Origin and Background Estimation of Sulfur Dioxide in Ulaanbaatar, 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Analytics ArcGIS
2.3. Backward Trajectory Using NOAA HYPSLIT and Group Clustering
3. Results and Discussion
3.1. Missing Data Interpolation
3.2. Mass Concentration of SO2
3.3. Meteorological Conditions
3.4. Backward Trajectory and Group Clustering Result
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amarsaikhan, D.; Battsengel, V.; Nergui, B.; Ganzorig, M.; Bolor, G. A Study on Air Pollution in Ulaanbaatar City, Mongolia. J. Geosci. Environ. Prot. 2018, 2, 123–128. [Google Scholar] [CrossRef]
- Batmunkh, T.; Kim, Y.J.; Jung, J.S.; Park, K.; Tumendemberel, B. Chemical characteristics of fine particulate matters measured during severe winter haze events in Ulaanbaatar, Mongolia. J. Air Waste Manag. Assoc. 2018, 63, 659–670. [Google Scholar] [CrossRef]
- Huang, Y.K.; Luvsan, M.E.; Gombojav, E.; Ochir, C.; Bulgan, J.; Chan, C.C. Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia. Environ. Res. 2013, 124, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhao, C.; Li, Y.; Wu, X.; Zhang, K.; Gao, J. Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmos. Environ. 2018, 188, 50–59. [Google Scholar] [CrossRef]
- Nishikawa, M.; Matsui, I.; Batdorj, D.; Jugder, D.; Mori, I.; Shimizu, A.; Sugimoto, N.; Takahashi, K. Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmos. Environ. 2018, 45, 5710–5715. [Google Scholar] [CrossRef]
- Gunchin, G.; Sereeter, L.; Dagva, S.; Tsenddavaa, A.; Davy, P.K.; Markwitz, A.; Trompetter, W.J. Air Particulate Matter Pollution in Ulaanbaatar City, Mongolia. Int. J. PIXE 2018, 22, 165–171. [Google Scholar] [CrossRef]
- Allen, R.W.; Gombojav, E.; Barkhasragchaa, B.; Byambaa, T.; Lkhasuren, O.; Amram, O.; Takaro, T.K.; Janes, C.R. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2018, 6, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Q. Sources and flows of China’s virtual SO2 emission transfers embodied in interprovincial trade: A multiregional input–output analysis. J. Clean. Prod. 2017, 161, 735–747. [Google Scholar] [CrossRef]
- Qiao, X.; Ying, Q.; Li, X.; Zhang, H.; Hu, J.; Tang, Y.; Chen, X. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model. Sci. Total Environ. 2018, 612, 462–471. [Google Scholar] [CrossRef]
- Reizer, M.; Orza, J.A.G. Identification of PM10 air pollution origins at a rural background site. E3S Web Conf. 2018, 01031, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I.; Bandyopadhyay, P.R.; Thivierge, D.P.; McNeilly, F.M.; Fredette, A.; Ren, S.; Xia, X.; Yuan, L.; Liang, P.; et al. Current research trend on urban sewerage system in China Yun-Fang. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 012048. [Google Scholar]
- Anil, I.; Alagha, O.; Karaca, F. Effects of transport patterns on chemical composition of sequential rain samples: Trajectory clustering and principal component analysis approach. Air Qual. Atmos. Health 2017, 10, 1193–1206. [Google Scholar] [CrossRef]
- Sateesh, M.; Soni, V.K.; Raju, P.V.S.; Mor, V. Cluster analysis of aerosol properties retrieved from a sky-radiometer over a coastal site: Thiruvananthapuram, India. Atmos. Pollut. Res. 2018, 9, 207–219. [Google Scholar] [CrossRef]
- Franklin, M.; Chau, K.; Kalashnikova, O.V. Using Multi-Angle Imaging SpectroRadiometer Aerosol Mixture Properties for Air Quality Assessment in Mongolia. Remote Sens. 2018, 10, 1317. [Google Scholar] [CrossRef]
- Qiao, X.; Tang, Y.; Hu, J.; Zhang, S.; Li, J.; Harsha, S.; Wu, L.; Gao, H.; Zhang, H.; Ying, Q. Science of the Total Environment Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base Case Model Results. Sci. Total Environ. 2015, 532, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Shi, X.; Wang, L.; Xu, J.; Ma, Z. Potential source regions of air pollutants at a regional background station in Northern China. Environ. Technol. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Integrated Science Assesment for Sulfur Dioxide—Health Criteria; EPA: Washington, DC, USA, 2009.
