Prenatal Metal Exposure and Neurodevelopmental Changes in Children up to 18 Months of Age: PIPA Cohort Project, Rio de Janeiro
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Base and Study Population
2.3. Arsenic, Lead, and Mercury Laboratory Analysis
2.4. Neurodevelopmental Classification
2.5. Data Source
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Saliba, Y.; Bărbulescu, A. Assessing pollution with heavy metals and its impact on population health. Toxics 2025, 13, 52. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). ATSDR’s Substance Priority List. Available online: https://www.atsdr.cdc.gov/programs/substance-priority-list.html (accessed on 24 December 2025).
- World Health Organization (WHO). Human Health Effects of Benzene, Arsenic, Cadmium, Nickel, Lead and Mercury: Report of an Expert Consultation; Regional Office for Europe Copenhagen: København, Denmark, 2024; Available online: https://iris.who.int/server/api/core/bitstreams/3353758d-5aee-452e-a294-62cee43cfd3c/content (accessed on 21 November 2025).
- Center for Disease Control and Prevention (CDC). Poison Center & Public Health Collaborations Community of Practice (PCPH CoP) Newsletter. Available online: https://www.cdc.gov/chemical-radiological-surveillance/media/pdfs/PCPHCoP-Newsletter-Toxic-Metals-Arsenic-508.pdf (accessed on 21 November 2025).
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, P.; Zhao, F.J. Toxic metals and metalloids in food: Current status, health risks, and mitigation strategies. Curr. Environ. Health Rep. 2024, 11, 468–483. [Google Scholar] [CrossRef]
- Morais, S.; Costa, F.G.; Pereira, M.L. Heavy Metals and Human Health. In Environmental Health: Emerging Issues and Practice; Oosthuizen, J., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.—Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Gundacker, C.; Hengstschläger, M. The Role of the Placenta in Fetal Exposure to Heavy Metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Caserta, D.; Graziano, A.; Lo Monte, G.; Bordi, G.; Moscarini, M. Heavy Metals and Placental Fetal–Maternal Barrier: A Mini-Review on the Major Concerns. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2198–2206. [Google Scholar] [PubMed]
- De Figueiredo, N.D.; Araújo, M.S.; Luiz, R.R.; de Magalhães Câmara, V.; do Couto Jacob, S.; dos Santos, L.M.G.; Vicentini, S.A.; Asmus, C.I.R.F. Metal Mixtures in Pregnant Women and Umbilical Cord Blood at Urban Populations—Rio de Janeiro, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 40210–40218. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Pritsa, A.; Antasouras, G.; Vasilopoulos, S.N.; Voulgaridou, G.; Papadopoulou, S.K.; Coutts, R.H.A.; Lechouritis, E.; Giaginis, C. Fetus exposure to drugs and chemicals: A holistic overview on the assessment of their transport and metabolism across the human placental barrier. Diseases 2024, 12, 114. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Developmental Neurotoxicity of Industrial Chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Ijomone, O.M.; Olung, N.F.; Akingbade, G.T.; Nwoha, P.U.; Aschner, M. Environmental influence on neurodevelopmental disorders: Potential risk of heavy metal exposure and autism. J. Trace Elem. Med. Biol. 2020, 62, 126638. [Google Scholar] [CrossRef]
