Environmental Detection of Coccidioides: Challenges and Opportunities
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Expanding the Search for Coccidioides in Soils and Dusts of “Non-Endemic” Areas
3.2. Sampling in Private Lands
3.3. Sampling with Respect to Seasonal Variations
3.4. Sampling Medium
3.5. Biotic and Geographic Factors Influencing the Site of Sample Collection
3.6. Climate, Environmental Change, Natural Hazards, and Coccidioides
3.7. Sample Storage
3.8. Laboratory Methods for Environmental Detection of Coccidioides
4. Conclusions
- Federal and state public health agencies should augment funding and assistance for researchers to search for Coccidioides in environments currently considered non-endemic.
- These organizations should encourage soil sampling for Coccidioides on private and public land by creating integrated networks that promote efficient communication for sample collection.
- Researchers studying Coccidioides should collaborate with aerosol scientists and engineers to develop air sampling technologies designed for the detection of Coccidioides.
- Researchers investigating Coccidioides should engage with wildlife specialists to identify the most susceptible species that host this fungus.
- Environmental and climate scientists should gather environmental metadata related to Coccidiodes occurrence and ensure its open accessibility.
- Biochemists can aid in researching appropriate preservation methods for soil samples related to Coccidioides viability and DNA retention.
- Researchers should collaborate across multiple laboratories to develop best practices for successful analysis.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, C.; Barker, B.M.; Hoover, S.; Nix, D.E.; Ampel, N.M.; Frelinger, J.A.; Orbach, M.J.; Galgiani, J.N. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin. Microbiol. Rev. 2013, 26, 505–525. [Google Scholar] [CrossRef]
- Malo, J.; Luraschi-Monjagatta, C.; Wolk, D.M.; Thompson, R.; Hage, C.A.; Knox, K.S. Update on the diagnosis of pulmonary coccidioidomycosis. Ann. Am. Thorac. Soc. 2014, 11, 243–253. [Google Scholar] [CrossRef]
- Rapini, R.P.; Bolognia, J.L.; Jorizzo, J.L. Dermatology: 2-Volume Set; Mosby: St. Louis, MO, USA, 2007; Volume 247. [Google Scholar]
- Hector, R.F.; Laniado-Laborin, R. Coccidioidomycosis—A fungal disease of the Americas. PLoS Med. 2005, 2, e2. [Google Scholar] [CrossRef]
- McCotter, O.Z.; Benedict, K.; Engelthaler, D.M.; Komatsu, K.; Lucas, K.D.; Mohle-Boetani, J.C.; Oltean, H.; Vugia, D.; Chiller, T.M.; Sondermeyer Cooksey, G.L.; et al. Update on the epidemiology of coccidioidomycosis in the United States. Med. Mycol. 2019, 57 (Suppl. 1), S30–S40. [Google Scholar] [CrossRef]
- Eulálio, K.D.; Kollath, D.R.; Martins, L.M.S.; Filho, A.d.D.; Cavalcanti, M.d.A.S.; Moreira, L.M.; Tenório, B.G.; Alves, L.G.d.B.; Yamauchi, D.; Barrozo, L.V.; et al. Epidemiological, clinical, and genomic landscape of coccidioidomycosis in northeastern Brazil. Nat. Commun. 2024, 15, 3190. [Google Scholar] [CrossRef]
- Twarog, M.; Thompson, G.R., III. Coccidioidomycosis: Recent updates. Semin. Respir. Crit. Care Med. 2015, 36, 746–755. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Valley Fever (Coccidioidomycosis). Reported Cases of Valley Fever. 2024. Available online: https://www.cdc.gov/valley-fever/php/statistics/index.html (accessed on 3 March 2025).
- Tsang, C.A.; Tabnak, F.; Vugia, D.J.; Benedict, K.; Chiller, T.; Park, B.J. Increase in reported coccidioidomycosis—United States, 1998–2011. Morb. Mortal. Wkly. Rep. 2013, 62, 217. [Google Scholar]
- Cooksey, G.S.; Nguyen, A.; Knutson, K.; Tabnak, F.; Benedict, K.; McCotter, O.; Jain, S.; Vugia, D. Notes from the field: Increase in coccidioidomycosis—California, 2016. Morb. Mortal. Wkly. Rep. 2017, 66, 833–834. [Google Scholar] [CrossRef]
- Jackson, K.M.; Teixeira, M.d.M.; Barker, B.M. From soil to clinic: Current advances in understanding Coccidioides and coccidioidomycosis. Microbiol. Mol. Biol. Rev. 2024, 88, e0016123. [Google Scholar] [CrossRef]
- Catalán-Dibene, J.; Johnson, S.M.; Eaton, R.; Romero-Olivares, A.L.; Baptista-Rosas, R.C.; Pappagianis, D.; Riquelme, M. Detection of coccidioidal antibodies in serum of a small rodent community in Baja California, Mexico. Fungal Biol. 2014, 118, 330–339. [Google Scholar] [CrossRef]
- Barker, B.M. Coccidioidomycosis in animals. In Emerging and Epizootic Fungal Infections in Animals; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 81–114. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Fungal Diseases. Fungal Diseases by State. 2024. Available online: https://www.cdc.gov/fungal/php/case-reporting/index.html (accessed on 3 March 2025).
