Modelling NO2 Emissions at Eskom’s Coal-Fired Power Station: Application of Statistical Distributions at Arnot
Abstract
1. Introduction
1.1. Statement of the Problem
1.2. Justification of the Study
1.3. Objectives of the Study
1.4. Contribution of the Study
2. Literature Review
3. Methodology [10]
3.1. Extreme Value Index () Estimates
3.2. Weibull Distribution
3.3. Lognormal Distribution
3.4. Pareto Distribution
3.5. Assessing the Goodness of Fit, and Parameter Estimation
4. Results
4.1. Description of the Data
4.2. Data Exploration
4.3. Shape of the Tail
4.4. The Distribution of the Data
4.5. Goodness of Fit Tests
5. Discussion
6. Conclusions
7. Further Studies and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EVI | extreme value index |
| SA | South Africa |
| NO2 | nitrogen dioxide |
| MLE | maximum likelihood estimation |
| BIC | Schwarz’s Bayesian Information Criterion |
| AIC | Akaike Information Criteria |
| CO | carbon monoxide |
| O3 | ozone |
| SO2 | sulphur dioxide |
| GEVD | generalised extreme value distribution |
| GPD | generalised Pareto distribution |
| PM10 | particulate matter of size 10 micrometres or less |
| PM2.5 | particulate matter of size 2.5 micrometres or less |
| PP | probability-probability |
| EPD | extended Pareto distribution |
| PoT | peaks over threshold |
| quantile–quantile | |
| N | number of observations |
| genHill | generalised Hill |
Appendix A
| Nitrogen Dioxide (NO2) Emission (in Tons) | Month of Emission |
|---|---|
| 3462 | April 2005 |
| 3021 | May 2005 |
| 2309 | June 2005 |
| 2561 | July 2005 |
| 3718 | August 2005 |
| 4238 | September 2005 |
| 4003 | October 2005 |
| 3303 | November 2005 |
| 3048 | December 2005 |
| 4288 | January 2006 |
| 3707 | February 2006 |
| 3667 | March 2006 |
| 3742 | April 2006 |
| 4605 | May 2006 |
| 4119 | June 2006 |
| 3492 | July 2006 |
| 3473 | August 2006 |
| 3184 | September 2006 |
| 4439 | October 2006 |
| 3732 | November 2006 |
| 3526 | December 2006 |
| 4966 | January 2007 |
| 3441 | February 2007 |
| 4332 | March 2007 |
| 3216 | April 2007 |
| 3513 | May 2007 |
| 4597 | June 2007 |
| 4509 | July 2007 |
| 4506 | August 2007 |
| 3337 | September 2007 |
| 3133 | October 2007 |
| 3578 | November 2007 |
| 3808 | December 2007 |
| 3352 | January 2008 |
| 3748 | February 2008 |
| 3928 | March 2008 |
| 3194.496565 | April 2008 |
| 4230.084644 | May 2008 |
| 4708.410787 | June 2008 |
| 4466.214804 | July 2008 |
| 4543.381095 | August 2008 |
| 3081.554301 | September 2008 |
| 3724.211074 | October 2008 |
| 3745.350429 | November 2008 |
| 4010 | December 2008 |
| 4250.626883 | January 2009 |
| 3570.002285 | February 2009 |
| 3049.098874 | March 2009 |
| 3896.844898 | April 2009 |
| 3773.618573 | May 2009 |
| 4483.672838 | June 2009 |
| 4100.335240 | July 2009 |
| 4145.246646 | August 2009 |
| 4627.092120 | September 2009 |
| 3683.758421 | October 2009 |
| 3805.282085 | November 2009 |
| 4394.895518 | December 2009 |
| 4411.757832 | January 2010 |
| 4391.796378 | February 2010 |
| 5022.998042 | March 2010 |
| 4126.136522 | April 2010 |
| 4176.738399 | May 2010 |
| 4534.364329 | June 2010 |
| 5039.382416 | July 2010 |
| 3614.121097 | August 2010 |
| 3852.732547 | September 2010 |
| 4163.229131 | October 2010 |
| 4181.204149 | November 2010 |
| 3394.769128 | December 2010 |
| 4086.758762 | January 2011 |
| 3586.296039 | February 2011 |
| 3976.728056 | March 2011 |
| 3650.302634 | April 2011 |
| 4791.368994 | May 2011 |
| 4261.699668 | June 2011 |
| 4998 | July 2011 |
| 4537 | August 2011 |
| 4322 | September 2011 |
| 4441.629070 | October 2011 |
| 4458.775161 | November 2011 |