- Schofield, K. The Metal Neurotoxins: An Important Role in Current Human Neural Epidemics? Int. J. Environ. Res. Public Health 2017, 14, 1511. [Google Scholar] [CrossRef]
- Carmona, A.; Roudeau, S.; Ortega, R. Molecular Mechanisms of Environmental Metal Neurotoxicity: A Focus on the Interactions of Metals with Synapse Structure and Function. Toxics 2021, 9, 198. [Google Scholar] [CrossRef]
- Selevan, S.G.; Kimmel, C.A.; Mendola, P. Identifying critical windows of exposure for children’s health. Environ. Health Perspect. 2000, 108, 451–455. [Google Scholar]
- Dórea, J.G. Exposure to Environmental Neurotoxic Substances and Neurodevelopment in Children from Latin America and the Caribbean. Environ. Res. 2021, 192, 110199. [Google Scholar] [CrossRef] [PubMed]
- Vrijheid, M.; Casas, M.; Gascon, M.; Valvi, D.; Nieuwenhuijsen, M. Environmental Pollutants and Child Health—A Review of Recent Concerns. Int. J. Hyg. Environ. Health 2016, 219, 331–342. [Google Scholar] [CrossRef]
- Farías, P.; Hernández-Bonilla, D.; Moreno-Macías, H.; Montes-López, S.; Schnaas, L.; Texcalac-Sangrador, J.L.; Ríos, C.; Riojas-Rodríguez, H. Prenatal co-exposure to manganese, mercury, and lead, and neurodevelopment in children during the first year of life. Int. J. Environ. Res. Public Health 2022, 19, 13020. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Jiang, Y.; Li, W.; Ding, W.; Feng, L. Effects of Prenatal Arsenic, Cadmium, and Manganese Exposure on Neurodevelopment in Children: A Systematic Review and Meta-Analysis. Medicina 2025, 61, 1143. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.S.; Santos, R.M.S.; De Marco, P.G.; Rezende, V.H.M.; Martins, T.C.; Silva, J.R.; Romano-Silva, M.A.; Miranda, D.M.D. Neurodevelopmental outcomes associated with early-life exposure to heavy metals: A systematic review. Int. J. Environ. Res. Public Health 2025, 22, 1308. [Google Scholar] [CrossRef]
- Rosálem, Á. Associação de Fatores Ambientais de Exposição ao Chumbo e Plumbemia com Abortamento Espontâneo (Dissertação/Relatório). Available online: https://docs.bvsalud.org/biblioref/ses-sp/2004/ses-16485/ses-16485-1586.pdf (accessed on 12 April 2025).
- Santos, E.O.; Jesus, I.M.D.; Câmara, V.D.M.; Brabo, E.D.S.; Jesus, M.I.D.; Fayal, K.F.; Asmus, C.I.R.F. Correlation between Blood Mercury Levels in Mothers and Newborns in Itaituba, Pará State, Brazil. Cad. Saúde Pública 2007, 23, S622–S629. [Google Scholar] [CrossRef]
- Amaral, J.H.; Rezende, V.B.; Quintana, S.M.; Gerlach, R.F.; Barbosa, F., Jr.; Tanus-Santos, J.E. The Relationship between Blood and Serum Lead Levels in Peripartum Women and Their Respective Umbilical Cords. Basic Clin. Pharmacol. Toxicol. 2010, 107, 971–975. [Google Scholar] [CrossRef]
- Rudge, C.V.; Calderon, I.M.; Rudge, M.V.; Volpato, G.; Silva, J.L.; Duarte, G.; Neto, C.M.; Sass, N.; Mattar, R.; Röllin, H.B.; et al. Toxic and Essential Elements in Blood from Delivering Women in Selected Areas of São Paulo State, Brazil. J. Environ. Monit. 2011, 13, 563–571. [Google Scholar] [CrossRef]