- Hubber, J.; Person, A.; Jecha, L.; Flodin-Hursh, D.; Stiffler, J.; Hill, H.; Bassham, S.; McCotter, O.Z.; Oltean, H.N. Knowledge, attitudes, and practices regarding coccidioidomycosis among healthcare providers in four counties in Washington State, 2017. Med. Mycol. 2020, 58, 730–736. [Google Scholar] [CrossRef]
- Gorris, M.E.; Ardon-Dryer, K.; Campuzano, A.; Castañón-Olivares, L.R.; Gill, T.E.; Greene, A.; Hung, C.-Y.; Kaufeld, K.A.; Lacy, M.; Sánchez-Paredes, E. Advocating for coccidioidomycosis to be a reportable disease nationwide in the United States and encouraging disease surveillance across North and South America. J. Fungi 2023, 9, 83. [Google Scholar] [CrossRef]
- Williams, S.L.; Benedict, K.; Jackson, B.R.; Rajeev, M.; Cooksey, G.; Ruberto, I.; Williamson, T.; Sunenshine, R.H.; Osborn, B.; Oltean, H.N.; et al. Estimated burden of coccidioidomycosis. JAMA Netw. Open 2025, 8, e2513572. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Udall, B. Climate change and the aridification of North America. Proc. Natl. Acad. Sci. USA 2020, 117, 11856–11858. [Google Scholar] [CrossRef]
- Bishop, D.A.; Williams, A.P.; Seager, R.; Cook, E.R.; Peteet, D.M.; Cook, B.I.; Rao, M.P.; Stahle, D.W. Placing the east-west North American aridity gradient in a multi-century context. Environ. Res. Lett. 2021, 16, 114043. [Google Scholar] [CrossRef]
- Hall, D.K.; Kimball, J.S.; Larson, R.; DiGirolamo, N.E.; Casey, K.A.; Hulley, G. Intensified warming and aridity accelerate terminal lake desiccation in the great basin of the western United States. Earth Space Sci. 2023, 10, e2022EA002630. [Google Scholar] [CrossRef]
- Vojdani, A.; Baur, L.E.; Rudgers, J.A.; Collins, S.L. Sensitivity of root production to long-term aridity under environmental perturbations in Chihuahuan Desert ecosystems. J. Ecol. 2024, 112, 1487–1500. [Google Scholar] [CrossRef]
- Gorris, M.E.; Treseder, K.K.; Zender, C.S.; Randerson, J.T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth 2019, 3, 308–327. [Google Scholar] [CrossRef]
- Kirkland, T.N.; Fierer, J. Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity. Virulence 2018, 9, 1426–1435. [Google Scholar] [CrossRef]
- Johnson, R.H.; Sharma, R.; Kuran, R.; Fong, I.; Heidari, A. Coccidioidomycosis: A review. J. Investig. Med. 2021, 69, 316–323. [Google Scholar] [CrossRef]
- Crum, N.F. Coccidioidomycosis: A contemporary review. Infect. Dis. Ther. 2022, 11, 713–742. [Google Scholar] [CrossRef]
- McHardy, I.H.; Barker, B.; Thompson, G.R., III. Review of clinical and laboratory diagnostics for coccidioidomycosis. J. Clin. Microbiol. 2023, 61, e0158122. [Google Scholar] [CrossRef]
- Cairns, L.; Blythe, D.; Kao, A.; Pappagianis, D.; Kaufman, L.; Kobayashi, J.; Hajjeh, R. Outbreak of coccidioidomycosis in Washington state residents returning from Mexico. Clin. Infect. Dis. 2000, 30, 61–64. [Google Scholar] [CrossRef]
- Greene, D.R.; Koenig, G.; Fisher, M.C.; Taylor, J.W. Soil Isolation and Molecular Identification of Coccidioides immitis. Mycologia 2000, 92, 406. [Google Scholar] [CrossRef]
- Cordeiro, R.A.; Brilhante, R.S.N.; Rocha, M.F.G.; Fechine, M.A.B.; Camara, L.M.C.; Camargo, Z.P.; Sidrim, J.J.C. Phenotypic characterization and ecological features of Coccidioides spp. from Northeast Brazil. Med. Mycol. 2006, 44, 631–639. [Google Scholar] [CrossRef]
