Copper Complexation by Dissolved Organic Matter in arid Soils: A Voltametric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Soil Samples
2.2. Instrumentation
2.3. Voltammetry
2.4. Organic Carbon Analysis
3. Results
Copper
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bolling, J.D.; Walker, L.R. Fertile island development around perennial shrubs across a Mojave Desert Chronosequence. West. N. Am. Naturalist 2002, 62, 88–100. [Google Scholar]
- Devitt, D.A.; Smith, S.D. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J. Arid Environ. 2002, 50, 99–108. [Google Scholar] [CrossRef]
- Lesica, P.; DeLuca, T.H. Is tamarisk allelopathic. Plant Soil 2004, 267, 357–365. [Google Scholar] [CrossRef]
- Liu, J.; Rong, Q.; Zhao, Y. Variations in soil nutrients and salinity caused by tamarisk in the coastal wetland of the Laizhou Bay, China. Ecosphere 2017, 8, 2–13. [Google Scholar] [CrossRef]
- Sposito, G.; Weber, J.H. Sorption of trace metals by humic materials in soils and natural waters. Crit. Rev. Environ. Control 1986, 16, 193–229. [Google Scholar] [CrossRef]
- Liu, A.; Gonzalez, R.D. Modeling adsorption of Copper (II), Cadmium (II) and Lead (II) on Purified Humic Acid. Langmuir 2000, 16, 3902–3909. [Google Scholar] [CrossRef]
- Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Van Riemsdijk, W.H. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 2002, 36, 4804–4810. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A. Complexation of trace metals by absorbed natural organic matter. Geochim. Cosmochim. Acta 1984, 48, 679–691. [Google Scholar] [CrossRef]
- Alvim Farraz, M.C.M.; Lourenco, J.C.N. The influence of organic matter content of contaminated soils on the leaching rate of heavy metals. Environ. Prog. 2000, 19, 53–58. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Arteaga, S.; Tiemann, K.J.; Chianelli, R.; Pingitore, N.; Mackay, W. Absorption of Copper (II) BY Creosote Bush (Larrea tridentata): Use of atomic and X-ray absorption spectroscopy. Environ. Toxicol. Chem. 2001, 20, 2572–2579. [Google Scholar] [CrossRef]
- Twiss, M.R.; Moffett, J.W. Comparison of copper speciation in coastal marine waters measured using analytical voltammetry and diffusion gradient in Thin-Film. Environ. Sci. Technol. 2002, 36, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Apte, S.C.; Gardner, M.J.; Hunt, D.T.E. Copper (II) titration of fulvic acid ligand sites with theoretical, potentiometric, and spectrophotometric analysis. Environ. Technol. 1989, 10, 201–212. [Google Scholar] [CrossRef]
- Hart, B.T.; Davies, S.H.R. Trace metal speciation in the Freshwater and Estuarine Regions of the Yarra River, Victoria. Estuar. Coast. Shelf Sci. 1981, 12, 353–374. [Google Scholar] [CrossRef]
- Laborda, F.; Ruiz-Beguería, S.; Bolea, E.; Castillo, J.R. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis. Spectrochim. Acta B 2009, 392, 392–398. [Google Scholar] [CrossRef]
- Swallow, K.C.; Westall, J.C.; McKnight, D.M.; Morel, N.M.L.; Morel, F.M.M. Potentiometric determination of copper complexation by phytoplankton exudates. Limnol. Oceanogr. 1978, 23, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Buffle, J.; Vuilleumier, J.J.; Tercier, M.L.; Parthasarathy, M. Voltammetric study of humic and fulvic substances V. interpretation of metal ion complexation measured by anodic stripping voltammetric methods. Sci. Total Environ. 1987, 60, 75–96. [Google Scholar] [CrossRef]
- Davison, W.; De Mora, S.J.; Harrisons, R.M.; Wilson, S. PH and ionic strength dependence of the ASV response of Cadmium, lead and Zinc in solutions which simulate natural waters. Sci. Total Environ. 1987, 60, 35–44. [Google Scholar] [CrossRef]
- Witter, A.E.; Mabury, S.A.; Jones, A.D. Copper (II) complexation in northern California rice field waters: An investigation using differential pulse anodic and cathodic stripping voltammetry. Sci. Total Environ. 1998, 212, 21–37. [Google Scholar] [CrossRef]
- Batley, G.E.; Florence, T.M. An evaluation and comparison of some techniques of anodic stripping voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1974, 55, 23–43. [Google Scholar] [CrossRef]
