Nitrate Leaching from Sand and Pumice Geomedia Amended with Pyrogenic Carbon Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Media and Pyrogenic Carbon Materials
2.2. Batch Adsorption Experiment
2.3. Column Experiment
3. Results and Discussion
3.1. Batch Adsorption of Nitrate
3.2. Nitrate Leaching in Column Experiment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- US Environmental Protection Agency. National Water Quality Inventory: Report to Congress: 2004 Reporting Cycle; USEPA, Office of Water: Washington, DC, USA, 2009.
- Li, L.; Davis, A.P. Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environ. Sci. Technol. 2004, 48, 3403–3410. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.B.; Hossain, F.; Wanielista, M. Filter media for nutrient removal in natural systems and built environments: I—Previous trends and perspectives. Environ. Eng. Sci. 2010, 27, 689–706. [Google Scholar] [CrossRef]
- Demiral, H.; Gündüzoğlu, G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. 2010, 101, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Ahmedna, M.; Marshall, W.E.; Husseiny, A.A.; Rao, R.M.; Goktepe, I. The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res. 2004, 38, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J. Hazard. Mater. 2008, 150, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2013, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Wirick, S. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Ho, J.; Kang, J. Hydrologic impacts of bioswale porous media on parking lot drainage. Int. J. Civ. Struct. Eng. Res. 2017, 5, 23–30. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; Agronomy Monograph No. 9; ASA and SSSA: Madison, WI, USA, 1986; Part 1, pp. 404–408. [Google Scholar]
- Venezia, A.M.; Floriano, M.A.; Deganello, G.; Rossi, A. The structure of pumice: An XPS and 27Al MAS NMR study. Surf. Interface Anal. 1992, 18, 532–538. [Google Scholar] [CrossRef]
- Mireles, S.; Ok, Y.; Cheng, C.; Kang, J. Adsorptive and kinetic characterization of aqueous zinc removal by biochars. SDRP J. Earth Sci. Environ. Stud. 2016, 1, 1–7. [Google Scholar]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Azargohar, R.; Dalai, A.K. Biochar as a precursor of activated carbon. In Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals; Humana Press: New York, NY, USA, 2006; pp. 762–773. [Google Scholar]
- Hu, X.; Ding, Z.; Zimmerman, A.R.; Wang, S.; Gao, B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015, 68, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Cantu, J.; Gonzalez, L.E.; Goodship, J.; Contreras, M.; Joseph, M.; Garza, C.; Eubanks, T.M.; Parsons, J.G. Removal of arsenic from water using synthetic Fe7S8 nanoparticles. Chem. Eng. J. 2016, 290, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Mukome, F.N.; Parikh, S.J. Chemical, Physical, and Surface characterization of Biochar. In Biochar: Production, Characterization, and Applications; Ok, Y.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 68–96. [Google Scholar]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, H.; Zhang, D.; Wu, M.; Pan, B. Limited role of biochars in nitrogen fixation through nitrate adsorption. Sci. Total Environ. 2017, 592, 758–765. [Google Scholar] [CrossRef] [PubMed]
Carbon Material | pH | C (%) | O (%) | Fe (%) | Al (%) |
---|---|---|---|---|---|
Activated carbon | 8.03 | 73.1 | 11.6 | 13.7 | 1.6 |
Hoffman biochar | 7.88 | 86.7 | 13.3 | 0 | 0 |
Wakefield biochar | 10.23 | 89.8 | 10.2 | 0 | 0 |
Column | Sand or Pumice (g) | Amendment (g) |
---|---|---|
Sand only | 318 | 0 |
Sand + amendment | 302 | 16 |
Pumice only | 165 | 0 |
Pumice + amendment | 157 | 8 |
Column a | pH | Turbidity (NTU) |
---|---|---|
Sand only | 7.84 ± 0.18 | 7.29 ± 0.85 |
Sand + AC | 7.92 ± 0.06 | 5.38 ± 0.59 |
Sand + HB | 7.93 ± 0.08 | 7.43 ± 0.56 |
Sand + WB | 8.73 ± 0.16 | 7.35 ± 1.72 |
Pumice only | 7.60 ± 0.08 | 23.86 ± 5.57 |
Pumice + AC | 7.50 ± 0.06 | 24.61 ± 4.22 |
Pumice + HB | 7.58 ± 0.05 | 26.80 ± 3.80 |
Pumice + WB | 7.91 ± 0.17 | 17.41 ± 2.46 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Davila, M.; Mireles, S.; Ho, J. Nitrate Leaching from Sand and Pumice Geomedia Amended with Pyrogenic Carbon Materials. Environments 2017, 4, 70. https://doi.org/10.3390/environments4040070
Kang J, Davila M, Mireles S, Ho J. Nitrate Leaching from Sand and Pumice Geomedia Amended with Pyrogenic Carbon Materials. Environments. 2017; 4(4):70. https://doi.org/10.3390/environments4040070
Chicago/Turabian StyleKang, Jihoon, Marissa Davila, Sergio Mireles, and Jungseok Ho. 2017. "Nitrate Leaching from Sand and Pumice Geomedia Amended with Pyrogenic Carbon Materials" Environments 4, no. 4: 70. https://doi.org/10.3390/environments4040070