Palm Oil Fuel Ash-Enhanced Biofilm Reactor: Performance and Microbial Dynamics in POME Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Characteristics
2.2. Activated POFA as Adsorbents
2.3. Biochip Specifications
2.4. POS the Seed Sludge
2.5. Experimental Set-Up
2.6. Microbial Analysis
3. Results and Discussion
3.1. POME Characteristics
3.2. POFA Characteristics
3.3. COD Removal Efficiency
3.4. Mixed Liquor Volatile Suspended Solids (MLVSS) Growth Profile
3.5. Biogas Yield and Methane Yield
3.6. Taxonomic Classification of the Microbial Communities of Reactors’ Sludge
4. Conclusions
5. Limitations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Anerobic digestion |
| BOD | Biochemical oxygen demand |
| CO2 | Carbon dioxide |
| COD | Chemical oxygen demand |
| F/M | Feed-to-microorganism |
| H2 | Hydrogen |
| N2 | Nitrogen |
| Ni | Nickel |
| KOH | Potassium hydroxide |
| POFA | Palm oil fuel ash |
| POME | Palm oil mill effluent |
| TPOFA | Treated palm oil fuel ash |
| TS | Total solids |
| TSS | Total suspended solids |
| TVS | Total volatile solids |
| UASB | Up-flow anaerobic sludge bioreactor |
| VFA | Volatile fatty acids |
References
- Bashir, M.J.K.; Hong, L.J.; Amr, S.S.A.; Wong, L.P.; Sim, Y.L. Post-treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. J. Cleaner Prod. 2019, 208, 716–727. [Google Scholar] [CrossRef]
- Kusnadi, K.; Wahid, M.A.; Yasin, M.F.M.; Setiawan, A.; Anwar Fudholi, A. Environmental and socioeconomic impacts of palm oil mill effluent (POME) management in Indonesian oil palm plantations: Challenges and opportunities. IOP Conf. Ser. Earth Environ. Sci. 2025, 1534, 012002. [Google Scholar] [CrossRef]
- Tabassum, S.; Zhang, Y.; Zhang, Z. An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge—A pilot study. J. Clean. Prod. 2015, 95, 148–155. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Lau, S. Palm oil mill effluent (POME) from Malaysia palm oil mills: Waste or resource. Int. J. Sci. Environ. Technol. 2013, 2, 1138–1155. [Google Scholar]
- Bodkhe, S. Development of an improved anaerobic filter for municipal wastewater treatment. Bioresour. Technol. 2008, 99, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, S.A.; Latiff, A.B.A.A.; Daud, Z.; Ahmad, Z. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) reactor. Int. J. Energy Environ. 2011, 2, 653–660. [Google Scholar]
- Nelson, M.J.; Nakhla, G.; Zhu, J. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments. Engineering 2017, 3, 330–342. [Google Scholar] [CrossRef]
- Al-Amshawee, S.K.; Yunus, M.Y.; Azoddein, A.A. A Novel Microbial Biofilm Carrier for Wastewater Remediation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 072006. [Google Scholar] [CrossRef]
- Khadaroo, S.N.B.A.; Grassia, P.; Gouwanda, D.; He, J.; Poh, P.E. Enhancing the biogas production and the treated effluent quality via an alternative Palm Oil Mill Effluent (POME) treatment process: Integration of thermal pretreatment and dewatering. Biomass Bioenergy 2021, 151, 106167. [Google Scholar] [CrossRef]
- Lok, X.; Chan, Y.J.; Foo, D.C.Y. Simulation and optimisation of full-scale palm oil mill effluent (POME) treatment plant with biogas production. J. Water Process Eng. 2020, 38, 101558. [Google Scholar] [CrossRef]
- Kacaribu, A.A.; Aisyah, Y.; Febriani, F.; Darwin, D. Development of wastewater treatment methods for palm oil mill effluent (POME): A comprehensive review. Resour. Chem. Mater. 2025, 4, 100130. [Google Scholar] [CrossRef]