- de Assis Araujo, M.S.; Figueiredo, N.D.; Camara, V.M.; Asmus, C.I.F. Maternal–Child Exposure to Metals during Pregnancy in Rio de Janeiro City, Brazil: The Rio Birth Cohort Study of Environmental Exposure and Childhood Development (PIPA Project). Environ. Res. 2020, 183, 109155. [Google Scholar] [CrossRef]
- Asmus, C.I.R.F.; Barbosa, A.P.; Meyer, A.; Damasceno, N.; Rosa, A.C.S.; Medronho, R.; da Cunha, A.J.L.A.; Moreira, J.C.; Fernandes, T.V.R.d.B.; Martins, M.; et al. Rio Birth Cohort Study on Environmental Exposure and Childhood Development—PIPA Project. Ann. Glob. Health 2020, 86, 59. [Google Scholar] [CrossRef]
- Fróes-Asmus, C.I.; Damasceno, N.; Prata-Barbosa, A.; Luiz, R.R.; Damacena, G.N.; Meyer, A.; Rezende, J.; Amim, J.; Carvalho, D.; Medronho, R.; et al. Urban Green Spaces and Newborns Metal Concentrations in Rio de Janeiro, Brazil. Ann. Glob. Health 2024, 90, 56. [Google Scholar] [CrossRef]
- Shah-Kulkarni, S.; Lee, S.; Jeong, K.S.; Hong, Y.C.; Park, H.; Ha, M.; Kim, Y.; Ha, E.H. Prenatal Exposure to Mixtures of Heavy Metals and Neurodevelopment in Infants at 6 Months. Environ. Res. 2020, 182, 109122. [Google Scholar] [CrossRef]
- Merced-Nieves, F.M.; Arora, M.; Wright, R.O.; Curtin, P. Metal Mixtures and Neurodevelopment: Recent Findings and Emerging Principles. Curr. Opin. Toxicol. 2021, 26, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.Y.; Lin, X.S.; Yang, B.R.; Zhang, H.W.; Tang, F.; Tang, J.J.; Chi, H.-B.; Mansell, T.; Kartiosuo, N.; Xia, Y.-Y.; et al. Relationship between Prenatal Metals Exposure and Neurodevelopment in One-Year-Old Infants in the CLIMB Study. Ecotoxicol. Environ. Saf. 2025, 291, 117860. [Google Scholar] [CrossRef] [PubMed]
- Frankenburg, W.K.; Dodds, J.; Archer, P.; Shapiro, H.; Bresnick, B. The Denver II: A Major Revision and Restandardization of the Denver Developmental Screening Test. Pediatrics 1992, 89, 91–97. [Google Scholar] [CrossRef]
- Frankenburg, W.K. Denver II: Technical Manual; Denver Developmental Materials Inc.: Denver, CO, USA, 1996. [Google Scholar]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Llop, S.; Guxens, M.; Murcia, M.; Lertxundi, A.; Ramon, R.; Riaño, I.; Rebagliato, M.; Ibarluzea, J.; Tardon, A.; Sunyer, J.; et al. Prenatal Exposure to Mercury and Infant Neurodevelopment in a Multicenter Cohort in Spain: Study of Potential Modifiers. Am. J. Epidemiol. 2012, 175, 451–465. [Google Scholar] [CrossRef]
- de Assis Araujo, M.S.; Froes-Asmus, C.I.R.; de Figueiredo, N.D.; Camara, V.M.; Luiz, R.R.; Prata-Barbosa, A.; Martins, M.M.; Jacob, S.D.C.; dos Santos, L.M.G.; Neto, S.A.V.; et al. Prenatal Exposure to Metals and Neurodevelopment in Infants at Six Months: Rio Birth Cohort Study of Environmental Exposure and Childhood Development (PIPA Project). Int. J. Environ. Res. Public Health 2022, 19, 4295. [Google Scholar] [CrossRef]