- Hoyer, B.; Florence, T.M.; Batley, G.E. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry. Anal. Chem. 1987, 59, 1608–1614. [Google Scholar] [CrossRef]
- Hurst, M.P.; Bruland, K.W. The use of Nafion-coated thin mercury film electrodes for the determination of the dissolved copper speciation in estuarine water. Anal. Chim. Acta 2005, 546, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.; De Jong, H.G.; Van Leeuwen, H.P. Metal speciation in polyelectrolyte systems by differential pulse anodic stripping voltammetry. Intern. J. Environ. Anal. Chem. 1990, 38, 75–83. [Google Scholar] [CrossRef]
- Van Leeuwen, H.P. Voltammetric titrations involving metal complexes: Effects of kinetics and diffusion coefficients. Sci. Total Environ. 1987, 60, 45–55. [Google Scholar] [CrossRef]
- Park, J.H.; Hodge, V.; Gerstenberger, S.; Stave, K. Mobilization of toxic elements from an abandoned manganese mine in the arid metropolitan Las Vegas (NV, USA) area. Appl. Sci. 2014, 4, 240–254. [Google Scholar] [CrossRef]
- Sims, D.B.; Keller, J.E. Risk of Metal Mobilization from redevelopment activities in hyperarid climates: A laboratory experiment and discussion. Mine Water Environ. 2014, 33, 307–316. [Google Scholar] [CrossRef]
- Stara, V.; Kopanica, M. Determination of manganese using the method of electrochemical enrichment. Electroanalysis 1993, 5, 595–598. [Google Scholar] [CrossRef]
- Yarnistsky, C.; Ariel, M. Reductions from a pre-enriched solution of amalgam-forming metals: A new electrochemical method. J. Electroanal. Chem. 1965, 10, 110–118. [Google Scholar]
- Hach Total Organic Carbon Method 10173. Hach Company. Available online: https://www.hach.com/asset-get.download.jsa?id=7639983637 (accessed on 19 November 2018).
- Hach Total Organic Carbon Method 10267. Hach Company. Available online: https://www.hach.com/asset-get.download.jsa?id=18722914801 (accessed on 19 November 2018).
- Whitby, H.; van den Berg, C.M.G. Evidence for copper-binding humic substances in seawater. Mar. Chem. 2015, 173, 282–290. [Google Scholar] [CrossRef]
- Croot, P.L.; Moffett, J.W.; Luther, G.W., III. Polarographic determination of half-wave potentials for copper-organic complexes in seawater. Mar. Chem. 1999, 67, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Fasfoubatbs, I.I.; Murimboh, J.; Chakrabarti, C.L. Simultaneous determination of speciation parameters of Cu, Pb, Cd, Zn in model solutions of Suwannee River fulvic acid by pseudopolarography. Anal. Bioanal. Chem. 2007, 388, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; Buffle, J.; Van Leeuwen, H.P. Effect of physico-chemical heterogeneity of natural complexants. Part I. Voltammetry of labile metal-fulvic complexes. Anal. Chem. Acta 1990, 232, 209–223. [Google Scholar] [CrossRef]
- Cabiniss, S.E.; Shuman, M.S. Copper binding by dissolved organic matter: I Suwannee River fulvic acid equilibria. Geochim. Cosmochim. Acta 1988, 52, 185–193. [Google Scholar] [CrossRef]
- Buffle, J.; Greter, F.-L.; Haerdi, W. Measurement of complexation properties of humic and fulvic acids in natural waters with lead and Copper Ion-Selective Electrodes. Anal. Chem. 1977, 49, 216–222. [Google Scholar] [CrossRef] [PubMed]
Location | Extraction Date | Water:Soil | Plant | pH | Equil Time | Dep Pot (mV) | Cu Capacity (µM) |
---|---|---|---|---|---|---|---|
3 Kids | 8/31/2016 | 120 mL to 5 g column | Creosote | 8 | 5 min | −400 | 5.63 |
3 Kids | 8/31/2016 | 120 mL to 5 g column | Creosote | 8 | 5 min | −250 | 9.33 |
3 Kids | 1/23/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 5 min | −250 | 9.19 |
3 Kids | 1/31/2017 | 50 mL to 1 g 18 h | None | 8 | 5 min | −250 | 0.69 |
3 Kids | 5/23/2017 | 50 mL to 1 g 18 h | None | 8 | 5 min | −400 | 0.04 |
3 Kids | 5/23/2017 | 50 mL to 1 g 18 h | None | 8 | 5 min | −250 | 0.45 |
Halloran | 3/2/2017 | 50 mL to 1 g 18 h | Creosote Deep | 8 | 5 min | −250 | 13.2 |
Halloran | 3/2/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 5 min | −250 | 42.2 |
Halloran | 3/13/2017 | 1000 mL to 10 g 18 h | Creosote | 8 | 5 min | −400 | 6.66 |
Halloran | 3/13/2017 | 1000 mL to 10 g 18 h | Creosote | 8 | 5 min | −250 | 24.5 |