| 4984.964488 | December 2011 |
| 4242.134007 | January 2012 |
| 3547.665060 | February 2012 |
| 4304.482749 | March 2012 |
| 4129 | April 2012 |
| 4700 | May 2012 |
| 4583 | June 2012 |
| 4404 | July 2012 |
| 4429 | August 2012 |
| 4575 | September 2012 |
| 5063 | October 2012 |
| 3989 | November 2012 |
| 3177 | December 2012 |
| 3239 | January 2013 |
| 3794 | February 2013 |
| 4228 | March 2013 |
| 3348 | April 2013 |
| 3637 | May 2013 |
| 2671 | June 2013 |
| 4048 | July 2013 |
| 4352 | August 2013 |
| 4521 | September 2013 |
| 4217 | October 2013 |
| 3793 | November 2013 |
| 2915 | December 2013 |
| 3961 | January 2014 |
| 4030 | February 2014 |
| 4019 | March 2014 |
References
- Riekert, J.W.; Koch, S.F. Projecting the external health costs of a coal-fired power plant: The case of Kusile. J. Energy S. Afr. 2012, 23, 52–66. [Google Scholar] [CrossRef]
- Ateba, B.B.; Prinsloo, J.J. Strategic management for electricity supply sustainability in South Africa. Util. Policy 2019, 56, 92–103. [Google Scholar] [CrossRef]
- Pollet, B.G.; Staffell, I.; Adamson, K.-A. Current energy landscape in the Republic of South Africa. Int. J. Hydrogen Energy 2015, 40, 16685–16701. [Google Scholar] [CrossRef]
- He, H.; Schäfer, B.; Beck, C. Spatial heterogeneity of air pollution statistics in Europe. Sci. Rep. 2022, 12, 12215. [Google Scholar] [CrossRef]
- Shah, A.S.V.; Lee, K.K.; A McAllister, D.; Hunter, A.; Nair, H.; Whiteley, W.; Langrish, J.P.; E Newby, D.; Mills, N.L. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ 2015, 350, h1295. [Google Scholar] [CrossRef]
- Jaffar, M.I.; Hamid, H.A.; Yunus, R.; Raffee, A.F. Fitting Statistical Distribution Functions of Air Pollutant Concentration in Different Urban Locations in Malaysia. J. Eng. Sci. Res. 2023, 7, 7–11. [Google Scholar] [CrossRef]
- Dário, M.S.; Novais, D.G.; Pauliquevis, T.; Rizzo, L.V. Long-term trends and probability distribution functions of air pollutant concentrations in the megacity of São Paulo. Derbyana 2024, 45. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, S.; Liu, N.; Shen, B. The statistical distributions of SO2, NO2 and PM10 concentrations in Xi’an, China. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; pp. 2206–2212. [Google Scholar] [CrossRef]
- Lu, H.-C. The statistical characters of PM10 concentration in Taiwan area. Atmos. Environ. 2002, 36, 491–502. [Google Scholar] [CrossRef]
- Albrecher, H.; Beirlant, J.; Teugels, J.L. Reinsurance: Actuarial and Statistical Aspects; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Beirlant, J.; Bladt, M. Tail classification using non-linear regression on model plots. Extremes 2025, 28, 345–369. [Google Scholar] [CrossRef]
- Perišić, M.; Stojić, A.; Stojić, S.S.; Šoštarić, A.; Mijić, Z.; Rajšić, S. Estimation of required PM10 emission source reduction on the basis of a 10-year period data. Air Qual. Atmos. Health 2015, 8, 379–389. [Google Scholar] [CrossRef]
- Akhundjanov, S.B.; Devadoss, S.; Luckstead, J. Size distribution of national CO2 emissions. Energy Econ. 2017, 66, 182–193. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D.; Makropoulos, C. How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol. Earth Syst. Sci. 2013, 17, 851–862. [Google Scholar] [CrossRef]
- Karaca, F.; Alagha, O.; Ertürk, F. Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere 2005, 59, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Tharu, N.K.; Baidhya, S. Modeling PM2.5 and TSP Concentrations: A Comparison of Weibull, Lognormal, and Gamma Distributions. Patan Prospect. J. 2024, 4, 69–78. [Google Scholar] [CrossRef]
