Do Tick Attachment Times Vary between Different Tick-Pathogen Systems?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Anaplasma phagocytophilum (Anaplasmosis)
3.2. Babesia microti (Babesiosis)
3.3. Borrelia burgdorferi (Lyme Disease)
3.4. Borrelia turicatae, B. hermsii (Tick-borne Relapsing Fever)
3.5. Borrelia mayonii (Borreliosis)
3.6. Borrelia miyamotoi (Borrelia myamotoi Disease, Borreliosis)
3.7. Francisella tularensis (Tularemia)
3.8. Rickettsia rickettsii (Rocky Mountain Spotted Fever)
3.9. Heartland Virus
3.10. Powassan Virus
3.11. Neurotoxin (Tick Paralysis)
3.12. Galactose-α-1,3-Galactose (Mammalian Meat Allergy-Alpha-Gal Syndrome)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Merten, H.; Durden, L. A state-by-state survey of ticks recorded from humans in the United States. J. Vector Ecol. 2000, 25, 102–113. [Google Scholar] [PubMed]
- Spach, D.; Liles, W.C.; Campbell, G.; Quick, R.; Anderson, D.; Fritsche, T. Tick-borne diseases in the United States. N. Engl. J. Med. 1993, 329, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, M.; Schwan, T.; Anderson, D.; Borchardt, S. Tick-borne relapsing fever. Infect. Dis. Clin. N. Am. 2008, 22, 449–468. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Tickborne Diseases of the US. Available online: http://www.cdc.gov/ticks/diseases/index.html (accessed on 29 March 2017).
- Jurke, A.; Bannert, N.; Brehm, K.; Fingerle, V.; Kempf, V.A.; Kompf, D.; Lunemann, M.; Mayer-Schill, A.; Neidrig, M.; Nockler, K.; et al. Serological survey of Bartonella spp.; Borrelia burgdorferi, Brucella spp.; Coxiella burnettii, Francisella tularensis, Leptospira spp.; Echinococcus, Hanta-, TBE- and XMR-virus infection in employees of two forestry enterprises in North Rhine Westphalia, Germany, 2011–2013. Int. J. Med. Microbiol. 2015, 305, 652–662. [Google Scholar] [PubMed]
- Chmielewska-Badora, J.; Moniuszko, A.; Zukiewicz-Sobczak, W.; Zwolinski, J.; Piatek, J.; Pancewicz, S. Serological survey in persons occupationally exposed to tick-borne pathogens in cases of co-infections with Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella spp. and Babesia microti. Ann. Agric. Environ. Med. 2012, 19, 271–274. [Google Scholar] [PubMed]
- Adjemian, J.; Weber, I.B.; McQuiston, J.; Griffith, K.S.; Mead, P.S.; Nicholson, W.; Roche, A.; Schriefer, M.; Fisher, M.; Kosoy, O.; et al. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks. Vector Borne Zoonotic Dis. 2012, 12, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Faulde, M.K.; Rutenfranz, M.; Hepke, J.; Rogge, M.; Gorner, A.; Keth, A. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick Borne Dis. 2014, 5, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, M.F.; Funkhouser, S.W.; Lin, F.C.; Fine, J.; Juliano, J.J.; Apperson, C.S.; Meshnick, S.R. Long-lasting permethrin impregnated uniforms: A randomized-controlled trial for tick bite prevention. Am. J. Prev. Med. 2014, 46, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Londono-Renteria, B.; Patel, J.C.; Vaughn, M.; Funkhauser, S.; Ponnusamy, L.; Grippin, C.; Jameson, S.B.; Apperson, C.S.; Mores, C.N.; Wesson, D.M.; et al. Long-lasting permethrin-impregnated clothing protects against mosquito bites in outdoor workers. Am. J. Trop. Med. Hyg. 2015, 93, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Goethert, H.; Telford, S. Quantum of infection of Francisella tularensis in host seeking Dermacentor variabilis. Ticks Tick-Borne Dis. 2010, 1, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Linblom, P.; Fryland, L.; Nyman, D.; Jaenson, T.G.T.; Forsberg, P.; Lindgren, P.E. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasites Vectors 2013, 6, 362. [Google Scholar] [CrossRef] [PubMed]
