Sustainable Water Resource Management: Challenges and Opportunities
1. Introduction
2. An Overview of Published Articles
2.1. Prediction and Forecasting Challenges
2.2. Data Gaps
2.3. Water System Performance and Optimization
2.4. Integrated Impact Assessment
Acknowledgments
Conflicts of Interest
List of Contributions
- Piraei, R.; Niazkar, M.; Gangi, F.; Eryılmaz Türkkan, G.; Afzali, S.H. Short-Term Drought Forecast across Two Different Climates Using Machine Learning Models. Hydrology 2024, 11, 163. https://doi.org/10.3390/hydrology11100163.
- Larance, S.; Wang, J.; Delavar, M.A.; Fahs, M. Assessing Water Temperature and Dissolved Oxygen and Their Potential Effects on Aquatic Ecosystem Using a SARIMA Model. Environments 2025, 12, 25. https://doi.org/10.3390/environments12010025.
- Lee, J.; Han, J.; Engel, B.; Lim, K.J. Web-Based Baseflow Estimation in SWAT Considering Spatiotemporal Recession Characteristics Using Machine Learning. Environments 2025, 12, 94. https://doi.org/10.3390/environments12030094.
- Villanueva, J.R.E.; Pérez-Montiel, J.I.; Nardini, A.G.C. DEM Generation Incorporating River Channels in Data-Scarce Contexts: The “Fluvial Domain Method”. Hydrology 2025, 12, 33. https://doi.org/10.3390/hydrology12020033.
- Yan, Z.; Li, Z.; Baetz, B. Evapotranspiration Estimation with the Budyko Framework for Canadian Watersheds. Hydrology 2024, 11, 191. https://doi.org/10.3390/hydrology11110191.
- Wang, C.; Pellett, C.A.; Tan, H.; Arrington, T. Aerial Imagery and Surface Water and Ocean Topography for High-Resolution Mapping for Water Availability Assessments of Small Waterbodies on the Coast. Environments 2025, 12, 168. https://doi.org/10.3390/environments12050168.
- Pascual, R.; Piana, L.; Bhat, S.U.; Castro, P.F.; Corbera, J.; Cummings, D.; Delgado, C.; Eades, E.; Fensham, R.J.; Fernández-Martínez, M.; et al. The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies. Environments 2024, 11, 110. https://doi.org/10.3390/environments11060110.
- Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Arrieta-Pastrana, A. The Development of a Hydrological Method for Computing Extreme Hydrographs in Engineering Dam Projects. Hydrology 2024, 11, 194. https://doi.org/10.3390/hydrology11110194.
- Haji Amou Assar, K.; Atabay, S.; Yilmaz, A.G.; Sharifi, S. Backwater Level Computations Due to Bridge Constrictions: An Assessment of Methods. Hydrology 2024, 11, 220. https://doi.org/10.3390/hydrology11120220.
- Umukiza, E.; Abagale, F.K.; Apusiga Adongo, T.; Petroselli, A. Suitability Assessment and Optimization of Small Dams and Reservoirs in Northern Ghana. Hydrology 2024, 11, 166. https://doi.org/10.3390/hydrology11100166.
- Doro, L.; Wang, X.; Jeong, J. Simulating Agricultural Water Recycling Using the APEX Model. Environments 2024, 11, 244. https://doi.org/10.3390/environments11110244.
- Razack, M.; Jalludin, M.; Birhanu, B. Water Resource Assessment and Management in Dalha Basalts Aquifer (SW Djibouti) Using Numerical Modeling. Hydrology 2025, 12, 73. https://doi.org/10.3390/hydrology12040073.
- Hibbs, B. Analyzing Aquifer Flow Capacity and Fossil Hydraulic Gradients Through Numerical Modeling: Implications for Climate Change and Waste Disposal in Arid Basins. Environments 2025, 12, 79. https://doi.org/10.3390/environments12030079.
- Grosser, P.F.; Schmalz, B. Assessing the Impacts of Climate Change on Hydrological Processes in a German Low Mountain Range Basin: Modelling Future Water Availability, Low Flows and Water Temperatures Using SWAT+. Environments 2025, 12, 151. https://doi.org/10.3390/environments12050151.
