Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characteristics
2.2. WO Pilot Plant Characteristics
2.3. Experimental Procedure
3. Results and Discussion
3.1. Results of WO Tests
3.1.1. Effect of Temperature
3.1.2. Effect of Reaction Time
3.1.3. COD Mass Balance
3.2. Evaluation of WO Solid Residue Recovery Options
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pavel, L.V.; Gavrilescu, M. Overview of ex situ decontamination techniques for soil cleanup. Environ. Eng. Manag. J. 2008, 7, 815–834. [Google Scholar]
- Collivignarelli, M.C.; Pedrazzani, R.; Sorlini, S.; Abbà, A.; Bertanza, G. H2O2 Based Oxidation Processes for the Treatment of Real High Strength Aqueous Wastes. Sustainability 2017, 9, 244. [Google Scholar] [CrossRef]
- Huling, S.G.; Pivetz, B.E. In-Situ Chemical Oxidation; Publication EPA/600/R-06/072; U.S. EPA: Washington, DC, USA, 2006; pp. 1–58.
- Semple, K.T.; Morriss, A.W.J.; Paton, G.I. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 2003, 54, 809–818. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Mercier, M.; Richer-Laflèche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Komìnkovà, D.; Fabbricino, M.; Gurung, B.; Race, M.; Tritto, C.; Ponzo, A. Sequential application of soil washing and phytoremediation in the land of fires. J. Environ. Manag. 2018, 206, 1081–1089. [Google Scholar] [CrossRef]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM/2015/0614 Final. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 23 January 2018).
- Debellefontaine, H.; Foussard, J.N. Wet Air Oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial application in Europe. Waste Manag. 2000, 20, 15–25. [Google Scholar] [CrossRef]
- Ramos, J.B.E.; Miguélez, J.R.P. Technical viability of the wet oxidation process (WAO) for the treatment of percolates from landfills: A case study. Acad. J. Sci. Res. 2017, 5, 726–731. [Google Scholar] [CrossRef]
- Suàrez-Iglesias, O.; Urrea, J.L.; Oulego, P.; Collado, S.; Dìaz, M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. Sci. Total Environ. 2017, 584–585, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Genç, N.; Yonsel, S.; Dağaşn, L.; Nur Onar, A. Wet oxidation: A pre-treatment for sludge. Waste Manag. 2002, 22, 611–616. [Google Scholar] [CrossRef]
- Slavik, E.; Galessi, R.; Rapisardi, A.; Salvetti, R.; Bonzagni, P.; Bertanza, G.; Menoni, L.; Orhone, D.; Sözen, S. Wet Oxidation as an advanced and sustainable technology for sludge treatment and management: Results from research activities and industrial-scale experiences. Dry. Technol. 2015, 33, 1309–1317. [Google Scholar] [CrossRef]
- Bertanza, G.; Galessi, R.; Menoni, L.; Pedrazzani, R.; Salvetti, R.; Zanaboni, S. Anaerobic treatability of liquid residue from wet oxidation of sewage sludge. Environ. Sci. Pollut. Res. 2015, 22, 7317–7326. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.K.; Tardio, J.; Prasad, J.; Föger, K.; Akolekar, D.B.; Grocott, S.C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res. 2006, 45, 1221–1258. [Google Scholar] [CrossRef]
- Istituto Poligrafico e Zecca dello Stato. Ministerial Decree n. 186 Dated 5 April 2006. Regulatory That Modified Ministerial Decree Dated 5 February 1998. Official Gazette n. 115. 19 May 2006. Available online: http://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2006-05-19&atto.codiceRedazionale=006G0202&elenco30giorni=false (accessed on 16 May 2018).
- European Commission. Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council. Official Journal of the European Union. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014D0955 (accessed on 16 May 2018).
- UNI (Ente Italiano di Normazione). UNI EN 12457-2. Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (without or with Size Reduction). 2004. Available online: http://store.uni.com/catalogo/index.php/uni-en-12457-2-2004.html (accessed on 16 May 2018).