- Lindbloom, P.; Wilhelmsson, P.; Fryland, L.; Sjowall, J.; Haglund, M.; Matussek, A.; Ernerudh, J.; Vene, S.; Nyman, D.; Andreassen, A.; et al. Tick-borne encephalitis virus in ticks detached from humans and follow-up of serological and clinical response. Ticks Tick-Borne Dis. 2014, 5, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Ebel, G.; Kramer, L. Short report: Duration of tick attachment required for transmission of Powassan virus by deer ticks. Am. J. Trop. Med. Hyg. 2004, 71, 268–271. [Google Scholar] [PubMed]
- Goodman, J.; Dennis, D.T.; Sonenshine, D.E. (Eds.) Tick-Borne Diseases of Humans; ASM Press: Washington, DC, USA, 2005. [Google Scholar]
- De la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estada-Pena, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-pathogen intereactions and vector competence: Identification of molecular drivers for tick-borne disease. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Peavey, C.A.; Lane, R.S. Transmission of Borrelia burgdorferi by Ixodes pacificus nymphs and reservoir competence of deer mice (Peromyscus maniculatus) infected by tick bite. J. Parasitol. 1995, 81, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, M.; Shoemaker, P.C.; Anderson, D.E. Tick paralysis: 33 human cases in Washington state, 1946–1996. Clin. Infect. Dis. 1999, 29, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Hynote, E.D.; Mervine, P.C.; Stricher, R.B. Clinical evidence for rapid transmission of Lyme disease following a tick bite. Diagn. Microbiol. Infect. Dis. 2012, 72, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.T.; Bak, J.M.; Hu, R.; Nicholson, M.C.; Kelly, C.; Mather, T.N. Determining the duration of Ixodes scapularis (Acari: Ixodidae) attachment to tick-bite victims. J. Med. Entomol. 1995, 32, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.H.; Al-Ahmadi, Z.; Osburn, R.L. Reproduction in ticks (Acari: Ixodoidea). 3. Copulation in Dermacentor occidentalis Marx and Haemaphysalis leporispalustris (Packard) (Ixodidae). J. Parasitol. 1974, 60, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, W.R. Gluttony and sex in female Ixodid ticks: How do they compare to other blood-sucking arthropods? J. Insect Phys. 2007, 53, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, W.R. Tick-host interaction: A synthesis of current concepts. Parasitol. Today 1989, 5, 47–56. [Google Scholar] [CrossRef]
- Pappas, P.J.; Oliver, J.H., Jr. Reproduction in ticks (Acari: Ixodoidea). 2. Analysis of the stimulus for rapid and complete feeding of female Dermacentor variabilis (Say). J. Med. Entomol. 1972, 9, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E.; Roe, R.M. (Eds.) Biology of Ticks, 2nd ed.; Oxford University Press: Oxford, UK, 2014; p. 93. [Google Scholar]
- Alekseev, A.N.; Burenkova, L.A.; Vasilieva, I.S.; Dubinina, H.V.; Chunikhin, S.P. Preliminary studies on virus and spirochete accumulation in the cement plug of Ixodid ticks. Exp. Appl. Acarol. 1996, 20, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E. (Ed.) Biology of Ticks, 1st ed.; Oxford University Press: New York, NY, USA; Oxford, UK, 1991. [Google Scholar]
- Needham, G.R. Evaluation of five popular methods for tick removal. Pediatrics 1985, 75, 997–1002. [Google Scholar] [PubMed]
- Crippa, M.; Rais, O.; Gern, L. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoonotic Dis. 2002, 2, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Diehl, P.A.; Aeschlimann, A.; Obenchain, F.D. Tick reproduction: oogenesis and oviposition. In Physiology of Ticks; Obenchain, F.D., Galun, R., Eds.; Pergamon Press: Elmsford, NY, USA, 1982; pp. 277–350. [Google Scholar]
- Boyle, W.; Wilder, H.; Lawrence, A.; Lopez, J. Transmission dynamics of Borrelia turicatae from the arthropod vector. PLoS Negl. Trop. Dis. 2014, 8, e2767. [Google Scholar] [CrossRef] [PubMed]
- Hodzic, E.; Fish, D.; Maretzki, C.M.; De Silva, A.M.; Feng, S.; Barthold, S.W. Acquisition and transmission of the agent of human granulocytic ehrlichiosis by Ixodes scapularis ticks. J. Clin. Microbiol. 1998, 36, 3574–3578. [Google Scholar] [PubMed]