- Mandel, M.A.; Barker, B.M.; Kroken, S.; Rounsley, S.D.; Orbach, M.J. Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot. Cell 2007, 6, 1189–1199. [Google Scholar] [CrossRef]
- De Macêdo, R.C.L.; Rosado, A.S.; da Mota, F.F.; Cavalcante, M.A.S.; Eulálio, K.D.; Filho, A.D.; Martins, L.M.S.; Lazéra, M.S.; Wanke, B. Molecular identification of Coccidioides spp. in soil samples from Brazil. BMC Microbiol. 2011, 11, 108. [Google Scholar] [CrossRef]
- Baptista-Rosas, R.C.; Catalán-Dibene, J.; Romero-Olivares, A.L.; Hinojosa, A.; Cavazos, T.; Riquelme, M. Molecular detection of Coccidioides spp. from environmental samples in Baja California: Linking Valley Fever to soil and climate conditions. Fungal Ecol. 2012, 5, 177–190. [Google Scholar] [CrossRef]
- Barker, B.M.; Tabor, J.A.; Shubitz, L.F.; Perrill, R.; Orbach, M.J. Detection and phylogenetic analysis of Coccidioides posadasii in Arizona soil samples. Fungal Ecol. 2012, 5, 163–176. [Google Scholar] [CrossRef]
- Lauer, A.; Baal, J.D.H.; Baal, J.C.H.; Verma, M.; Chen, J.M. Detection of Coccidioides immitis in Kern County, California, by multiplex PCR. Mycologia 2012, 104, 62–69. [Google Scholar] [CrossRef]
- Lauer, A.; Talamantes, J.; Castañón Olivares, L.R.; Medina, L.J.; Baal, J.D.H.; Casimiro, K.; Shroff, N.; Emery, K.W. Combining forces--the use of Landsat TM satellite imagery, soil parameter information, and multiplex PCR to detect Coccidioides immitis growth sites in Kern County, California. PLoS ONE 2014, 9, e111921. [Google Scholar] [CrossRef]
- Johnson, S.M.; Carlson, E.L.; Fisher, F.S.; Pappagianis, D. Demonstration of Coccidioides immitis and Coccidioides posadasii DNA in soil samples collected from Dinosaur National Monument, Utah. Med. Mycol. 2014, 52, 610–617. [Google Scholar] [CrossRef]
- Litvintseva, A.P.; Marsden-Haug, N.; Hurst, S.; Hill, H.; Gade, L.; Driebe, E.M.; Ralston, C.; Roe, C.; Barker, B.M.; Goldoft, M.; et al. Valley fever: Finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection. Clin. Infect. Dis. 2015, 60, e1-3. [Google Scholar] [CrossRef]
- Vargas-Gastélum, L.; Romero-Olivares, A.L.; Escalante, A.E.; Rocha-Olivares, A.; Brizuela, C.; Riquelme, M. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol. Ecol. 2015, 91, fiv044. [Google Scholar] [CrossRef]
- Chow, N.A.; Griffin, D.W.; Barker, B.M.; Loparev, V.N.; Litvintseva, A.P. Molecular detection of airborne Coccidioides in Tucson, Arizona. Med. Mycol. 2016, 54, 584–592. [Google Scholar] [CrossRef]
- Colson, A.J.; Vredenburgh, L.; Guevara, R.E.; Rangel, N.P.; Kloock, C.T.; Lauer, A. Large-scale land development, fugitive dust, and increased coccidioidomycosis incidence in the Antelope Valley of California, 1999–2014. Mycopathologia 2017, 182, 439–458. [Google Scholar] [CrossRef]
- Clifford, W. Exploring the Distribution of Coccidioides immitis in South Central Washington State. Online J. Public Health Inform. 2017, 9, e62085. [Google Scholar] [CrossRef]
- Alvarado, P.; Teixeira, M.d.M.; Andrews, L.; Fernandez, A.; Santander, G.; Doyle, A.; Perez, M.; Yegres, F.; Barker, B.M. Detection of Coccidioides posadasii from xerophytic environments in Venezuela reveals risk of naturally acquired coccidioidomycosis infections. Emerg. Microbes Infect. 2018, 7, 46. [Google Scholar] [CrossRef]