- Wu, T.Y.; Mohammad, A.W.; Jahim, J.M.; Anuar, N. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J. Environ. Manag. 2010, 91, 1467–1490. [Google Scholar] [CrossRef] [PubMed]
- Zahrim, A.Y.; Nasimah, A.; Hilal, N. Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. J. Water Process Eng. 2014, 4, 159–165. [Google Scholar] [CrossRef]
- Ng, K.H. Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment: Strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia. Chemosphere 2021, 270, 129378. [Google Scholar] [CrossRef]
- Oyehan, T.A.; Salami, B.A.; Badmus, S.O.; Saleh, T.A. Technological trends in activation and modification of palm oil fuel ash for advanced water and wastewater treatment—A review. Sustain. Chem. Pharm. 2022, 29, 100754. [Google Scholar] [CrossRef]
- Manikam, M.K.; Abdul Halim, A.; Hanafiah, M.M.; Krishnamoorthy, R.R. Removal of ammonia nitrogen, nitrate, phosphorus and COD from sewage wastewater using palm oil boiler ash composite adsorbent. Desalination Water Treat. 2019, 149, 23–30. [Google Scholar] [CrossRef]
- Mohammad, S.; Baidurah, S.; Kobayashi, T.; Ismail, N.; Leh, C.P. Palm Oil Mill Effluent Treatment Processes—A Review. Processes 2021, 9, 739. [Google Scholar] [CrossRef]
- Soo, P.L.; Bashir, M.J.K.; Wong, L.P. Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives. J. Environ. Manag. 2022, 320, 115750. [Google Scholar] [CrossRef]
- Mazioti, A.A.; Koutsokeras, L.E.; Constantinides, G.; Vyrides, I. Untapped Potential of Moving Bed Biofilm Reactors with Different Biocarrier Types for Bilge Water Treatment: A Laboratory-Scale Study. Water 2021, 13, 1810. [Google Scholar] [CrossRef]
- Bobade, G.; Joshi, R.A. Progression of various MBBR media in Wastewater Treatment Process. Int. Res. J. Eng. Technol. 2023, 10, 252–257. [Google Scholar]
- Allegue, T.; Carballo-Costa, M.N.; Fernandez-Gonzalez, N.; Garrido, J.M. Simultaneous nitrogen and dissolved methane removal from an upflow anaerobic sludge blanket reactor effluent using an integrated fixed-film activated sludge system. J. Environ. Manag. 2020, 263, 110395. [Google Scholar] [CrossRef] [PubMed]
- Dan, N.H.; Le Luu, T. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. Sci. Total Environ. 2021, 787, 147680. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.; Bashir, M.J.K.; Wong, L.Y.; Lim, J.W.; Sethupathi, S.; Ng, C.A. Ancillary palm oil fuel ash (POFA) in sequencing batch reactor for enhancing recalcitrant pollutants removal from domestic wastewater. Chemosphere 2021, 265, 129050. [Google Scholar] [CrossRef] [PubMed]
- Abuabdou, S.M.A.; Teng, O.W.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S. Adsorptive treatment of stabilized landfill leachate using activated palm oil fuel ash (POFA). In Proceedings of the International Symposium on Green and Sustainable Technology; Ipoh, Malaysia, 23–26 April 2019, AIP Publishing: Melville, NY, USA, 2019; p. 020002. [Google Scholar] [CrossRef]
- Yee, T.; Rathnayake, T.; Visvanathan, C. Performance Evaluation of a Thermophilic Anaerobic Membrane Bioreactor for Palm Oil Wastewater Treatment. Membranes 2019, 9, 55. [Google Scholar] [CrossRef]
- Ng, C.A.; Wong, L.Y.; Chai, H.Y.; Bashir, M.J.K.; Ho, C.-D.; Nisar, H.; Lo, P.K. Investigation on the Performance of Hybrid Anaerobic Membrane Bioreactors for Fouling Control and Biogas Production in Palm Oil Mill Effluent Treatment. Water Sci. Technol. 2017, 76, 1389–1398. [Google Scholar] [CrossRef]