- Katavolos, P.; Armstrong, P.M.; Dawson, J.E.; Telford, S.R. Duration of tick attachment required for transmission of granulocytic ehrlichiosis. J. Infect. Dis. 1998, 177, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Service, M.W. The Encyclopedia of Arthropod-Transmitted Infections; CABI Publishing: New York, NY, USA, 2001. [Google Scholar]
- Des Vignes, F.; Piesman, J.; Heffernan, R.; Schulze, T.L.; Stafford, K.C.; Fish, D. Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J. Infect. Dis. 2001, 183, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Piesman, J.; Schneider, B.S.; Zeidner, N.S. Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J. Clin. Microbiol. 2001, 39, 4145–4148. [Google Scholar] [CrossRef] [PubMed]
- Piesman, J.; Spielman, A. Human babesiosis on Nantucket Island: Prevalence of Babesia microti in ticks. Am. J. Trop. Med. Hyg. 1980, 29, 742–746. [Google Scholar] [PubMed]
- Davis, G.E. Ornithodorus turicata: The males; feeding and copulation habits, fertility, span of life, and the transmission of relapsing fever spirochetes. Public Health Rep. 1941, 56, 1799–1802. [Google Scholar] [CrossRef]
- Dolan, M.C.; Hoigaard, A.; Hoxmeier, J.C.; Replogle, A.J.; Respicio-Kingry, L.B.; Sexton, C.; Williams, M.A.; Pritt, B.S.; Schreifer, M.E.; Eisen, L. Vector competence of the blacklegged tick, Ixodes scapularis, for the recently recognized Lyme borreliosis spirochete Candidatus Borrelia mayonii. Ticks Tick-Borne Dis. 2016, 7, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Breuner, N.E.; Dolan, M.C.; Replogle, A.J.; Sexton, C.; Hojgaard, A.; Boegler, K.A.; Clark, R.J.; Eisen, L. Transmission of Borrelia miyamotoi sensu lato relapsing fever group spirochetes in relation to duration of attachment by Ixodes scapularis nymphs. Ticks Tick-Borne Dis. 2017. [Google Scholar] [CrossRef]
- Mani, R.J.; Metcalf, J.A.; Clinkenbeard, K.D. Amblyomma americanum as a bridging vector for human infection with Francisella tularensis. PLoS ONE 2015, 10, e0130513. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, D.G.; Soares, H.S.; Sores, J.F.; Labruna, M.B. Feeding period required by Amblyomma aureolatum ticks for transmission of Rickettsia rickettsii to vertebrate hosts. Emerg. Infect. Dis. 2014, 20, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Godsey, M.S.; Savage, H.M.; Burkhalter, K.L.; Bosco-Lauth, A.M.; Delorey, M.J. Transmission of Heartland virus (Bunyaviridae: Phlebovirus) by experimentally infected Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 2016, 53, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Moraru, G.M.; Goddard, J.; Paddock, C.D.; Varela-Stokes, A. Experimental infection of cotton rats and bobwhite quail with Rickettsia parkeri. Parasites Vectors 2013, 15, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Baldridge, G.D.; Scoles, G.A.; Burkhardt, N.Y.; Schloeder, B.; Kurtti, T.J.; Munderloh, U.G. Transovarial transmission of Francisella-like endosymbionts and Anaplasma phagocytophilum variants in Dermacentor albopictus (Acari: Ixodidae). J. Med. Entomol. 2009, 46, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009, 40, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Knapp, K.L.; Rice, N.A. Human coinfection with Borrelia burgdorferi and Babesia microti in the United States. J. Parasitol. Res. 2015, 2015, 587131. [Google Scholar] [CrossRef] [PubMed]
- Mather, T.N.; Telford, S.R.; Moore, S.I.; Spielman, A. Borrelia burgdorferi and Babesia microti: Efficiency of transmission from reservoirs to vector ticks (Ixodes dammini). Exp. Parasitol. 1990, 70, 55–61. [Google Scholar] [CrossRef]
- Stanek, G.; Wormser, G.P.; Gray, J.; Strle, F. Lyme borreliosis. Lancet 2012, 379, 461–473. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Lyme Disease Data. 2017. Available online: http://www.cdc.gov/lyme/stats/index.html (accessed on 29 March 2017).
