andersson, D.; Moodley, G. Comparative analysis of trace metal levels in the crab Dotilla fenestrata, sediments and water in Durban Bay harbour, Richards Bay harbour and Mlalazi estuary, Kwazulu-Natal, South Africa. Heliyon 2020, 6, e04725. [Google Scholar] [CrossRef] [PubMed]
- Ugbede, F.O.; Aduo, B.C.; Ogbonna, O.N.; Ekoh, O.C. Natural radionuclides, heavy metals and health risk assessment in surface water of Nkalagu river dam with statistical analysis. Sci. Afr. 2020, 8, e00439. [Google Scholar] [CrossRef]
- Statgraphics. Statgraphics Centurion XVIII. 2018. Available online: https://statgraphics.net/ (accessed on 7 November 2021).
- Crittenden, J.C.; Rhodes Trussell, R.; Hand, D.W.; Howe, K.J.; Tchobanoglou, G. MWH’s Water Treatment: Principles and Design, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Norma Boliviana NB 512: Agua Potable—Requisitos; Ibnorca: La Paz, Bolivia, 2021.
- Wang, Y.; Qiao, M.; Liu, Y.; Zhu, Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 2012, 24, 690–698. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
Sapling Month | Points | Parameters Measured In Situ | ||||
---|---|---|---|---|---|---|
Temperature | Turbidity | pH | Dissolved Oxygen | Conductivity | ||
°C | NTU | mg/L | uS/cm | |||
January | P1 | 4.5 | 4.14 | 6.85 | 7.31 | 48.3 |
P2 | 10.8 | 29.3 | 3.32 | 5.54 | 745.0 | |
P3 | 13.9 | 11.7 | 3.03 | 5.21 | 1119. | |
P4 | 17.4 | 81.2 | 4.16 | 5.17 | 331.2 | |
March | P1 | 4.5 | 3.21 | 7.01 | 7.56 | 37.8 |
P2 | 8.8 | 20.6 | 3.54 | 6.01 | 800.0 | |
P3 | 9.5 | 11.7 | 3.45 | 5.59 | 1080.0 | |
P4 | 13.0 | 75.3 | 4.45 | 5.2 | 554.0 | |
May | P1 | 4.6 | 1.83 | 6.7 | 7.9 | 38.7 |
P2 | 8.7 | 3.41 | 2.83 | 6.59 | 1723.0 | |
P3 | 9.00 | 2.75 | 2.76 | 7.06 | 1246.0 | |
P4 | 9.7 | 55.8 | 2.83 | 7.13 | 1033.0 | |
August | P1 | 4.00 | 3.25 | 7.37 | 7.66 | 64.9 |
P2 | 10.8 | 7.83 | 2.78 | 6.41 | 1966.0 | |
P3 | 10.6 | 8.07 | 2.68 | 6.68 | 1442.0 | |
P4 | 7.7 | 109 | 3.38 | 7.34 | 972.0 | |
October | P1 | 6.5 | 3.51 | 4.6 | 5.6 | 71.5 |
P2 | 11.5 | 5.3 | 2.81 | 4.99 | 1718.0 | |
P3 | 14.4 | 23.2 | 2.67 | 5.67 | 1486.0 | |
P4 | 13.0 | 36.9 | 3.25 | 6.04 | 727.0 | |
December | P1 | 5.5 | 2.54 | 6.5 | 5.8 | 65.2 |
P2 | 10.5 | 4.5 | 3.23 | 4.45 | 850.0 | |
P3 | 12.4 | 9.8 | 2.57 | 4.98 | 1200.0 | |
P4 | 11.3 | 67.0 | 4.5 | 6.1 | 956.0 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Between Groups | 7543.24 | 3 | 2514.41 | 28.43 | 0.0000 |
Intra Groups | 1768.85 | 20 | 88.4427 | ||
Total (corr.) | 9312.09 | 23 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Between Groups | 241.252 | 1 | 241.252 | 16.46 | 0.0005 |
Intra Groups | 322.481 | 22 | 14.6582 | ||
Total (corr.) | 563.733 | 23 |
Least-Squares Coefficient | |||||
Parameter | Estimate | Standard Error | T-Statistical | p-Value | |
Slope | 0.00223672 | 0.0000975989 | 22.9175 | 0.0000 | |
Variance Analysis | |||||
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
Model | 126.526 | 1 | 126.526 | 525.21 | 0.0000 |
Residue | 5.54082 | 23 | 0.240905 | ||
Total | 132.067 | 24 | |||
Correlation coefficient = 0.978798, R-squared = 95.8045%, Model:55 Mn [He] = (0.00223672 × CONDUCT)2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvizuri Tintaya, P.A.; Villena Martínez, E.M.; Micó Vicent, B.; Lora Garcia, J.; Torregrosa-López, J.I.; Lo-Iacono-Ferreira, V.G. On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia. Environments 2022, 9, 4. https://doi.org/10.3390/environments9010004
Alvizuri Tintaya PA, Villena Martínez EM, Micó Vicent B, Lora Garcia J, Torregrosa-López JI, Lo-Iacono-Ferreira VG. On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia. Environments. 2022; 9(1):4. https://doi.org/10.3390/environments9010004
Chicago/Turabian StyleAlvizuri Tintaya, Paola Andrea, Esteban Manuel Villena Martínez, Bárbara Micó Vicent, Jaime Lora Garcia, Juan Ignacio Torregrosa-López, and Vanesa G. Lo-Iacono-Ferreira. 2022. "On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia" Environments 9, no. 1: 4. https://doi.org/10.3390/environments9010004
APA StyleAlvizuri Tintaya, P. A., Villena Martínez, E. M., Micó Vicent, B., Lora Garcia, J., Torregrosa-López, J. I., & Lo-Iacono-Ferreira, V. G. (2022). On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia. Environments, 9(1), 4. https://doi.org/10.3390/environments9010004