Halloran | 3/15/2017 | 50 mL to 1 g 43 h | Salt Cedar | 8 | 5 min | −250 | 59.7 |
Halloran | 3/21/2017 | 1000 mL to 10 g 18 h | Creosote | 7 | 5 min | −250 | 11.1 |
Halloran | 3/24/2017 | 1000 mL to 10 g 18 h | Creosote | 5 | 5 min | −250 | 0.96 |
Halloran | 4/4/2017 | 50 mL to 1 g 18 h | Salt Cedar | 8 | 5 min | −250 | 53.9 |
Halloran | 5/12/2017 | 1000 mL to 10 g 18 h | Creosote | 8 | 5 min | −250 | 23.1 |
Halloran | 9/21/2017 | 50 mL to 1 g 18 h | Salt Cedar | 8 | 5 min | −700 | 2.12 |
Halloran | 9/26/2017 | 50 mL to 1 g 18 h | Salt Cedar | 8 | 5 min | −400 | 22.6 |
Halloran | 3/23/2018 | 1000 L to 10 g 18 h | Creosote | 6.15 | 5 min | −250 | 4.56 |
Lake Mead | 11/17/2016 | 50 mL to 1 g 18 h | None | 8 | 5 min | −250 | 1.42 |
Lake Mead | 4/21/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 5 min | −250 | 9.62 |
Lake Mead | 5/9/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 5 min | −250 | 6.95 |
Location | Extraction Date | Water: Soil | Plant | pH | Equil Time (h) | Dep Pot (mV) | Cu Capacity (µM) |
---|---|---|---|---|---|---|---|
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 18 | −250 | 55.7 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 18 | −400 | 37.2 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 18 | −700 | 33.3 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 7 | 18 | −250 | 48.5 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 7 | 18 | −400 | 41.9 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 7 | 18 | −700 | 45.8 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 6.15 | 18 | −250 | 40.4 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 6.15 | 18 | −400 | 31.9 |
Halloran | 6/20/2017 | 50 mL to 1 g 18 h | Creosote | 6.15 | 18 | −700 | 29.4 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 18 | −250 | 46.3 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 18 | −400 | 21.5 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 8 | 18 | −700 | 19.0 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 7 | 18 | −250 | 43.0 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 7 | 18 | −400 | 32.2 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 7 | 18 | −700 | 32.7 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 6.15 | 18 | −250 | 27.0 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 6.15 | 18 | −400 | 4.64 |
Halloran | 6/2/2017 | 50 mL to 1 g 18 h | Creosote | 6.15 | 18 | −700 | 13.3 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 8 | 18 | −250 | 60.6 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 8 | 18 | −400 | 47.8 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 8 | 18 | −700 | 38.0 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 7 | 18 | −250 | 58.7 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 7 | 18 | −400 | 50.6 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 7 | 18 | −700 | 42.6 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 6.15 | 18 | −250 | 39.9 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 6.15 | 18 | −400 | 33.5 |
Halloran | 6/13/2017 | 50 mL to 1 g 18 h | Salt Cedar | 6.15 | 18 | −700 | 31.3 |
Halloran | 6/13/2017 | 50 mL to 1 g 43 h | Salt Cedar | 8 | 18 | −250 | 80.3 |
Halloran | 6/13/2017 | 50 mL to 1 g 43 h | Salt Cedar | 8 | 18 | −400 | 63.0 |
Halloran | 6/13/2017 | 50 mL to 1 g 43 h | Salt Cedar | 8 | 18 | −700 | 59.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinberg, S.M.; Hodge, V.F. Copper Complexation by Dissolved Organic Matter in arid Soils: A Voltametric Study. Environments 2018, 5, 125. https://doi.org/10.3390/environments5110125
Steinberg SM, Hodge VF. Copper Complexation by Dissolved Organic Matter in arid Soils: A Voltametric Study. Environments. 2018; 5(11):125. https://doi.org/10.3390/environments5110125
Chicago/Turabian StyleSteinberg, Spencer M., and Vernon F. Hodge. 2018. "Copper Complexation by Dissolved Organic Matter in arid Soils: A Voltametric Study" Environments 5, no. 11: 125. https://doi.org/10.3390/environments5110125
APA StyleSteinberg, S. M., & Hodge, V. F. (2018). Copper Complexation by Dissolved Organic Matter in arid Soils: A Voltametric Study. Environments, 5(11), 125. https://doi.org/10.3390/environments5110125