- Piesman, J.; Mather, T.N.; Sinsky, R.J.; Spielman, A. Duration of tick attachment and Borrelia burgdorferi transmission. J. Clin. Microbiol. 1987, 25, 557–558. [Google Scholar] [PubMed]
- Rollend, L.; Fish, D.; Childs, J.E. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: A summary of the literature and recent observations. Ticks Tick-Borne Dis. 2013, 4, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.K.; Salzman, M.B.; Johnson, B.J.B.; Happ, C.M.; Feig, K.; Carmody, L.; Rubin, L.G.; Hilton, E.; Piesman, J. Duration of tick attachment as a predictor of the risk of Lyme disease in an area in which Lyme disease is endemic. J. Infect. Dis. 1997, 175, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Hofhuis, A.; Herremans, T.; Notermans, D.W.; Sprong, H.; Fonville, M.; van der Giessen, J.W.; van Pelt, W. A prospective study among patients presenting at the general practitioner with a tick bite or erythema migrans in the Netherlands. PLoS ONE 2013, 8, e64361. [Google Scholar] [CrossRef] [PubMed]
- Piesman, J.; Gray, J. Letter in response to the Hynote article. Diagn. Microbiol. Infect. Dis. 2012, 73, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Sugar, A.M. Letter in response to the Hynote article. Diagn. Microbiol. Infect. Dis. 2012, 73, 103. [Google Scholar] [CrossRef] [PubMed]
- Binnicker, M.J.; Theel, E.S.; Pritt, B.S. Lack of evidence for rapid transmission of Lyme disease following a tick bite. Diagn. Microbiol. Infect. Dis. 2012, 73, 102–103. [Google Scholar] [CrossRef] [PubMed]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplasmosis and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Recommendations for test performance and interpretation from the second national conference on serological diagnosis of Lyme disease. MMWR 1995, 44, 590–591. [Google Scholar]
- Meader, C.N. Five cases of relapsing fever originating in Colorado, with positive blood findings in two. Colorado Med. 1915, 12, 365–368. [Google Scholar]
- Schwan, T.; Raffel, S.; Schrumpf, M.; Porcella, S. Diversity and distribution of Borrelia hermsii. Emerg. Infect. Dis. 2007, 13, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Tick-Borne Relapsing Fever. Available online: http://www.cdc.gov/relapsing-fever/ (accessed on 29 March 2017).
