Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Sampling Design
2.2.1. Sampling Soils in Spain and in The Netherlands
2.2.2. Sampling and Type of Composts in The Netherlands
2.3. Microplastic Analysis
2.3.1. Microplastic Extraction with Flotation
2.3.2. Visual Microplastic Identification
2.3.3. Microplastic Particles Analysis with ImageJ
2.3.4. Plastic Confirmation with Fourier Transform Infrared Spectrometer
2.3.5. Microplastics Input Calculations Per Compost and Per Plastic Mulch
2.4. Statistical Analysis
3. Results
3.1. Number of MPs in Compost, Dutch, and Spanish Soils
3.2. Size Comparison of MPs between Locations
3.3. Estimating the Source of MPs in the Spanish and Dutch Soils
4. Discussion
4.1. Microplastics in Compost
4.2. Accumulation of Microplastics in Soils
4.3. Limitations of the Plastic Extraction and Identification Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, R. Our Oceans: A Plastic Soup. Available online: http://blogs.ei.columbia.edu/2011/01/26/our-oceans-a-plastic-soup/ (accessed on 11 February 2021).
- Tiseo, I. Production of Plastics Worldwide from 1950 to 2019 (In Million Metric Tons). Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 11 February 2021).
- Rochman, C.M. Strategies for reducing ocean plastic debris should be diverse and guided by science. Environ. Res. Lett. 2016, 11, 041001. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of The Impact of Certain Plastic Products on The Environment. European Parliament, 2019. Available online: http://data.europa.eu/eli/dir/2019/904/oj (accessed on 11 February 2021).
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Boyle, K.; Örmeci, B. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 2020, 12, 2633. [Google Scholar] [CrossRef]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C.; et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate–A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2175–2222. [Google Scholar] [CrossRef]
- Hurley, R.; Horton, A.; Lusher, A.; Nizzetto, L. Chapter 7—Plastic waste in the terrestrial environment. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 163–193. [Google Scholar]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B.; Crawford, C.B.; Quinn, B. 4-Physiochemical properties and degradation. In Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 57–100. [Google Scholar]
- Selke, S.; Auras, R.; Nguyen, T.A.; Castro Aguirre, E.; Cheruvathur, R.; Liu, Y. Evaluation of Biodegradation-Promoting Additives for Plastics. Environ. Sci. Technol. 2015, 49, 3769–3777. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, D.I.; Muhammad, S. Biodegradation of Plastics: Current Scenario and Future Prospects for Environmental Safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef] [PubMed]
- Hogg, D.; Gibbs, A.; Ettlinger, S.; Hann, S. The Impact of the Use of “Oxo-Degradable” Plastic on the Environment; Publications Office of the EU: Luxembourg, Luxembourg, 2016. [Google Scholar] [CrossRef]
- Hayes, D.G.; Wadsworth, L.C.; Sintim, H.Y.; Flury, M.; English, M.; Schaeffer, S.; Saxton, A.M. Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym. Test. 2017, 62, 454–467. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Flury, M. Is Biodegradable Plastic Mulch the Solution to Agriculture’s Plastic Problem? Environ. Sci. Technol. 2017, 51, 1068–1069. [Google Scholar] [CrossRef]
- Oever, M.v.d.; Molenveld, K.; Zee, M.v.d.; Bos, H. Bio-Based and Biodegradable Plastics: Facts and Figures: Focus on Food Packaging in the Netherlands; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Kijchavengkul, T.; Auras, R. Compostability of polymers. Polym. Int. 2008, 57, 793–804. [Google Scholar] [CrossRef]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef]
- Zee, M.v.d.; Molenveld, K. The Fate of (Compostable) Plastic Products in a Full Scale Industrial Organic Waste Treatment Facility; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2020; ISBN 9789463953108. [Google Scholar]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Y.; Wang, J.; Chen, X.; Zhang, S.; Wu, D. Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environ. Pollut. 2021, 274, 116553. [Google Scholar] [CrossRef] [PubMed]
- Keurcompost. Beoordelingsrichtlijn Keurcompost. Available online: https://keurcompost.nl/beoordelingsrichtlijn/ (accessed on 8 February 2021).
- BVOR. Compost: Effectieve Organische Stof in de Bodem. Available online: https://bvor.nl/compost-effectieve-organische-stof-bodem/ (accessed on 28 January 2021).
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616–617, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics–the Facts 2020. Available online: https://www.plasticseurope.org/application/files/7216/1125/2058/AF_Plastics_the_facts-WEB-2020-ING_FINAL.pdf (accessed on 12 February 2021).