- Meirelles, M.G.; Vasconcelos, H.C. Physical–Statistical Characterization of PM10 and PM2.5 Concentrations and Atmospheric Transport Events in the Azores During 2024. Earth 2025, 6, 54. [Google Scholar] [CrossRef]
- Choopradit, B.; Paitoon, R.; Srinuan, N.; Kwankaew, S. Application of the Parametric Bootstrap Method for Confidence Interval Estimation and Statistical Analysis of PM2.5 in Bangkok. WSEAS Trans. Environ. Dev. 2024, 20, 215–225. [Google Scholar] [CrossRef]
- Oguntunde, P.E.; Odetunmibi, O.A.; Adejumo, A.O. A Study of Probability Models in Monitoring Environmental Pollution in Nigeria. J. Probab. Stat. 2014, 2014, 864965. [Google Scholar] [CrossRef]
- Aydin, D. A comparison of the statistical distributions of air pollution concentrations in Sinop, Turkey. Environ. Prot. Eng. 2024, 50, 47. [Google Scholar] [CrossRef]
- Osatohanmwen, P.; Oyegue, F.O.; Ogbonmwan, S.M.; Muhwava, W. A General Framework for Generating Three-Components Heavy-Tailed Distributions with Application. J. Stat. Theory Appl. 2024, 23, 290–314. [Google Scholar] [CrossRef]
- Deng, M.; Aminzadeh, M.S. Bayesian predictive analysis for Weibull-Pareto composite model with an application to insurance data. Commun. Stat.-Simul. Comput. 2022, 51, 2683–2709. [Google Scholar] [CrossRef]
- Cooray, K.; Cheng, C.-I. Bayesian estimators of the lognormal–Pareto composite distribution. Scand. Actuar. J. 2015, 2015, 500–515. [Google Scholar] [CrossRef]
- Nadarajah, S.; Bakar, S.A.A. New composite models for the Danish fire insurance data. Scand. Actuar. J. 2014, 2014, 180–187. [Google Scholar] [CrossRef]
- Albrecher, H.; Araujo-Acuna, J.C.; Beirlant, J. TEMPERED PARETO-TYPE MODELLING USING WEIBULL DISTRIBUTIONS. ASTIN Bull. 2021, 51, 509–538. [Google Scholar] [CrossRef]
- Dekkers, A.L.M.; Einmahl, J.H.J.; De Haan, L. A Moment Estimator for the Index of an Extreme-Value Distribution. Ann. Stat. 1989, 17, 1833–1855. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
- Hill, B.M. A Simple General Approach to Inference About the Tail of a Distribution. Ann. Stat. 1975, 3, 1163–1174. [Google Scholar] [CrossRef]
- Dobson, A.J.; Barnett, A.G. An Introduction to Generalized Linear Models, 3rd ed.; Texts in Statistical Science Series; Chapman & Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Lequesne, J.; Regnault, P. vsgoftest: An R Package for Goodness-of-Fit Testing Based on Kullback-Leibler Divergence. Code Snippet 1. J. Stat. Softw. 2020, 96, 1–26. [Google Scholar] [CrossRef]
- Aleksandropoulou, V.; Eleftheriadis, K.; Diapouli, E.; Torseth, K.; Lazaridis, M. Assessing PM 10 source reduction in urban agglomerations for air quality compliance. J. Environ. Monit. 2012, 14, 266–278. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, P.; Jain, S.; Kumar, P. An integrated statistical approach for evaluating the exceedence of criteria pollutants in the ambient air of megacity Delhi. Atmos. Environ. 2013, 70, 7–17. [Google Scholar] [CrossRef]
- Mishra, G.; Ghosh, K.; Dwivedi, A.K.; Kumar, M.; Kumar, S.; Chintalapati, S.; Tripathi, S. An application of probability density function for the analysis of PM2.5 concentration during the COVID-19 lockdown period. Sci. Total Environ. 2021, 782, 146681. [Google Scholar] [CrossRef]
- Nwaigwe, C.C.; Ogbonna, C.J.; Achem, O. On the Modeling of Carbon Monoxide Flaring in Nigeria. Int. J. Stat. Probab. 2018, 7, 94. [Google Scholar] [CrossRef]
- Gao, C.; Deng, S.; Jiang, X.; Guo, Y. Analysis for the Relationship Between Concentrations of Air Pollutants and Meteorological Parameters in Xi’an, China. J. Test. Eval. 2016, 44, 1064–1076. [Google Scholar] [CrossRef]