- Takayama, Y.; Masuzaki, Y.; Mizutani, F.; Iwata, T.; Maeda, E.; Tsukada, M.; Nomura, K.; Ito, Y.; Chisaki, Y.; Murata, K. Associations between Blood Arsenic and Urinary Arsenic Species Concentrations as an Exposure Characterization Tool. Sci. Total Environ. 2021, 750, 141517. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, H.; Wang, X.; Wu, Y.; Zhang, Y.; Chen, S.; Zhang, W.; Sun, X.; Zheng, T.; Xia, W.; et al. Prenatal Arsenic Exposure, Arsenic Metabolism and Neurocognitive Development of 2-Year-Old Children in Low-Arsenic Areas. Environ. Int. 2023, 174, 107918. [Google Scholar] [CrossRef] [PubMed]
- Parvez, F.; Wasserman, G.A.; Factor-Litvak, P.; Liu, X.; Slavkovich, V.; Siddique, A.B.; Sultana, R.; Sultana, R.; Islam, T.; Levy, D.; et al. Arsenic Exposure and Motor Function among Children in Bangladesh. Environ. Health Perspect. 2011, 119, 1665–1670. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis: Why It Is Important to Toxicology and Toxicologists. Environ. Toxicol. Chem. 2008, 27, 1451–1474. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; Bi, M. Hormesis as a Hidden Hand in Global Environmental Change? Environ. Sci. Technol. 2025, 59, 2887–2890. [Google Scholar] [CrossRef]
- Jedrychowski, W.; Perera, F.P.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.; Lisowska-Miszczyk, I. Very Low Prenatal Exposure to Lead and Mental Development of Children in Infancy and Early Childhood: Krakow Prospective Cohort Study. Neuroepidemiology 2009, 32, 270–278. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Fisher, S.; Suk, W.A.; Sly, P.; Chiles, T.C.; Bose-O’Reilly, S. Pollution and Children’s Health. Sci. Total Environ. 2019, 650, 2389–2394. [Google Scholar] [CrossRef]
- Golding, J. Who Should Be Studied and When in a Longitudinal Birth Cohort? Paediatr. Perinat. Epidemiol. 2009, 23, 15–22. [Google Scholar] [CrossRef]


| Metal | n | DR n (%) | GM | P25 | P50 | P75 | P95 | P99 | Skewness | Kurtosis |
|---|---|---|---|---|---|---|---|---|---|---|
| Arsenic (µg/L) | 382 | 237 (62.0) | 0.29 | <LOD | 0.13 | 0.29 | 1.03 | 3.28 | 9.42 | 105.23 |
| Lead (µg/dL) | 384 | 381 (99.2) | 0.85 | 0.60 | 0.80 | 1.20 | 2.48 | 5.16 | 6.65 | 65.63 |
| Mercury (µg/L) | 383 | 360 (94.0) | 0.94 | 0.30 | 0.80 | 1.60 | 3.70 | 6.96 | 2.52 | 9.09 |
| Arsenic µg/L | Lead µg/dL | Mercury µg/L | |||||
|---|---|---|---|---|---|---|---|
| All | r (p Valor) a | ||||||
| Pregnant Woman | |||||||
| Age, years (n = 393) mean (SD) | 29.9 (6.9) | 0.07 (0.20) | 0.04 (0.41) | 0.14 (0.01) | |||
| Monthly per capita income, US$ (n = 317) median (P25; P75) | 150 (100; 240) | 0.04 (0.49) | 0.06 (0.32) | 0.05 (0.38) | |||
| Newborn | |||||||
| Weight (n = 393) mean (SD) | 3.3 (0.4) | −0.08 (0.15) | 0.06 (0.22) | −0.01 (0.89) | |||
| n (%) | Median (P25–P75) p Value b | ||||||
| Pregnant Woman | |||||||
| Years of study | |||||||
| ≤High school | 298 (75.8) | 0.13 (<LOD–0.28) | 0.30 | 0.80 (0.60–1.10) | 0.09 | 0.70 (0.30–1.40) | 0.02 |
| >High school | 95 (24.2) | 0.14 (<LOD–0.31) | 0.90 (0.60–1.20) | 1.00 (0.30–2.30) | |||
| Parity | |||||||
| Multiparous | 146 (37.2) | 0.12 (<LOD–0.31) | 0.26 | 0.80 (0.55–1.10) | 0.002 | 0.70 (0.30–1.50) | 0.06 |
| Primiparous | 247 (62.8) | 0.14 (<LOD–0.28) | 0.90 (0.70–1.40) | 0.90 (0.40–1.90) | |||
| Alcohol Consumption | |||||||
| Yes | 149 (37.9) | 0.13 (<LOD–0.29) | 0.95 | 0.80 (0.60–1.13) | 0.79 | 0.80 (0.37–1.63) | 0.72 |