- Hill, A.R.; Dawson, A.R.; Mundy, M. Utilisation of aggregate materials in road construction and bulk fill. Resour. Conserv. Recycl. 2001, 32, 305–320. [Google Scholar] [CrossRef] [Green Version]
- De Rezende, L.R.; De Carvalho, J.C. The use of quarry waste in pavement construction. Resour. Conserv. Recycl. 2003, 39, 91–105. [Google Scholar] [CrossRef]
- Hassan, H.F.; Taha, R.; Al Rawas, A.; Al Shandoudi, B.; Al Gheithi, K.; Al Barami, A. Potential uses of petroleum-contaminated soil in highway construction. Constr. Build. Mater. 2005, 19, 646–652. [Google Scholar] [CrossRef]
- Akbulut, H.; Gürer, C. Use of aggregates produced from marble quarry waste in asphalt pavements. Build. Environ. 2007, 42, 1921–1930. [Google Scholar] [CrossRef]
- Topçu, I.B.; Uğurlu, A. Effect of the use of mineral filler on the properties of concrete. Cem. Concr. Res. 2003, 33, 1071–1075. [Google Scholar] [CrossRef]
- Bouchard, L.; Lafthaj, Z.; Skoczylas, F. River sediments contaminated by heavy metals and organic compounds: Characterization, treatment and valorization. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, Barcelona, Spain, 8–11 November 2004; Vàzquez, E., Hendriks, C.F., Janssen, G.M.T., Eds.; RILEM Publications S.A.R.L.: Bagneux, France, 2004; pp. 807–813. [Google Scholar]
- Navia, R.; Rivela, B.; Lorber, K.E.; Méndez, R. Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment. Resour. Conserv. Recycl. 2006, 48, 339–356. [Google Scholar] [CrossRef]
- Sorlini, S.; Abbà, A.; Collivignarelli, C. Recovery of MSWI and soil washing residues as concrete aggregates. Waste Manag. 2011, 31, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Hamer, K.; Karius, V. Brick production with dredged harbour sediments. An industrial-scale experiment. Waste Manag. 2002, 22, 521–530. [Google Scholar] [CrossRef]
- Mahzuz, H.M.A.; Alam, R.; Alam, M.N.; Basak, R.; Islam, M.S. Use of arsenic contaminated sludge in making ornamental bricks. Int. J. Environ. Sci. Technol. 2009, 6, 291–298. [Google Scholar]
- Saxe, J.K.; Allen, H.E.; Nicol, G.R. Fenton Oxidation of Polycyclic Aromatic Hydrocarbons after Surfactant-Enhanced Soil Washing. Environ. Eng. Sci. 2000, 17, 233–244. [Google Scholar] [CrossRef]
- Bandala, E.R.; Velasco, Y.; Torres, L.G. Decontamination of soil washing wastewater using solar driven advanced oxidation processes. J. Hazard. Mater. 2008, 160, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Villa, R.D.; Trovó, A.G.; Pupo Nogueira, R.F. Soil remediation using a coupled process: Soil washing with surfactant followed by photo-Fenton oxidation. J. Hazard. Mater. 2010, 174, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Dadkhah, A.A.; Akgerman, A. Hot water extraction with in situ wet oxidation: PAHs removal from soil. J. Hazard. Mater. 2002, 93, 307–320. [Google Scholar] [CrossRef]
- Dadkhah, A.A.; Akgerman, A. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil. J. Hazard. Mater. 2006, 137, 518–526. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; ISBN 978-087553-013-0. [Google Scholar]
- U.S. EPA. Method 8015D: Nonhalogenated Organics Using Gas Chromatography/Flame Ionization Detection (GC/FID). Available online: https://www.epa.gov/sites/production/files/2015-12/documents/8015d_r4.pdf (accessed on 23 January 2018).
- APAT-IRSA-CNR. Analytical Methods for Water; APAT Handbooks and guidelines n. 29/2003; Istituto Grafico Editoriale Romano: Roma, Italy, 2003; ISBN 88-448-0083-7. Available online: http://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-analitici-per-le-acque (accessed on 16 May 2018).
- Istituto Poligrafico e Zecca dello Stato. Legislative Decree n. 152 Dated 3 April 2006. Norms Concerning the Environment. Official Gazette n. 88, 14 April 2006; Ordinary Supplement n. 96. Available online: http://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2006-04-14&atto.codiceRedazionale=006G0171 (accessed on 16 May 2018).
- Paccassoni, F.; Kalnina, D.; Piga, L. Comparative studies of oil product regulation in polluted soil for several industrialized countries. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012066. [Google Scholar] [CrossRef]
- Vaccari, M.; Collivignarelli, M.C.; Canato, M. Reuse of Hydrocarbon-Contaminated Sludge from Soil Washing Process: Issues and Perspectives. Chem. Eng. Trans. 2012, 28, 169–174. [Google Scholar] [CrossRef]