- De Souza, A.; Olaofe, Z.O.; Kodicherla, S.P.K.; Ikefuti, P.; Nobrega, L.; Sabbah, I. Probability distributions assessment for modeling gas concentration in Campo Grande, MS, Brazil. Eur. Chem. Bull. 2018, 6, 569. [Google Scholar] [CrossRef][Green Version]
- Gulia, S.; Nagendra, S.M.S.; Khare, M. Extreme Events of Reactive Ambient Air Pollutants and their Distribution Pattern at Urban Hotspots. Aerosol Air Qual. Res. 2017, 17, 394–405. [Google Scholar] [CrossRef]
- Hrishikesh, C.G.; Nagendra, S.M.S. Study of meteorological impact on air quality in a humid tropical urban area. J. Earth Syst. Sci. 2019, 128, 118. [Google Scholar] [CrossRef]
- Scollnik, D.P.M.; Sun, C. Modeling with Weibull-Pareto Models. N. Am. Actuar. J. 2012, 16, 260–272. [Google Scholar] [CrossRef]





| Method | Equation |
|---|---|
| Moment [26] | is the threshold. |
| Generalised Hill | |
| Generalised QQ plot | . . . |
| Generalised Pareto Distribution | . is produced by maximising the following log-likelihood function of : is the scale parameter estimator. estimate is obtained [27]. |
| N | 108 |
| Minimum | 2309.00 |
| Mean | 3963.02 |
| Median | 4014.5 |
| Standard Deviation | 574.44 |
| Maximum | 5063.00 |
| Kurtosis | −0.23 |
| Skewness | −0.33 |
| Phillips–Perron Unit Root Test | <0.01 |
| Augmented Dickey–Fuller (ADF) test p-value | 0.03772 |
| Kolmogorov–Smirnov (KS) test for normality of data | <2.2 × 10−16 |
| Anderson–Darling (AD) test for normality of data | 5.556 × 10−6 |
| Component | Sample Size (n) | Test and Parameter Estimates | Distribution | |||||
|---|---|---|---|---|---|---|---|---|
| Weibull | Lognormal | Pareto | ||||||
| Bulk ) | n = 89 | Statistic | p-value | Statistic | p-value | Statistic | p-value | |
| KS | 0.0700 | 0.7489 *** | 0.0947 | 0.3785 | 0.3781 | <0.0001 | ||
| VS | 0.1693 | 0.4053 *** | 0.2532 | 1.043 × 10−7 | 1.1150 | 2.2 × 10−16 | ||
| Parameter estimates | ||||||||
| 9.7914 | 4003.8568 | 8.2336 | 0.1359 | 2.0447 | 2309 | |||
| Tail ) | n = 19 | Statistic | p-value | Statistic | p-value | Statistic | p-value | |
| KS | 0.2311 | 0.2245 | 0.2200 | 0.2742 | 0.1857 | 0.4734 *** | ||
| VS | 0.8995 | 0.0056 | 0.7438 | 0.0014 | 0.4340 | 0.105 *** | ||
| Parameter estimates | ||||||||
| 24.0977 | 4833.2211 | 8.4612 | 0.0424 | 21.1226 | 4509 | |||
| Component | Sample Size (n) | Model Adequacy | Distribution | ||
|---|---|---|---|---|---|
| Weibull | Lognormal | Pareto | |||
| Bulk ) | n = 89 | AIC | 1348.3970 *** | 1366.8680 | 1520.2720 |
| BIC | 1353.3740 *** | 1371.8450 | 1525.2490 | ||
| Tail ) | n = 19 | AIC | 262.8421 | 259.3847 | 247.6116 *** |
| BIC | 264.7310 | 261.2736 | 249.5005 *** | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mamba, M.W.; Chikobvu, D. Modelling NO2 Emissions at Eskom’s Coal-Fired Power Station: Application of Statistical Distributions at Arnot. Environments 2026, 13, 111. https://doi.org/10.3390/environments13020111
Mamba MW, Chikobvu D. Modelling NO2 Emissions at Eskom’s Coal-Fired Power Station: Application of Statistical Distributions at Arnot. Environments. 2026; 13(2):111. https://doi.org/10.3390/environments13020111
Chicago/Turabian StyleMamba, Mpendulo Wiseman, and Delson Chikobvu. 2026. "Modelling NO2 Emissions at Eskom’s Coal-Fired Power Station: Application of Statistical Distributions at Arnot" Environments 13, no. 2: 111. https://doi.org/10.3390/environments13020111
APA StyleMamba, M. W., & Chikobvu, D. (2026). Modelling NO2 Emissions at Eskom’s Coal-Fired Power Station: Application of Statistical Distributions at Arnot. Environments, 13(2), 111. https://doi.org/10.3390/environments13020111