- Pritt, B.S.; Mead, P.S.; Hoang Johnson, D.K.; Neitzel, D.F.; Respicio-Kingry, L.B.; Davis, J.P.; Schiffman, E.; Sloan, L.M.; Schriefer, M.E.; Replogle, A.J.; et al. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: A descriptive study. Lancet Infect. Dis. 2016, 16, 556–564. [Google Scholar] [CrossRef]
- Fukunaga, M.; Takahashi, Y.; Tsuruta, Y.; Matsushita, O.; Ralph, D.; McClelland, M.; Nakao, M. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov. isolated from the Ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int. J. Syst. Bacteriol. 1995, 45, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Gugliotta, J.; Goethert, H.; Berardi, V.; Telford, S. Meningoencephalitis from Borrelia miyamotoi in an immunocompromised patien. NEJM 2013, 368, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Crowder, C.; Carolan, H.; Rounds, M.; Honig, V.; Mothes, B.; Haag, H.; Nolte, O.; Luft, B.; Grubhoffer, L.; Ecker, D.; et al. Prevalence of Borrelia miyamotoi in Ixodes ticks in Europe and the United States. Emerg. Infect. Dis. 2014, 20, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Scoles, G.; Papero, M.; Beati, L.; Fish, D. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoon. Dis. 2001, 1, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Munn, J.R.; Eisen, R.; Eisen, L.; Lane, R. Detection of Borrelia miyamotoi senso lato relapsing-fever group spirochete from Ixodes pacificus in California. J. Med. Entomol. 2006, 43, 120–123. [Google Scholar] [CrossRef]
- Van Duijvendijk, G.; Coipan, C.; Wagemakers, A.; Fonville, M.; Ersoz, J.; Oei, A.; Foldvari, G.; Hovius, J.; Takken, W.; Sprong, H. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites Vectors 2016, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Platonov, A.; Karan, L.; Kolyasnikova, N.; Makhneva, N.; Toporkova, M.; Maleev, V.; Fish, D.; Krause, P. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg. Infect. Dis. 2011, 17, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Sarkysan, D.; Platonov, A.; Karan, L.; Malinin, I.; Khalitova, L.; Shakhov, V.; Dudarev, M.; Malinin, M.; Maleev, V. Clinical presentation of “new” tick-borne borreliosis caused by Borrelia miyamotoi. Terapevticheskii Arkhiv 2012, 84, 34–41. [Google Scholar]
- Krause, P.; Narasimhan, S.; Wormser, G.; Barbour, A.; Platonov, A.; Brancato, J.; Lepore, T.; Dardick, K.; Mamula, M.; Rollend, L.; et al. Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerg. Infect. Dis. 2014, 20, 1183–1190. [Google Scholar] [PubMed]
- Peterson, J.M.; Mead, P.S.; Schriefer, M.E. Francisella tularensis: An arthropod-borne pathogen. Vet. Res. 2009, 40, 2008045. [Google Scholar] [CrossRef] [PubMed]
- Reese, S.M.; Petersen, J.M.; Sheldon, S.W.; Dolan, M.C.; Dietrich, C.; Piesman, J.; Eisen, R.J. Transmission efficiency of Francisella tularensis by adult American dog ticks (Acari: Ixodidae). J. Med. Entomol. 2011, 48, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Demma, L.J.; Traeger, M.S.; Nicholson, W.L.; Paddock, C.D.; Blau, D.M.; Eremeeva, M.A.; Dasch, G.A.; Levin, M.L.; Singleton, J.; Zaki, S.R.; et al. Rocky Mountain spotted fever from an unexpected tick vector in Arizona. NEJM 2005, 353, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Burgdorfer, W. A review of Rocky Mountain spotted fever (tick-borne typhus), its agent, and its tick vectors in the United States. J. Med. Entomol. 1975, 12, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Paddock, C.D.; Raoult, D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clin. Microbiol. Rev. 2005, 18, 719–756. [Google Scholar] [CrossRef] [PubMed]
- Berrada, Z.L.; Goethert, H.K.; Cunningham, J.; Telford, S.R., III. Rickettsia rickettsii (Rickettsiales: Rickettsiaceae) in Amblyomma americanum (Acari: Ixodidae) from Kansas. Vector Borne Zoon. Dis. 2011, 48, 461–467. [Google Scholar] [CrossRef]
