A Simple Method to Evaluate Adaptation Measures for Urban Heat Island
Abstract
:1. Introduction
2. Adaptation Measures
3. Simple Evaluation Method of Adaptation Measures
3.1. Methods
3.1.1. Sensitivity Analysis
3.1.2. MRT and Surface Temperature Reduction Evaluation
3.2. Results
3.2.1. Sensitivity Analysis
3.2.2. MRT and Surface Temperature Reduction Evaluation
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ε | emissivity of the adaptation measures (-) |
σ | Stefan–Boltzmann constant (W/(m2K4)) |
τ | solar transmittance of the adaptation measures (-) |
Φi | shape factor between the human body and each surface (-) |
a | solar absorptance of the adaptation measures (-) |
ah | solar absorptance of human body (-) |
E | evaporation rate of the adaptation measures (L/(m2h)) |
h | convective heat transfer coefficient (W/(m2K)) |
J | solar radiation (W/m2) |
l | latent heat of water (kJ/kg) |
MRT | mean radiant temperature (°C) |
q | net infrared radiation (W/m2) |
Q | incident solar radiation on the human body (W/m2) |
SET* | standard effective temperature (°C) |
Ta | air temperature (°C) |
Ti | surface temperature of each surface (°C) |
Ts | surface temperature of the adaptation measures (°C) |
References
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Vuckovic, M.; Kiesel, K.; Mahdavi, A. Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Clim. 2017, 21, 1–26. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- The Ministry of the Environment of Japan, Heat Countermeasure Guideline in the City. Available online: http://www.env.go.jp/air/life/heat_island/guidelineH28/city_gline_all.pdf (accessed on 9 April 2018).
- Broadbent, A.M.; Coutts, A.M.; Tapper, N.J.; Demuzere, M. The cooling effect of irrigation on urban microclimate during heatwave conditions. Urban Clim. 2018, 23, 309–329. [Google Scholar] [CrossRef]
- Daniel, M.; Lemonsu, A.; Viguié, V. Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate. Urban Clim. 2018, 23, 287–308. [Google Scholar] [CrossRef]
- De Munck, C.; Lemonsu, A.; Masson, V.; Le Bras, J.; Bonhomme, M. Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change. Urban Clim. 2018, 23, 260–286. [Google Scholar] [CrossRef]
- Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Gao, Z.; Bresson, R.; Qu, Y.; Milliez, M.; Munck, C.; Carissimo, B. High resolution unsteady RANS simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of Toulouse. Urban Clim. 2018, 23, 114–130. [Google Scholar] [CrossRef]
- Ng, E.; Ren, C. China’s adaptation to climate & urban climatic changes: A critical review. Urban Clim. 2018, 23, 352–372. [Google Scholar] [CrossRef]
- Beermann, B.; Berchtold, M.; Baumüller, J.; Gross, G.; Kratz, M. Städtebaulicher Rahmenplan Klimaanpassung für Die Stadt Karlsruhe (Teil II); LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2014. [Google Scholar]
- Osaka Heat Island Countermeasure Technology Consortium. HITEC News. Available online: http://osakahitec.com/active/news/news2018_01_vol14.pdf (accessed on 9 April 2018).
- Center for Environmental Information Science. Report on Consignment Work of Survey and Verification for the Creation of a Low-Carbon City Using Surplus Groundwater etc.; Report Entrusted by the Ministry of the Environment in 2016 Fiscal Year; Center for Environmental Information Science: Tokyo, Japan, 2017. (In Japanese)
- Osaka Heat Island Countermeasure Technology Consortium. Town Planning Idea Competition Considering Urban Heat Island. Available online: http://osakahitec.com/result/index.html (accessed on 9 April 2018).