- Kimbi, S.B.; Onodera, S.-i.; Wang, K.; Kaihotsu, I.; Shimizu, Y. Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment. Environments 2024, 11, 225. https://doi.org/10.3390/environments11100225.
- Gervasio, M.P.; Castaldelli, G.; Soana, E. The Response of Denitrification to Increasing Water Temperature and Nitrate Availability: The Case of a Large Lowland River (Po River, Northern Italy) under a Climate Change Scenario. Environments 2024, 11, 179. https://doi.org/10.3390/environments11080179.
References
- Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Gleick, P.H. Water in Crisis: Paths to Sustainable Water Use. Ecol. Appl. 1998, 8, 571–579. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Hoekstra, A.; Huynen, M. Balancing the World Water Demand and Supply. In Transitions in a Globalising World; Routledge: Abingdon, UK, 2002; ISBN 978-0-203-73519-0. [Google Scholar]
- Nath, N.K.; Das, P.; Mishra, L.R.; Kumar, A.; Suryawanshi, S.L.; Gautam, V.K. Hydrological Modeling and Simulation for Water Resource Assessment. In Integrated Management of Water Resources in India: A Computational Approach: Optimizing for Sustainability and Planning; Yadav, A.K., Yadav, K., Singh, V.P., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 43–58. ISBN 978-3-031-62079-9. [Google Scholar]
- Singh, V.P. Hydrologic Modeling: Progress and Future Directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Nourani, V.; Hosseini Baghanam, A.; Adamowski, J.; Kisi, O. Applications of Hybrid Wavelet–Artificial Intelligence Models in Hydrology: A Review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Zhang, B.; Ouyang, C.; Cui, P.; Xu, Q.; Wang, D.; Zhang, F.; Li, Z.; Fan, L.; Lovati, M.; Liu, Y.; et al. Deep Learning for Cross-Region Streamflow and Flood Forecasting at a Global Scale. Innovation 2024, 5, 100617. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, C.; Li, Z.; Cai, Y. Assessing Uncertainty Propagation in Hybrid Models for Daily Streamflow Simulation Based on Arbitrary Polynomial Chaos Expansion. Adv. Water Resour. 2022, 160, 104110. [Google Scholar] [CrossRef]
- Agrawal, Y.; Kumar, M.; Ananthakrishnan, S.; Kumarapuram, G. Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm. Water Resour. Manag. 2022, 36, 1025–1042. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration Evaluation Models Based on Machine Learning Algorithms—A Comparative Study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Kim, S.; Lee, E.; Hwang, H.-T.; Pyo, J.; Yun, D.; Baek, S.-S.; Cho, K.H. Spatiotemporal Estimation of Groundwater and Surface Water Conditions by Integrating Deep Learning and Physics-Based Watershed Models. Water Res. X 2024, 23, 100228. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Leonarduzzi, E.; De la Fuente, L.; Hull, R.B.; Bansal, V.; Chennault, C.; Gentine, P.; Melchior, P.; Condon, L.E.; Maxwell, R.M. Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML. Water 2021, 13, 3393. [Google Scholar] [CrossRef]
- Brunner, M.I.; Slater, L.; Tallaksen, L.M.; Clark, M. Challenges in Modeling and Predicting Floods and Droughts: A Review. WIREs Water 2021, 8, e1520. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Zhang, Q.; Zhang, F.; Li, Z. Sustainable Water Resource Management: Challenges and Opportunities. Environments 2025, 12, 268. https://doi.org/10.3390/environments12080268
Zhou P, Zhang Q, Zhang F, Li Z. Sustainable Water Resource Management: Challenges and Opportunities. Environments. 2025; 12(8):268. https://doi.org/10.3390/environments12080268
Chicago/Turabian StyleZhou, Pengxiao, Qianqian Zhang, Fei Zhang, and Zoe Li. 2025. "Sustainable Water Resource Management: Challenges and Opportunities" Environments 12, no. 8: 268. https://doi.org/10.3390/environments12080268
APA StyleZhou, P., Zhang, Q., Zhang, F., & Li, Z. (2025). Sustainable Water Resource Management: Challenges and Opportunities. Environments, 12(8), 268. https://doi.org/10.3390/environments12080268