- Muenmee, S.; Theepharaksapan, S.; Boonnorat, J. Effect of Food to Microbe (F/M) Ratio on Anaerobic Digestion of Refinery Waste Sludge under Mesophilic Conditions: Biogas Potential and Phytotoxicity. Curr. Appl. Sci. Technol. 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Abuabdou, S.M.; Wei Teng, O.; Bashir, M.J.K.; Choon Aun, N.; Sethupathi, S.; Pratt, L.M. Treatment of tropical stabilised landfill leachate using palm oil fuel ash: Isothermal and kinetic studies. Desalination Water Treat. 2019, 144, 201–210. [Google Scholar] [CrossRef]
- Bassin, J.P.; Dias, I.N.; Cao, S.M.S.; Senra, E.; Laranjeira, Y.; Dezotti, M. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions. Process Saf. Environ. Prot. 2016, 100, 131–141. [Google Scholar] [CrossRef]
- Chang, P.Y.; Chan, Y.J.; Arumugasamy, S.K.; Wan, Y.K.; Lim, J.W. Optimisation of anaerobic digestion of palm oil mill effluent with biochar addition: Synergistic application of Artificial neural network and response Surface Methodology. Fuel 2025, 398, 135514. [Google Scholar] [CrossRef]
- Environmental Quality Act. Environmental Quality (Prescribed Premises) (Crude Palm Oil) (Amendment) Regulations 1982; Environmental Quality Act: Kuala Lumpur, Malaysia, 1982. [Google Scholar]
- Environmental Quality Act. Environmental Quality (Industrial Effluent) Regulations. Malaysia Industrial Effluent Discharge Standards. In Environmental Quality Act 1974; Environmental Quality Act: Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Li, Q.; Xu, H.; Li, F.; Li, P.; Shen, L.; Zhai, J. Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel 2012, 97, 366–372. [Google Scholar] [CrossRef]
- Abdeldjouad, L.; Dheyab, W.; Gamil, Y.; Asadi, A.; Shukla, S.K. Thermal curing effects on alkali-activated treated soils with palm oil fuel ash. Case Stud. Constr. Mater. 2023, 19, e02455. [Google Scholar] [CrossRef]
- Salami, B.A.; Megat Johari, M.A.; Ahmad, Z.A.; Maslehuddin, M. Impact of added water and superplasticizer on early compressive strength of selected mixtures of palm oil fuel ash-based engineered geopolymer composites. Constr. Build. Mater. 2016, 109, 198–206. [Google Scholar] [CrossRef]
- Zulkifli, M.; Abu Hasan, H.; Sheikh Abdullah, S.R.; Muhamad, M.H. A review of ammonia removal using a biofilm-based reactor and its challenges. J. Environ. Manag. 2022, 315, 115162. [Google Scholar] [CrossRef] [PubMed]
- Abuabdou, S.M.A.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S.; Yong, W.L. Development of a novel polyvinylidene fluoride membrane integrated with palm oil fuel ash for stabilized landfill leachate treatment. J. Clean Prod. 2021, 311, 127677. [Google Scholar] [CrossRef]
- Heng, G.C.; Isa, M.H.; Lock, S.S.M.; Ng, C.A. Process Optimization of Waste Activated Sludge in Anaerobic Digestion and Biogas Production by Electrochemical Pre-Treatment Using Ruthenium Oxide Coated Titanium Electrodes. Sustainability 2021, 13, 4874. [Google Scholar] [CrossRef]
- El Sayed, A.; Ismail, A.; Rabii, A.; Hamze, A.; Hamza, R.A.; Elbeshbishy, E. Biochemical Methane Production Potential of Different Industrial Wastes: The Impact of the Food-to-Microorganism (F/M) Ratio. Processes 2025, 13, 802. [Google Scholar] [CrossRef]
- Dehghani, M.; Rezaei, M.; Shamsedini, N.; Maleknia, H.; Javaheri, M.R. The Effects of Temperature on the Performance of Anaerobic Sequencing Batch Reactor in the Treatment of Synthetic Dairy Wastewater. Jundishapur J. Health Sci. 2014, 6, 23455. [Google Scholar] [CrossRef]
- Chan, Y.J.; Chong, M.F.; Law, C.L. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). J. Environ. Manag. 2010, 91, 1738–1746. [Google Scholar] [CrossRef]