- Takayama, N.; Yoshikoshi, H.; Yamamoto, H.; Iwaya, K.; Harada, Y.; Yamasaki, T.; Tateishi, Y. Quantitative evaluation of mitigation effect for thermal load of solar radiation through the glass window by wall greening. J. Environ. Eng. (Trans. AIJ) 2011, 661, 247–254. [Google Scholar] [CrossRef]
- Sakai, S.; Nakamura, M.; Furuya, K.; Amemura, N.; Onishi, M.; Iizawa, I.; Nakata, J.; Yamaji, K.; Asano, R.; Tamotsu, K. Sierpinski’s forest: New technology of cool roof with fractal shapes. Energy Build. 2012, 55, 28–34. [Google Scholar] [CrossRef]
- Inoue, T.; Ichinose, M.; Nagahama, T. Improvement of outdoor thermal radiation environment in urban areas using wavelength-selective retro-reflective film. In Proceedings of the PLEA 2015, Bologna, Italy, 9–11 September 2015; p. 48. [Google Scholar]
- Sakai, H.; Emura, K.; Igawa, N.; Iyota, H. Reduction of reflected heat of the sun by retroreflective materials. J. Heat Isl. Inst. Int. 2012, 7, 218–221. [Google Scholar]
- Takebayashi, H.; Moriyama, M. Study on surface heat budget of various pavements for urban heat island mitigation. Adv. Mater. Sci. Eng. 2012, 1–11. [Google Scholar] [CrossRef]
- Akagawa, H.; Takebayashi, H.; Moriyama, M. Experimental study on improvement of human thermal environment on a watered pavement and a highly reflective pavement. J. Environ. Eng. (Trans. AIJ) 2008, 623, 85–91. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Sol. Energy 2009, 83, 1211–1223. [Google Scholar] [CrossRef] [Green Version]
- Misaka, I.; Suzuki, H.; Mizutani, A.; Murano, N.; Tashiro, Y. Evaluation of heat balance of wall greening. AIJ J. Technol. Des. 2006, 23, 233–236. (In Japanese) [Google Scholar] [CrossRef]
- Hirayama, Y.; Ohta, I.; Hoyano, A. Development of a surface wetting passive cooling louver system with hydrophilic and water absorbing coating film and an evaluation of its fundamental performance by outdoor experiment. J. Heat Isl. Inst. Int. 2015, 10, 24–34. (In Japanese) [Google Scholar]
- Yoon, G.; Yamada, H.; Okumiya, M.; Tsujimoto, M. Study on cooling system by using dry mist, Validation of cooling effectiveness and CFD simulation. J. Environ. Eng. (Trans. AIJ) 2008, 633, 1313–1320. [Google Scholar] [CrossRef]
- Farnham, C.; Nakao, M.; Nishioka, M.; Nabeshima, M.; Mizuno, T. Study of mist-cooling for semi-enclosed spaces in Osaka, Japan. Procedia Environ. Sci. 2011, 4, 228–238. [Google Scholar] [CrossRef]
- Kojima, I.; Yoshinaga, M. Analysis of the effect by the material and color of awnings—Discussion about the outdoor test method of SC-value based on JIS A 1422. Summ. Tech. Pap. Annu. Meet. AIJ 2013, D-2, 145–146. (In Japanese) [Google Scholar]
- Nishimura, N.; Nomura, T.; Iyota, H.; Kimoto, S. Novel water facilities for creation of comfortable urban micrometeorology. Sol. Energy 1998, 64, 197–207. [Google Scholar] [CrossRef]
- Nouri, A.S.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef]
- D’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I. Povl Ole Fanger’s Impact Ten Years Later. Energy Build. 2017, 152, 243–249. [Google Scholar] [CrossRef]
- Gagge, A.; Fobelets, P.; Bergland, L. A standard predictive index of human response to thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney, Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- De Dear, R.; Pickup, R. An outdoor thermal comfort index (OUT_SET*)—Part I—The model and its assumptions. In Proceedings of the International Conference on Urban Climatology, Sydney, Australia, 8–9 November 1999. [Google Scholar]
- Tinz, B.; Jendrizky, G. Europa- und Weltkarten der Gefühlten Temperatur; Chmielewski, F., Foken, T., Eds.; Beiträge zur Klima- und Meeresforschung: Berlin/Bayreuth, Germany, 2003; pp. 111–123. [Google Scholar]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill Book Company: New York, NY, USA, 1972; p. 244. [Google Scholar]
- D’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. Notes on the calculation of the PMV index by means of Apps. Energy Procedia 2016, 101, 243–249. [Google Scholar] [CrossRef]
- Givoni, B. Man, Climate and Architecture; Applied Science Publishers: London, UK, 1976. [Google Scholar]
- Kenny, A.; Warland, S.; Brown, R. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendritzky, G.; Maarouf, A.; Fiala, D.; Staiger, H. An update on the development of a Universal Thermal Climate Index. In Proceedings of the 15th Conference on Biometeorology Aerobiology and 16th ICB02, Kansas City, MO, USA, 27 October–1 November 2002; AMS: New York, NY, USA, 2002. [Google Scholar]
- Jendritzky, G.; de-Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bröde, P.; Fiala, D.; Blazejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaglou, C.; Minard, D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- Alfano, F.; Malchaire, J.; Palella, B.; Riccio, G. WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar]
- Malchaire, J.; Piette, A.; Kampmann, B.; Mehnerts, P.; Gebhardt, H.; Havenith, G.; Hartog, E.; Holmer, I.; Parsons, K.; Alfanoss, G.; et al. Development and Validation of the Predicted Heat Strain Model. Ann. Occup. Hyg. 2001, 45, 123–135. [Google Scholar] [CrossRef]
- International Organization for Standardization. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain—ISO 7933 Standard; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- D’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G.; Malchaire, J. On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model. Ann. Occup. Hyg. 2016, 60, 231–251. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposures Indices; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2011. [Google Scholar]
- Palella, B.I.; Quaranta, F.; Riccio, G. On the management and prevention of heat stress for crews onboard ships. Ocean Eng. 2016, 112, 277–286. [Google Scholar] [CrossRef]
- International Organization for Standardization. Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index—ISO Standard 7243; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Ishii, A.; Katayama, T.; Shiotsuki, Y.; Yoshimizu, H.; Abe, Y. Experimental study on comfort sensation of people in the outdoor environment. J. Arch. Plan. Res. 1988, 386, 28–37. [Google Scholar] [CrossRef]
- Nakano, J.; Tanabe, S. Thermal comfort and adaptation in semi-outdoor environments. ASHRAE Trans. 2004, 110, 543–553. [Google Scholar]
- Nagano, K.; Horikoshi, T. New index indicating the universal and separate effects on human comfort under outdoor and non-uniform thermal conditions. Energy Build. 2011, 43, 1694–1701. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Nagano, K.; Ishii, J.; Horikoshi, T. Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Build. Environ. 2014, 82, 556–565. [Google Scholar] [CrossRef]
- VDI 3787 Part 2, Environmental Meteorology Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level Part I: Climate. 1998. Available online: http://www.scirp.org/(S(oyulxb452alnt1aej1nfow45))/reference/ReferencesPapers.aspx?ReferenceID=1721475 (accessed on 16 May 2018).