- Bostrom, C.E.; Gerde, P.; Hanberg, A.; Jernstrom, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Tornqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar] [CrossRef] [PubMed]
- Luck, F. Wet air oxidation: Past, present and future. Catal. Today 1999, 53, 81–91. [Google Scholar] [CrossRef]
- Thomsen, A.B.; Laturnus, F. The influence of different soil constituents on the reaction kinetics of wet oxidation of the creosote compound quinolone. J. Hazard. Mater. 2001, 81, 193–203. [Google Scholar] [CrossRef]
- Jang, Y.-C.; Townsend, T.G.; Ward, M.; Bitton, G. Leaching of Arsenic, Chromium, and Copper in a Contaminated Soil at a Wood Preserving Site. Bull. Environ. Contam. Toxicol. 2002, 69, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.; Meeussen, J.C.L.; Comans, R.N.J. Leaching of Heavy Metals from Contaminated Soils: An Experimental and Modeling Study. Environ. Sci. Technol. 2004, 38, 4390–4395. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.; Nilsson, S.I.; Saetre, P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol. Biochem. 2000, 32, 1–10. [Google Scholar] [CrossRef]
Parameter | Measurement Unit | Soil #1 | Soil #2 | ||
---|---|---|---|---|---|
As Raw | Motor Oil | As Raw | Motor Oil + Diesel | ||
Contaminating medium | |||||
Total Petroleum Hydrocarbons (TPHs) | mg·kgdw−1 | <20 | 1455 ± 220 | <20 | 4736 ± 600 |
Total Polycyclic Aromatic Hydrocarbons (PAHs) | mg·kgdw−1 | <0.1 | 0.12 ± 0.10 | <0.1 | 0.20 ± 0.05 |
pH | - | n.a. | 8.0 | n.a. | 7.7 |
Granulometric fractions | |||||
Sand | % | n.a. | 11 | n.a. | 10 |
Silt | % | n.a. | 75 | n.a. | 76 |
Clay | % | n.a. | 14 | n.a. | 14 |
Soil | Test | Temperature (°C) | Initial Partial Pressure of Pure Oxygen (kPa) | Reaction Time (min) |
---|---|---|---|---|
Soil #1 | A.1 | 200 | 1520 | 30 |
A.2 | 250 | |||
A.3 | 300 | |||
A.4 | 250 | 1520 | 30 | |
A.5 | 60 | |||
A.6 | 90 | |||
A.7 | 120 | |||
Soil #2 | B.1 | 200 | 2027 | 30 |
B.2 | 250 | |||
B.3 | 300 | |||
B.4 | 250 | 2027 | 30 | |
B.5 | 60 | |||
B.6 | 90 | |||
B.7 | 120 |
Parameter | Concentration (mg·kgdw−1) | Limit Value Legislative Decree n. 152 (2006) (mg·kgdw−1) | ||
---|---|---|---|---|
IN | OUT * | Public, Private and Residential Use (A) | Commercial and Industrial Use (B) | |
Cu | 54 ± 8 | 51 ± 8 | 120 | 600 |
Zn | 131 ± 16 | 137 ± 16 | 150 | 1500 |
Be | 2.8 ± 0.5 | 2.3 ± 0.4 | 2 | 10 |
Co. | 37.6 ± 5 | 35.1 ± 5 | 20 | 250 |
Ni | 198 ± 27 | 239 ± 35 | 120 | 500 |
V | 78.5 ± 10 | 56.2 ± 7 | 90 | 250 |
As | 31.6 ± 5 | 18.0 ± 3 | 20 | 50 |
Cd | 0.4 ± 0.06 | 0.3 ± 0.05 | 2 | 15 |
CrTOT | 131 ± 18 | 110 ± 15 | 150 | 800 |
Pb | 31 ± 4 | 29 ± 4 | 100 | 1000 |
Se | 3.4 ± 0.5 | 3.3 ± 0.5 | 3 | 15 |
Hg | <0.1 | <0.1 | 1 | 5 |
Sb | 1 ± 0.14 | <1 | 10 | 30 |
TPHs | 1455 ± 220 | 23 ± 7 | 50 | 750 |
PAHs | 0.12 ± 0.1 | <1 | 1 | 100 |
Parameter | Concentration (mg·L−1) | Limit Values Ministerial Decree n. 186 (2006) (mg·L−1) |
---|---|---|
NO3− | <1 | 50 |
F− | <0.2 | 1.5 |
SO42− | 7 ± 1 | 250 |
Cl− | 2 ± 0.4 | 100 |
CN− | <0.005 | 0.05 |
Ba | <0.1 | 1 |
Cu | <0.05 | 0.05 |
Zn | <0.1 | 3 |
Be | <0.001 | 0.01 |
Co. | 0.014 ± 0.04 | 0.25 |
Ni | 0.105 ± 0.03 | 0.01 |
V | 0.16 ± 0.04 | 0.25 |
As | 0.1 ± 0.04 | 0.05 |
Cd | <0.0005 | 0.005 |
CrTOT | 0.32 ± 0.08 | 0.05 |
Pb | 0.013 ± 0.004 | 0.05 |
Se | <0.005 | 0.01 |
Hg | <0.0005 | 0.001 |
COD | 111 ± 20 | 30 |
pH | 10.1 | 5.5 ÷ 12 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Vaccari, M.; Abbà, A.; Canato, M.; Sorlini, S. Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle. Environments 2018, 5, 69. https://doi.org/10.3390/environments5060069
Collivignarelli MC, Vaccari M, Abbà A, Canato M, Sorlini S. Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle. Environments. 2018; 5(6):69. https://doi.org/10.3390/environments5060069
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Mentore Vaccari, Alessandro Abbà, Matteo Canato, and Sabrina Sorlini. 2018. "Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle" Environments 5, no. 6: 69. https://doi.org/10.3390/environments5060069
APA StyleCollivignarelli, M. C., Vaccari, M., Abbà, A., Canato, M., & Sorlini, S. (2018). Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle. Environments, 5(6), 69. https://doi.org/10.3390/environments5060069