- Ricketts, H.T. Contributions to Medical Science; University of Chicago Press: Chicago, IL, USA, 1911. [Google Scholar]
- Hayes, S.F.; Burgdorfer, W. Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: An ultrastructural analysis. Infect. Immun. 1982, 37, 779–785. [Google Scholar] [PubMed]
- Chen, L.F.; Sexton, D.J. What’s new in Rocky Mountain spotted fever? Infect. Dis. Clin. N. Am. 2008, 22, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Salinas, L.J.; Greenfield, R.A.; Little, S.E.; Voskuhl, G.W. Tick-borne infections in the southern United States. Am. J. Med. Sci. 2010, 340, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Galletti, M.F.; Fujita, A.; Nishiyama, M.Y.; Malossi, C.D.; Pinter, A.; Soares, J.F.; Daffre, S.; Labruna, M.B.; Fogaca, A.C. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector. PLoS ONE 2013, 8, e77388. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.L.; Zemtsova, G.E.; Killmaster, L.F.; Snellgrove, A.; Schumacher, L.B.M. Vector competence of Amblyomma americanum (Acari: Ixodidae) for Rickettsia rickettsii. Ticks Tick-Borne Dis. 2017. [Google Scholar] [CrossRef] [PubMed]
- McMullen, L.K.; Folk, S.M.; Kelley, A.J.; MacNeil, A.; Goldsmith, C.S.; Metcalfe, M.G.; Batten, B.C.; Albarino, C.G.; Zaki, S.R.; Rollin, P.E.; et al. A new phlebovirus associated with severe febrile illness in Missouri. N. Eng. J. Med. 2012, 367, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Wormser, G.P.; Pritt, B. Update and commentary on four emerging tick-borne infections. Infect. Dis. Clin. N. Am. 2015, 29, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.R.; Simonsen, K.A. Powassan encephalitis and Colorado tick fever. Infect. Dis. Clin. N. Am. 2008, 22, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Costero, A.; Grayson, M.A. Experimental transmission of Powassan virus (Flaviviridae) by Ixodes scapularis ticks (Acari: Ixodidae). Am. J. Trop. Med. Hyg. 1996, 55, 536–546. [Google Scholar] [PubMed]
- Vedanarayanan, V.; Sorey, W.H.; Subramony, S.H. Tick paralysis. Semin. Neurol. 2004, 24, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Mans, B.J.; Gothe, R.; Neitz, A.W.H. Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology 2004, 129, 95–111. [Google Scholar] [CrossRef]
- Ebel, G. Update on Powassan virus: Emergence of a North American tick-borne Flavivirus. Ann. Rev. Entomol. 2010, 55, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Edlow, J.; McGillicuddy, D. Tick paralysis. Infect. Dis. Clin. N. Am. 2000, 22, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Van Nunen, S. Tick-induced allergies: Mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac. Allergy 2015, 5, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Platts-Mills, T.A.E.; Schuyler, A.J.; Commins, S.P. Anaphylaxis to the carbohydrate side chain Alpha-gal. Immunol. Allergy Clin. N. Am. 2015, 35, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Eremeeva, M.E.; Dasch, G.A. Challenges posed by tick-borne rickettsiae: Eco-epidemiology and public health implications. Front. Public Health 2015, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Falco, R.C.; Fish, D.; Piesman, J. Duration of tick bites in a Lyme disease-endemic area. Am. J. Epidemiol. 1996, 143, 187–192. [Google Scholar] [CrossRef] [PubMed]
Pathogen(s) | Associated Disease | Arthropod Epidemiologic Vectors in US | Estimated Duration of Attachment Time to Transmit Pathogen | References for Attachment Time (Time Points Examined-Host) |
---|---|---|---|---|
Anaplasma phagocytophilum | Anaplasmosis | I. scapularis *, I. pacificus | 24 h–50 h | [32] (24, 48, 72 h-C3H/HeJ and C3H/Smn.CIcrHSD mice); [33] (12, 24, 30, 36, 50 h-C3H/HeJ mice) |
Babesia microti | Babesiosis | I. scapularis * | 7–18 days 36–54 h | [34] (every 24 h from 6–25 days-voles); [34] (36, 48, 54 h-hamsters) |