- Lewandowski, Z.; Beyenal, H.; Myers, J.; Stookey, D. The effect of detachment on biofilm structure and activity: The oscillating pattern of biofilm accumulation. Water Sci. Technol. 2007, 55, 429–436. [Google Scholar] [CrossRef]
- Arabgol, R.; Vanrolleghem, P.A.; Piculell, M.; Delatolla, R. The impact of biofilm thickness-restraint and carrier type on attached growth system performance, solids characteristics and settleability. Environ. Sci. 2020, 6, 2843–2855. [Google Scholar] [CrossRef]
- Soleimaninanadegani, M.; Manshad, S. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms. Int. Sch. Res. Not. 2014, 2014, 727049. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Karim, T.U.; Onik, M.H.; Kumar, D.; Rahman, M.A.; Yousuf, A.; Uddin, M.R. Impact of temperature, inoculum flow pattern, inoculum type, and their ratio on dry anaerobic digestion for biogas production. Sci. Rep. 2022, 12, 6162. [Google Scholar] [CrossRef] [PubMed]
- Lokman, N.A.; Ithnin, A.M.; Yahya, W.J.; Yuzir, M.A. A brief review on biochemical oxygen demand (BOD) treatment methods for palm oil mill effluents (POME). Environ. Technol. Innov. 2021, 21, 101258. [Google Scholar] [CrossRef]
- Isa, M.H.; Bashir, M.J.K.; Wong, L.P. Anaerobic treatment of ultrasound pretreated palm oil mill effluent (POME): Microbial diversity and enhancement of biogas production. Environ. Sci. Pollut. Res. 2022, 29, 44779–44793. [Google Scholar] [CrossRef]
- Loganath, R.; Senophiyah-Mary, J. Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors. Renew. Sustain. Energy Rev. 2020, 134, 110360. [Google Scholar] [CrossRef]
- Bayonita, S.; Purnomo, C.W.; Cahyono, R.B. Performance of anaerobic reactor with media support and Ni addition for palm oil mill effluent treatment. In Proceedings of the 11th Regional Conference on Chemical Engineering, Yogyakarta, Indonesia, 7–8 November 2018; AIP Publishing: Melville, NY, USA, 2019; p. 020024. [Google Scholar]
- Sarwani, M.K.I.; Fawzi, M.; Osman, S.A.; Nasrin, A.B. Bio-methane from palm oil mill effluent (POME): Transportation fuel potential in Malaysia. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 63, 1–11. [Google Scholar]
- Chen, J.W.; Chan, Y.J.; Arumugasamy, S.K.; Yazdi, S.K. Process modelling and optimisation of methane yield from palm oil mill effluent using response surface methodology and artificial neural network. J. Water Process Eng. 2023, 52, 103493. [Google Scholar] [CrossRef]
- Abera, G.B.; Trømborg, E.; Solli, L.; Walter, J.M.; Wahid, R.; Govasmark, E.; Horn, S.J.; Aryal, N.; Feng, L. Biofilm application for anaerobic digestion: A systematic review and an industrial scale case. Biotechnol. Biofuels Bioprod. 2024, 17, 145. [Google Scholar] [CrossRef]
- Wadchasit, P.; Suksong, W.; O-Thong, S.; Nuithitikul, K. Development of a novel reactor for simultaneous production of biogas from oil-palm empty fruit bunches (EFB) and palm oil mill effluents (POME). J. Environ. Chem. Eng. 2021, 9, 105209. [Google Scholar] [CrossRef]
- Ibáñez-López, M.E.; Frison, N.; Bolzonella, D.; García-Morales, J.L. Enhancing Anaerobic Digestion with an UASB Reactor of the Winery Wastewater for Producing Volatile Fatty Acid Effluent Enriched in Caproic Acid. Fermentation 2023, 9, 958. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, R.; Sun, M.; Zhang, S.; He, M.; Tsang, D.C.W.; Luo, G. Wood waste biochar promoted anaerobic digestion of food waste: Focusing on the characteristics of biochar and microbial community analysis. Biochar 2022, 4, 62. [Google Scholar] [CrossRef]