| No | 244 (62.1) | 0.13 (<LOD–0.28) | 0.80 (0.60–1.20) | 0.80 (0.30–1.55) | |||
| Tobacco Exposure | |||||||
| Yes | 110 (28.0) | 0.14 (<LOD–0.33) | 0.37 | 0.90 (0.67–1.30) | 0.01 | 0.90 (0.47–1.70) | 0.17 |
| No | 283 (72.0) | 0.13 (<LOD–0.27) | 0.80 (0.60–1.13) | 0.70 (0.30–1.60) | |||
| Illicit Drug Use | |||||||
| Yes | 12 (3.1) | 0.07 (<LOD–0.39) | 0.82 | 1.00 (0.83 -1.35) | 0.17 | 0.75 (0.30–1.43) | 0.63 |
| No | 379 (96.9) | 0.13 (<LOD–0.29) | 0.80 (0.60–1.20) | 0.80 (0.30–1.65) | |||
| Hypertension | |||||||
| Yes | 88 (22.4) | 0.15 (<LOD–0.48) | 0.06 | 0.80 (0.70–1.10) | 0.65 | 0.80 (0.37–1.70) | 0.47 |
| No | 305 (77.6) | 0.13 (<LOD–0.25) | 0.80 (0.60–1.20) | 0.80 (0.30–1.60) | |||
| Diabetes | |||||||
| Yes | 116 (29.5) | 0.17 (<LOD–0.38) | 0.02 | 0.80 (0.50–1.20) | 0.54 | 0.80 (0.40–1.70) | 0.38 |
| No | 277 (70.5) | 0.12 (<LOD–0.23) | 0.80 (0.60–1.20) | 0.70 (0.30–1.60) | |||
| Child Characteristics | |||||||
| Sex | |||||||
| Male | 199 (50.6) | 0.13 (<LOD–0.30) | 0.92 | 0.80 (0.60–1.10) | 0.72 | 0.70 (0.30–1.40) | 0.09 |
| Female | 194 (49.4) | 0.14 (<LOD–0.28) | 0.80 (0.60–1.20) | 0.80 (0.40–1.70) | |||
| Weight Adequacy for Gestational Age | |||||||
| SGA | 6 (1.5) | 0.17 (0.05–0.35) | 0.75 (0.40 -0.90) | 0.06 | 0.80 (0.55–4.20) | 0.67 | |
| AGA | 351 (90.5) | 0.13 (<LOD–0.29) | 0.93 | 0.80 (0.60–1.10) | 0.80 (0.30–1.60) | ||
| LGA | 31 (8.0) | 0.14 (<LOD–0.35) | 1.10 (0.60–1.90) | 0.80 (0.30–2.00) | |||
| Breastfeeding Duration | |||||||
| <6 months | 96 (24.4) | 0.13 (<LOD–0.28) | 0.56 | 0.90 (0.70–1.20) | 0.25 | 0.70 (0.30–1.40) | 0.34 |
| ≥6 months | 282 (74.6) | 0.14 (<LOD–0.30) | 0.80 (0.60–1.20) | 0.80 (0.30–1.70) | |||
| All | Male | Female | p Value a | |
|---|---|---|---|---|
| n (%) | ||||
| Global Performance | 0.20 | |||
| Failure | 75 (19.1) | 43 (21.6) | 32 (16.5) | |
| Non-failure | 318 (80.9) | 156 (78.4) | 162 (83.5) | |
| Personal-social | 0.20 | |||
| Failure | 29 (7.4) | 18 (9.0) | 11 (5.7) | |
| Non-failure | 364 (92.6) | 181 (91.0) | 183 (94.3) | |
| Fine motor adaptive | 0.07 | |||
| Failure | 15 (3.8) | 11 (5.5) | 4 (2.1) | |
| Non-failure | 378 (96.2) | 188 (94.5) | 190 (97.9) | |
| Language | 0.35 | |||
| Failure | 27 (6.9) | 16 (8.0) | 11 (5.7) | |
| Non-failure | 366 (93.1) | 183 (92.0) | 183 (94.3) | |
| Gross-motor | 0.95 | |||
| Failure | 20 (5.1) | 10 (5.0) | 10 (5.2) | |
| Non-failure | 373 (94.9) | 189 (95.0) | 184 (94.8) | |
| Global Performance | Personal-Social | Fine Motor Adaptive | Language | Gross Motor | ||
|---|---|---|---|---|---|---|
| OR (95% CI) 2 | ||||||
| One metal | Arsenic | 1.03 (0.79–1.33) | 0.81 (0.52–1.26) | 1.06 (0.62–1.81) | 1.00 (0.67–1.49) | 1.65 (1.09-2.51) ** |
| Lead | 0.97 (0.64–1.45) | 0.98 (0.53–1.84) | 0.87 (0.37–2.08) | 1.67 (9.67–3.21) | 0.49 (0.24–0.98) **** | |
| Mercury | 0.97 (0.76–1.24) | 1.11 (0.75–1.65) | 0.96 (0.57–1.63) | 0.91 (9.67–1.35) | 1.04 (0.68–1.60) | |
| Arsenic and lead | Arsenic | 1.02 (0.78–1.33) | 0.78 (0.49–1.24) | 1.05 (0.59–1.86) | 0.98 (0.67–1.47) | 1.75 (1.13–2.70) * |
| Lead | 0.89 (0.58–1.36) | 0.75 (0.39–1.43) | 0.89 (0.36–2.20) | 1.78 (8.67–3.58) | 0.48 (0.24–0.96) **** | |