Borrelia burgdorferi | Lyme disease | I. scapularis *, I. pacificus * | 4–72 h (Ixodes scapularis); 48–96 h (Ixodes pacificus) | [17] (24, 48, 72, ≥96 h-deer mice); [35] (24, 48, 72 h, ≥96 h-mice); [36] (24, 48, 60, 72, 96, 192 h-only salivary glands tested [no host transmission]; [37] (4, 12 h-human clinical case report) |
Borrelia lonestari **, possibly other Borrelia spp. | Master’s disease, Southern tick associated rash illness | A. americanum * | Unknown | n/a |
Borrelia turicatae, Borrelia hermsii | Tick-borne relapsing fever | O. hermsii *, O. turicata *, O. parkeri | 15 s–30 min (transmission related to [rapid] time for engorgement in soft ticks) | [38] (6–23 min-unknown host; [31] (15 s, 30 min-Swiss Webster mice) |
Borrelia hermsii, Borrelia parkeri | Tick-borne relapsing fever | O. hermsii *, O. turicata *, O. parkeri | Unknown | n/a |
Borrelia mayonii | Borreliosis **** | I. scapularis * | 24–96 h | [39] (24, 48, 72, 96 h-CD-1 mice) |
Borrelia miyamotoi | Borrelia miyamotoi disease (Borreliosis) **** | I. pacificus *, I. scapularis * | 24–96 h | [40] (24, 48, 72, 73-96 h-mice) |
Coxiella burnetii | Query Fever | A. americanum, A. cajennense, D. andersoni *, D. occidentalis, O. coriaceus Koch, O. hermsi (primary epidemic vector unknown) | Unknown | n/a |
Ehrlichia chafeensis, Ehrlichia ewingii | Ehrlichiosis | A. americanum, D. variabilis | 24–50 h (A. phagocytophila) | [33] (12, 24, 30, 36, 50 h-C3H/HeJ mice); [35] (24, 48, 72-mice) |
Ehrlichia muris | n/a | I. scapularis | Unknown | n/a |
Francisella tularensis | Tularemia | A. americanum, D. andersoni, D. variabilis * (also transmitted via aerosolized contact with or ingestion of infected animals) | 48 h | [41] (48, 96, 144 h-saliva collected in capillary tube) |
Rickettsia 364D | n/a | D. occidentalis | Unknown | n/a |
Rickettsia montanensis | n/a | D. variabilis | Unknown | n/a |
Rickettsia parkeri | Tidewater spotted fever, American boutonneuse fever, Maculatum rickettsiosis | A. maculatum *** | Unknown | n/a |
Rickettsia rickettsii | Rocky Mountain spotted fever | D. variabilis, D. andersoni, Rh. sanguineus | 2–96 h | [42] (2 h increments from 2–18, 24, 36, 48, >96 h-guinea pigs, rabbits) |
Colorado tick fever virus | Colorado tick fever, mountain fever | D. andersoni | Unknown | n/a |
Heartland virus | n/a | A. americanum | Unknown | [43] (unknown attachment time-rabbits) |
Powassan virus | Powassan disease | D. variabilis, D. andersoni, I. scapularis * | 15–30 min | [14] (15, 30, 60, 180 min-BALB/c mice) |
Neurotoxin (possibly ixovotoxin) | Tick paralysis | A. americanum, A. maculatum, D. andersoni, D. variabilis, I. pacificus (primary epidemic vector unknown) | 5–7 days | [18] (human clinical case reports) |
carbohydrate galactose-α-1,3-galactose | Meat allergies (alpha-gal syndrome) | A. americanum | Unknown | n/a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, S.L.; Langley, R.; Apperson, C.S.; Watson, E. Do Tick Attachment Times Vary between Different Tick-Pathogen Systems? Environments 2017, 4, 37. https://doi.org/10.3390/environments4020037
Richards SL, Langley R, Apperson CS, Watson E. Do Tick Attachment Times Vary between Different Tick-Pathogen Systems? Environments. 2017; 4(2):37. https://doi.org/10.3390/environments4020037
Chicago/Turabian StyleRichards, Stephanie L., Ricky Langley, Charles S. Apperson, and Elizabeth Watson. 2017. "Do Tick Attachment Times Vary between Different Tick-Pathogen Systems?" Environments 4, no. 2: 37. https://doi.org/10.3390/environments4020037
APA StyleRichards, S. L., Langley, R., Apperson, C. S., & Watson, E. (2017). Do Tick Attachment Times Vary between Different Tick-Pathogen Systems? Environments, 4(2), 37. https://doi.org/10.3390/environments4020037