- Weber, C.J.; Weihrauch, C.; Opp, C.; Chifflard, P. Investigating microplastic dynamics in soils: Orientation for sampling strategies and sample pre-procession. Land Degrad. Dev. 2021, 32, 270–284. [Google Scholar] [CrossRef]
- Besseling, E.; Quik, J.T.K.; Sun, M.; Koelmans, A.A. Fate of nano- and microplastic in freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Yang, P.; Guo, Y.-Z.; Qiu, L. Effects of ozone-treated domestic sludge on hydroponic lettuce growth and nutrition. J. Integr. Agric. 2018, 17, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Zhang, L.; Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; Flury, M. Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch. Sci. Total Environ. 2018, 635, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Ploeg, M.; Huerta, E.; Yang, X.; Zhang, S.; Ma, X.; Ritsema, C.; Geissen, V. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environ. Chem. 2019, 16. [Google Scholar] [CrossRef]
- Van den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef] [PubMed]
- Mbachu, O.; Jenkins, G.; Pratt, C.; Kaparaju, P. A New Contaminant Superhighway? A Review of Sources, Measurement Techniques and Fate of Atmospheric Microplastics. Water Air Soil Pollut. 2020, 231, 85. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Mekuanint, S.; Alemneh, T.; Asredie, T. Indigestible rumen foreign bodies cause of rumen impaction in cattle, sheep and goats slaughtered at Addis Ababa Abattoir Enterprise, Ethiopia. J. Vet. Sci. Med. 2017, 5, 5. [Google Scholar]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Huerta-Lwanga, E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2021, 755, 142653. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Munno, K.; de Frond, H.; O’Donnell, B.; Rochman, C.M. Increasing the Accessibility for Characterizing Microplastics: Introducing New Application-Based and Spectral Libraries of Plastic Particles (SLoPP and SLoPP-E). Anal. Chem. 2020, 92, 2443–2451. [Google Scholar] [CrossRef]
- Sobhani, Z.; al Amin, M.; Naidu, R.; Megharaj, M.; Fang, C. Identification and visualisation of microplastics by Raman mapping. Anal. Chim. Acta 2019, 1077, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; Gautam, A. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [Green Version]
- Horton, A.A.; Dixon, S.J. Microplastics: An introduction to environmental transport processes. Wires Water 2018, 5, e1268. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.; Sobral, P. Plastic marine debris on the Portuguese coastline: A matter of size? Mar. Pollut. Bull. 2011, 62, 2649–2653. [Google Scholar] [CrossRef]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Harms, I.K.; Diekötter, T.; Troegel, S.; Lenz, M. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Sci. Total Environ. 2021, 758, 143615. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Cai, Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ. Pollut. 2020, 257, 113570. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.I.; Arfaioli, P.; Bardelli, T.; Ceccherini, M.T.; Nannipieri, P.; Pietramellara, G. Soil Pollution from Micro- and Nanoplastic Debris: A Hidden and Unknown Biohazard. Sustainability 2020, 12, 7255. [Google Scholar] [CrossRef]
- Scopetani, C.; Chelazzi, D.; Mikola, J.; Leiniö, V.; Heikkinen, R.; Cincinelli, A.; Pellinen, J. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci. Total Environ. 2020, 733, 139338. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Kang, J.-H.; Kwon, O.Y.; Han, G.M.; Shim, W.J. Large Accumulation of Micro-sized Synthetic Polymer Particles in the Sea Surface Microlayer. Environ. Sci. Technol. 2014, 48, 9014–9021. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Location | Sample Type | Management |
---|---|---|---|
Sp | Murcia (Spain) | Soil (loam) | 15 plastic mulch applications in 12 years (8 LDPE+ 6 PAC + 1 biodegradable) |
NL1 | Noordoostpolder (The Netherlands) | Soil (loamy sand) | 7 years of compost application |
NL2 | Noordoostpolder (The Netherlands) | Soil (clay) | 20 years of compost application |
Cm | The Netherlands | Compost | Organic materials from municipal waste |
Cg | The Netherlands | Compost | Organic materials from green cuttings (garden and greenhouses) |
Sample Origin | Depth | Num. Samples | Num. MPs kg−1 | Area MPs [mm2 kg−1] |
---|---|---|---|---|
Sp | 0–10 | 15 | 2302 ± 937 | 215 ± 89 |
Sp | 10–30 | 14 | 2179 ± 1063 | 184 ± 120 |
NL1 | 0–10 | 11 | 903 ± 430 | 95 ± 60 |
NL1 | 10–30 | 11 | 848 ± 586 | 104 ± 156 |
NL2 | 0–10 | 8 | 650 ± 245 | 67 ± 86 |
NL2 | 10–30 | 10 | 1107 ± 587 | 99 ± 78 |
Cm | - | 9 | 2800 ± 616 | 212 ± 51 |
Cg | - | 19 | 1253 ± 561 | 137 ± 157 |
Plastic Mulch Application | Plastic Mulch Applied Per Hectare [mm2 ha−1] | Plastic Mulch Applied Per Soil Mass in the Top 30 cm [mm2 kg−1] |
---|---|---|
Total (12 years) | 7.5 × 106 | 1.8 × 104 |
Average per year | 6.25 × 105 | 1.5 × 103 |
Plastic Mulch Application | Compost Application [t ha−1] | Number of MPs Imported * [MPs kg−1] | Area of MPs Imported * [mm2 kg−1] | Number of MPs Measured [MPs kg−1] | Area of MPs Measured [mm2 kg−1] |
---|---|---|---|---|---|
Total NL1 (7 years) | 70 | 35 | 3 | 886 | 100 |
Total NL2 (20 years) | 200 | 100 | 8.3 | 904 | 83 |
Average per year | 10 | 5.0 | 0.42 | 66.3 | 6.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Schothorst, B.; Beriot, N.; Huerta Lwanga, E.; Geissen, V. Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments 2021, 8, 36. https://doi.org/10.3390/environments8040036
van Schothorst B, Beriot N, Huerta Lwanga E, Geissen V. Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments. 2021; 8(4):36. https://doi.org/10.3390/environments8040036
Chicago/Turabian Stylevan Schothorst, Benjamin, Nicolas Beriot, Esperanza Huerta Lwanga, and Violette Geissen. 2021. "Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch" Environments 8, no. 4: 36. https://doi.org/10.3390/environments8040036
APA Stylevan Schothorst, B., Beriot, N., Huerta Lwanga, E., & Geissen, V. (2021). Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments, 8(4), 36. https://doi.org/10.3390/environments8040036