- Enkhmaa, D.; Warburton, N.; Javzandulam, B.; Uyanga, J.; Khishigsuren, Y.; Lodoysamba, S.; Enkhtur, S.; Warburton, D. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia. BMC Pregnancy Childbirth 2014, 14, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.T.; Huang, Y.K.; Luvsan, M.E.; Gombojav, E.; Ochir, C.; Bulgan, J.; Chan, C.C. The influence of season and living environment on children’s urinary 1-hydroxypyrene levels in Ulaanbaatar, Mongolia. Environ. Res. 2015, 137, 170–175. [Google Scholar] [CrossRef]
- Hauck, M.; Dulamsuren, C.; Leuschner, C. Anomalous Increase in Winter Temperature and Decline in Forest Growth Associated with Severe Winter Smog in the Ulan Bator Basin. Water Air Soil Pollut. 2016, 227. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, X. Assessing the role of ammonia in sulfur transformation and deposition in China. Atmos. Res. 2008, 88, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Langkamp, D.L.; Lehman, A.; Lemeshow, S. Techniques for handling missing data in secondary analyses of large surveys. Acad. Pediatr. 2010, 10, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Madhulatha, T.S. An Overview on Clustering Methods. IOSR J. Eng. 2012, 2, 719–725. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.P.; Gao, P.P.; Suo, C.; Xia, B.C. Analyzing urban ecosystem variation in the City of Dongguan: A stepwise cluster modeling approach. Environ. Res. 2018, 166, 276–289. [Google Scholar] [CrossRef] [PubMed]
- JAICA. The Final Report of Improvement of Air Quality Project; JAICA: Ulaanbaatar, Mongolia, 2017. Available online: http://open_jicareport.jica.go.jp/pdf/12289195.pdf (accessed on 24 October 2018).
- Ulaanbaatar Air Quality Division. Ulaanbaatar Clean Air Project; Ulaanbaatar Air Quality Division: Ulaanbaatar, Mongolia, 2014. [Google Scholar]
- Fang, C.; Zhang, Z.; Jin, M.; Zou, P.; Wang, J. Pollution characteristics of PM2.5 aerosol during haze periods in changchun, China. Aerosol Air Qual. Res. 2017, 17, 888–895. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to ozone in school and office indoor environments. Environ. Int. 2018, 119, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Luvsan, M.E.; Shie, R.H.; Purevdorj, T.; Badarch, L.; Baldorj, B.; Chan, C.C. The influence of emission sources and meteorological conditions on SO2 pollution in Mongolia. Atmos. Environ. 2012, 61, 542–549. [Google Scholar] [CrossRef]
NO | NO2 | CO | O3 | PM10 | PM2.5 | PM1 | NOx | |
---|---|---|---|---|---|---|---|---|
SO2 | 0.680 ** | 0.844 ** | 0.843 ** | −0.469 ** | 0.519 ** | 0.873 ** | 0.876 ** | 0.736 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
N | 351 | 352 | 318 | 350 | 352 | 352 | 352 | 365 |
Group Trajectory Cluster No. | Number of Members | Longitude of Source | Latitude of Source | Name of Source | Percentage of Total Trajectory (%) |
---|---|---|---|---|---|
1 | 1344 | 99.12 | 50.29 | Altraga sum, Khowsgol Province, Mongolia | 20.5 |
2 | 427 | 94.75 | 55.18 | Krasnoyarsk Krai, Russia | 7.4 |
3 | 468 | 103.08 | 53.94 | Irkutsk Oblast, Russia | 10.9 |
4 | 1129 | 103.97 | 48.11 | Burenkhangai, Bulgan Province, Mongolia | 19.1 |
5 | 1008 | 107.33 | 49.26 | Yeruu, Sukhbaatar Province, Mongolia | 24.3 |
6 | 272 | 109.61 | 47.68 | Jargaltkhaan, Khentii Province, Mongolia | 9.4 |
7 | 269 | 94.715 | 46.70 | Darvi sum, Govi-Altai Province, Mongolia | 5.4 |
8 | 171 | 84.53 | 57.41 | Tomsk Oblast, Russia | 2.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prikaz, M.; Fang, C.; Dash, S.; Wang, J. Origin and Background Estimation of Sulfur Dioxide in Ulaanbaatar, 2017. Environments 2018, 5, 136. https://doi.org/10.3390/environments5120136
Prikaz M, Fang C, Dash S, Wang J. Origin and Background Estimation of Sulfur Dioxide in Ulaanbaatar, 2017. Environments. 2018; 5(12):136. https://doi.org/10.3390/environments5120136
Chicago/Turabian StylePrikaz, Makhbal, Chunsheng Fang, Sanchirbayar Dash, and Ju Wang. 2018. "Origin and Background Estimation of Sulfur Dioxide in Ulaanbaatar, 2017" Environments 5, no. 12: 136. https://doi.org/10.3390/environments5120136
APA StylePrikaz, M., Fang, C., Dash, S., & Wang, J. (2018). Origin and Background Estimation of Sulfur Dioxide in Ulaanbaatar, 2017. Environments, 5(12), 136. https://doi.org/10.3390/environments5120136