| Arsenic and mercury | Arsenic | 1.03 (0.79–1.35) | 0.76 (0.48–1.22) | 1.06 (0.59–1.90) | 1.01 (0.67–1.54) | 1.72 (1.12–2.65) * |
| Mercury | 0.97 (0.75–1.25) | 1.18 (0.78–1.79) | 0.96 (0.56–1.64) | 0.91 (9.67–1.37) | 0.95 (0.61–1.48) | |
| Lead and mercury | Lead | 0.97 (0.64–1.47) | 0.95 (0.50–1.81) | 0.87 (0.37–2.10) | 1.70 (9.67–3.23) | 0.45 (0.22–0.95) *** |
| Mercury | 0.97 (0.76–1.25) | 1.12 (0.76–1.66) | 0.97 (0.57–1.65) | 0.87 (9.67–1.31) | 1.17 (0.74–1.83) | |
| Three metals | Arsenic | 1.03 (0.79–1.36) | 0.75 (0.47–1.20) | 1.06 (0.59–1.91) | 1.01 (0.67–1.53) | 1.74 (1.11–2.72) ** |
| Lead | 0.89 (0.58–1.37) | 0.69 (0.35–1.37) | 0.90 (0.37–2.21) | 1.80 (8.67–3.58) | 0.47 (0.23–0.97) **** | |
| Mercury | 0.98 (0.76–1.27) | 1.24 (0.81–1.90) | 0.97 (0.56–1.67) | 0.87 (9.67–1.32) | 1.05 (0.66–1.68) | |
| Global Performance | Personal-Social | Fine Motor Adaptive | Language | Gross Motor | ||
|---|---|---|---|---|---|---|
| OR (95% CI) p Value | ||||||
| Arsenic | (<1.03 µg/L) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| (≥1.03 µg/L) | 1.51 (0.51–4.47) 0.46 | 0.72 (0.09–5.82) 0.76 | 1.49 (0.17–13.14) 0.72 | * | 8.84 (2.40–32.61) 0.001 | |
| Lead | (<2.48 µg/dL) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| (≥2.48 µg/dL) | 0.44 (0.09–2.07) 0.30 | * | 1.19 (0.12–11.34) 0.88 | 2.72 (0.52–14.12) 0.23 | * | |
| Mercury | (<3.70 µg/L) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| (≥3.70 µg/L) | 1.50 (0.44–5.05) 0.51 | 3.56 (0.69–18.5) 0.13 | 1.64 (0.17–15.72) 0.67 | 0.71 (0.08–6.65) 0.77 | 1.00 (0.11–8.81) 1.00 | |
| Arsenic | (<1.03 µg/L) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Seefelder de Assis Araujo, M.; Damasceno Figueiredo, N.; Claudio, L.; Prata-Barbosa, A.; Melo Martins, M.; Magalhães Camara, V.; Ildes Rodrigues Froes Asmus, C. Prenatal Metal Exposure and Neurodevelopmental Changes in Children up to 18 Months of Age: PIPA Cohort Project, Rio de Janeiro. Environments 2026, 13, 21. https://doi.org/10.3390/environments13010021
Seefelder de Assis Araujo M, Damasceno Figueiredo N, Claudio L, Prata-Barbosa A, Melo Martins M, Magalhães Camara V, Ildes Rodrigues Froes Asmus C. Prenatal Metal Exposure and Neurodevelopmental Changes in Children up to 18 Months of Age: PIPA Cohort Project, Rio de Janeiro. Environments. 2026; 13(1):21. https://doi.org/10.3390/environments13010021
Chicago/Turabian StyleSeefelder de Assis Araujo, Mônica, Nataly Damasceno Figueiredo, Luz Claudio, Arnaldo Prata-Barbosa, Marlos Melo Martins, Volney Magalhães Camara, and Carmen Ildes Rodrigues Froes Asmus. 2026. "Prenatal Metal Exposure and Neurodevelopmental Changes in Children up to 18 Months of Age: PIPA Cohort Project, Rio de Janeiro" Environments 13, no. 1: 21. https://doi.org/10.3390/environments13010021
APA StyleSeefelder de Assis Araujo, M., Damasceno Figueiredo, N., Claudio, L., Prata-Barbosa, A., Melo Martins, M., Magalhães Camara, V., & Ildes Rodrigues Froes Asmus, C. (2026). Prenatal Metal Exposure and Neurodevelopmental Changes in Children up to 18 Months of Age: PIPA Cohort Project, Rio de Janeiro. Environments, 13(1), 21. https://doi.org/10.3390/environments13010021