- Watanabe, S.; Horikoshi, T.; Ishii, J.; Tomita, A. The measurement of the solar absorptance of the clothed human body—The case of Japanese, college-aged male subjects. Build. Environ. 2013, 59, 492–500. [Google Scholar] [CrossRef]
Menu | Evaluation Index | Main Effect Mechanism |
---|---|---|
From the heat countermeasure guidelines by the Japanese Ministry of Environment [5] | ||
Green shade [16] | Solar transmittance, Evaporative efficiency | Sun shade, Evaporative cooling |
Solar radiation shade [17] | Solar transmittance, Convection heat transfer coefficient | Sun shade, Convection heat transfer |
Retroreflective surface [18,19] | Downward solar reflectance | Solar reflection |
Water retentive pavement [20,21] | Evaporative efficiency | Evaporative cooling |
Cool pavement [21] | Solar reflectance | Solar reflection |
Green pavement [22] | Evaporative efficiency | Evaporative cooling |
Green wall [23] | Evaporative efficiency | Evaporative cooling |
Water-retentive wall [24] | Evaporative efficiency | Evaporative cooling |
Fine mist spray [25,26] | Evaporation rate | Evaporative cooling |
from the report by the Japanese Ministry of Environment [14] | ||
Awning [27] | Solar transmittance | Sun shade |
Fractal-shaped sunshade [17] | Solar transmittance, Convection heat transfer coefficient | Sun shade, Convection heat transfer |
Mesh shade and water supply [14] | Solar transmittance, Evaporative efficiency | Sun shade, Evaporative cooling |
Evaporative cooling louver [24] | Evaporative efficiency | Evaporative cooling |
Greening cooling louver [14] | Evaporative efficiency | Evaporative cooling |
Tree pot [14] | Solar transmittance, Evaporative efficiency | Sun shade, Evaporative cooling |
Water-retentive block [20] | Evaporative efficiency | Evaporative cooling |
Water surface [28] | Evaporative efficiency | Evaporative cooling |
Fine mist spray with blower [25,26] | Evaporation rate | Evaporative cooling |
Ceiling cooling system [14] | Surface temperature | Artificial cooling |
Water cooling bench [14] | Surface temperature | Artificial cooling |
from town planning idea competition by Osaka Heat Island Countermeasure Technology Consortium [15] | ||
Water surface [28] | Evaporative efficiency | Evaporative cooling |
Watering [28] | Evaporative efficiency | Evaporative cooling |
Fine mist spray [25,26] | Evaporation rate | Evaporative cooling |
Shading [27] | Solar transmittance | Sun shade |
Tree planting | Solar transmittance, Evaporative efficiency | Sun shade, Evaporative cooling |
Roof and ground greening [22] | Evaporative efficiency | Evaporative cooling |
Wind use | Convection heat transfer coefficient | Convection heat transfer |
Traffic mode control | Anthropogenic heat release | Reduction of anthropogenic heat release |
Unused energy use, natural energy use | Anthropogenic heat release | Reduction of anthropogenic heat release |
ICT use | Human body physiological amount | Reduction of human thermal load |
SET* (°C) | Thermal Comfort |
---|---|
33.3 32.1 30.8 28.4 27.0 | extremely uncomfortable |
Uncomfortable | |
slightly uncomfortable | |
Neither | |
slightly comfortable | |
Comfortable |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takebayashi, H. A Simple Method to Evaluate Adaptation Measures for Urban Heat Island. Environments 2018, 5, 70. https://doi.org/10.3390/environments5060070
Takebayashi H. A Simple Method to Evaluate Adaptation Measures for Urban Heat Island. Environments. 2018; 5(6):70. https://doi.org/10.3390/environments5060070
Chicago/Turabian StyleTakebayashi, Hideki. 2018. "A Simple Method to Evaluate Adaptation Measures for Urban Heat Island" Environments 5, no. 6: 70. https://doi.org/10.3390/environments5060070
APA StyleTakebayashi, H. (2018). A Simple Method to Evaluate Adaptation Measures for Urban Heat Island. Environments, 5(6), 70. https://doi.org/10.3390/environments5060070