- Walag, A.M.P.; Canencia, M.O.P. Physico-chemical parameters and macrobenthic invertebrates of the intertidal zone of Gusa, Cagayan de Oro City, Philippines. Adv. Environ. Sci. Int. J. Bioflux Soc. 2016, 8, 71–82. [Google Scholar]
- Wu, B.; Yang, Q.; Yao, F.; Chen, S.; He, L.; Hou, K.; Pi, Z.; Yin, H.; Fu, J.; Wang, D.; et al. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. Bioresour. Technol. 2019, 294, 122235. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, M.; Zhou, Z.; Qu, T.; Ran, J.; Zhang, J.; Li, X.; Zhang, L.; Zhang, A. Effect of extracellular polymeric substances removal and re-addition on anaerobic digestion of waste activated sludge. J. Water Process Eng. 2024, 57, 104702. [Google Scholar] [CrossRef]
- Zan, F.; Tang, W.; Jiang, F.; Chen, G. Diversion of food waste into the sulfate-laden sewer: Interaction and electron flow of sulfidogenesis and methanogenesis. Water Res. 2021, 202, 117437. [Google Scholar] [CrossRef]
- Yang, S.; Xue, W.; Liu, P.; Lu, X.; Wu, X.; Sun, L.; Zan, F. Revealing the methanogenic pathways for anaerobic digestion of key components in food waste: Performance, microbial community, and implications. Bioresour. Technol. 2022, 347, 126340. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Wang, X.; Tan, Y.; Li, L.; Zhang, B.; Guo, B.; Zhao, C. Methane Anaerobic Oxidation Potential and Microbial Community Response to Sulfate Input in Coastal Wetlands of the Yellow River Delta. Sustainability 2023, 15, 7053. [Google Scholar] [CrossRef]
- Lv, L.; Feng, C.; Li, W.; Ren, Z.; Wang, P.; Liu, X.; Gao, W.; Sun, L.; Zhang, G. Accelerated performance recovery of anaerobic granular sludge after temperature shock: Rapid construction of protective barriers (EPS) to optimize microbial community composition base on quorum sensing. J. Clean Prod. 2023, 392, 136243. [Google Scholar] [CrossRef]
- Haosagul, S.; Vikromvarasiri, N.; Sawasdee, V.; Pisutpaisal, N. Impact of acetic acid in methane production from glycerol/acetic acid co-fermentation. Int. J. Hydrogen Energy 2019, 44, 29568–29574. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Chen, H. Untangling the effect of solids content on thermal-alkali pre-treatment and anaerobic digestion of sludge. Sci. Total Environ. 2023, 855, 158720. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, K.; Xia, Y.; Lau, F.T.K.; Tang, D.T.W.; Fung, W.C.; Fang, H.H.P.; Zhang, T. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 2014, 98, 5709–5718. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Campanaro, S.; Usman, M.; Treu, L.; Basile, A.; Angelidaki, I.; Zhang, S.; Luo, G. Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge. Environ. Sci. Technol. 2021, 55, 8351–8361. [Google Scholar] [CrossRef] [PubMed]
- Tirapanampai, C.; Toewiwat, N.; Weeranoppanant, N.; Chaiyen, P.; Wongnate, T. Processing of palm oil mill effluent (POME) into food waste digesting microbes: An investigation of acclimatization strategies. Sustain. Energy Technol. Assess. 2022, 52, 102287. [Google Scholar] [CrossRef]
- Chuda, A.; Otlewska, A.; Ziemiński, K. Insights into the microbial community structure in the biodegradation process of high-strength ammonia digestate liquid fraction in conventional activated sludge system. Bioresources 2023, 18, 3540–3559. [Google Scholar] [CrossRef]
- Ríos-Castro, R.; Cabo, A.; Teira, E.; Cameselle, C.; Gouveia, S.; Payo, P.; Novoa, B.; Figueras, A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. Sci. Total Environ. 2023, 861, 160531. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Y.; Ma, Y.; Feng, S.; Zhang, Y.; Kou, H.; Sun, Y. The synergistic effect of chemical oxidation and microbial activity on improving volatile fatty acids (VFAs) production during the animal wastewater anaerobic digestion process treated with persulfate/biochar. Sci. Total Environ. 2023, 857, 159276. [Google Scholar] [CrossRef]
- Patil, S.S.; Kumar, M.S.; Ball, A.S. Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl. Microbiol. Biotechnol. 2010, 87, 353–363. [Google Scholar] [CrossRef]
- Sworkin, M. The Prokaryotes; Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 3, pp. 165–207. [Google Scholar]
- Yang, Y.; Wang, M.; Yan, S.; Yong, X.; Zhang, X.; Awasthi, M.K.; Xi, Y.; Zhou, J. Effects of hydrochar and biogas slurry reflux on methane production by mixed anaerobic digestion of cow manure and corn straw. Chemosphere 2023, 310, 136876. [Google Scholar] [CrossRef]
- Singh, S.P.; Prerna, P. Review of recent advances in anaerobic packed-bed biogas reactors. Renew. Sustain. Energy Rev. 2009, 13, 1569–1575. [Google Scholar] [CrossRef]
- Sun, M.T.; Fan, X.L.; Zhao, X.X.; Fu, S.F.; He, S.; Manasa, M.R.K.; Guo, R.B. Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure. Bioresour. Technol. 2017, 235, 292–300. [Google Scholar] [CrossRef]









| Specification | Description |
|---|---|
| Shape | Round |
| Diameter | 30 mm |
| Thickness | ≈1.1 mm |
| Material | Polyethylene (PE) |
| Specific surface area | Up to 5500 m2/m3 |
| Pore system | Vary due to raw material |
| Brand | Multi Umwelttechnologie AG (Aue, Saxony, Germany) |
| Parameters | Value | Unit | Standard Discharge Limit [31] |
|---|---|---|---|
| Appearance | Brown | - | - |
| Temperature | 43.0 ± 3.2 | -°C | 45 |
| pH | 4.4 ± 0.2 | - | 5.0–9.0 |
| BOD | 35,770 ± 8108 | mg/L | 100 |
| COD | 54,150 ± 24,416 | mg/L | 200 * |
| O&G | 3048 ± 2618 | mg/L | 50 |
| TS | 32,694 ± 5930 | mg/L | - |
| TVS | 14,944 ± 6924 | mg/L | 400 |
| Composition | Percentage (%) | |
|---|---|---|
| C | P + B | |
| CO2 | 23.34 | 21.93 |
| O2 | 3.76 | 3.04 |
| N2 | 19.39 | 12.83 |
| CH4 | 53.51 | 62.20 |
| Week | Average Biogas Production (mL Biogas/Day) | |
|---|---|---|
| C | P + B | |
| 1 | 1667 | 0 |
| 15 | 1697 | 490 |
| 30 | 780 | 917 |
| Source | HRT (Days) | COD Removal Efficiency (%) | Methane Yield (mLCH4/g COD) | Methane Content (%) |
|---|---|---|---|---|
| This study | 18 | C: 81 P + B: 96 | C: 776 P + B: 893 | C; 53 P + B: 62 |
| Bayonita et al. [49] | 20 | 88 | - | 65 |
| Wadchasit et al. [53] | 15–25 | 81–89 | 293 | 64–71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Soo, P.L.; Wong, L.P.; Bashir, M.J.K.; Guo, X.; Wei, Y. Palm Oil Fuel Ash-Enhanced Biofilm Reactor: Performance and Microbial Dynamics in POME Treatment. Environments 2026, 13, 22. https://doi.org/10.3390/environments13010022
Soo PL, Wong LP, Bashir MJK, Guo X, Wei Y. Palm Oil Fuel Ash-Enhanced Biofilm Reactor: Performance and Microbial Dynamics in POME Treatment. Environments. 2026; 13(1):22. https://doi.org/10.3390/environments13010022
Chicago/Turabian StyleSoo, Pei Ling, Lai Peng Wong, Mohammed J. K. Bashir, Xinxin Guo, and Yuansong Wei. 2026. "Palm Oil Fuel Ash-Enhanced Biofilm Reactor: Performance and Microbial Dynamics in POME Treatment" Environments 13, no. 1: 22. https://doi.org/10.3390/environments13010022
APA StyleSoo, P. L., Wong, L. P., Bashir, M. J. K., Guo, X., & Wei, Y. (2026). Palm Oil Fuel Ash-Enhanced Biofilm Reactor: Performance and Microbial Dynamics in POME Treatment. Environments, 13(1), 22. https://doi.org/10.3390/environments13010022