- Bowers, J.R.; Parise, K.L.; Kelley, E.J.; Lemmer, D.; Schupp, J.M.; Driebe, E.M.; Engelthaler, D.M.; Keim, P.; Barker, B.M. Direct detection of Coccidioides from Arizona soils using CocciENV, a highly sensitive and specific real-time PCR assay. Med. Mycol. 2019, 57, 246–255. [Google Scholar] [CrossRef]
- Kollath, D.R.; Teixeira, M.M.; Funke, A.; Miller, K.J.; Barker, B.M. Investigating the role of animal burrows on the ecology and distribution of Coccidioides spp. In Arizona soils. Mycopathologia 2020, 185, 145–159. [Google Scholar] [CrossRef]
- Gade, L.; McCotter, O.Z.; Bowers, J.R.; Waddell, V.; Brady, S.; Carvajal, J.A.; Sunenshine, R.; Komatsu, K.K.; Engelthaler, D.M.; Chiller, T.; et al. The detection of Coccidioides from ambient air in Phoenix, Arizona: Evidence of uneven distribution and seasonality. Med. Mycol. 2020, 58, 552–559. [Google Scholar] [CrossRef]
- Lauer, A.; Etyemezian, V.; Nikolich, G.; Kloock, C.; Arzate, A.F.; Sadiq Batcha, F.; Kaur, M.; Garcia, E.; Mander, J.; Kayes Passaglia, A. Valley fever: Environmental risk factors and exposure pathways deduced from field measurements in California. Int. J. Environ. Res. Public Health 2020, 17, 5285. [Google Scholar] [CrossRef]
- Lauer, A.; Lopez, J.; Abarca, S.; Bains, J. Earthquake-ridden area in USA contains Coccidioides, the valley fever pathogen. EcoHealth 2020, 17, 248–254. [Google Scholar] [CrossRef]
- Chow, N.A.; Kangiser, D.; Gade, L.; McCotter, O.Z.; Hurst, S.; Salamone, A.; Wohrle, R.; Clifford, W.; Kim, S.; Salah, Z.; et al. Factors Influencing Distribution of Coccidioides immitis in Soil, Washington State, 2016. mSphere 2021, 6, e0059821. [Google Scholar] [CrossRef]
- Mead, H.L.; Kollath, D.R.; Teixeira, M.d.M.; Roe, C.C.; Plude, C.; Nandurkar, N.; Donohoo, C.; O’Connor, B.L.W.; Terriquez, J.; Keim, P.; et al. Coccidioidomycosis in Northern Arizona: An investigation of the host, pathogen, and environment using a disease triangle approach. mSphere 2022, 7, e0035222. [Google Scholar] [CrossRef]
- Ramsey, M.L. Locking Down the Dust: Exploring the Association Between Coccidioides posadasii and Biological Soil Crusts. Master’s Thesis, Northern Arizona University, Flagstaff, AZ, USA, 2023. [Google Scholar]
- Wagner, R.; Montoya, L.; Head, J.R.; Campo, S.; Remais, J.; Taylor, J.W. Coccidioides undetected in soils from agricultural land and uncorrelated with time or the greater soil fungal community on undeveloped land. PLoS Pathog. 2023, 19, e1011391. [Google Scholar] [CrossRef]
- Kollath, D.R.; Morales, M.M.; Itogawa, A.N.; Mullaney, D.; Lee, N.R.; Barker, B.M. Combating the dust devil: Utilizing naturally occurring soil microbes in Arizona to inhibit the growth of Coccidioides spp., the causative agent of Valley fever. J. Fungi 2023, 9, 345. [Google Scholar] [CrossRef]
- Lauer, A.; Lopez, J.J.; Chabolla, M.; Kloock, C. Risk of exposure to Coccidioides spp. in the Temblor special recreation management area (SRMA), Kern County, CA. Microorganisms 2023, 11, 518. [Google Scholar] [CrossRef]
- Porter, W.T.; Gade, L.; Montfort, P.; Mihaljevic, J.R.; Bowers, J.R.; Willman, A.; Klimowski, B.A.; LaFleur, B.J.; Sunenshine, R.H.; Collins, J.; et al. Understanding the exposure risk of aerosolized Coccidioides in a Valley fever endemic metropolis. Sci. Rep. 2024, 14, 1311. [Google Scholar] [CrossRef]
- Head, J.R.; Camponuri, S.K.; Weaver, A.K.; Montoya, L.; Lee, E.; Radosevich, M.; Jones, I.; Wagner, R.; Bhattachan, A.; Campbell, G.; et al. Small mammals and their burrows shape the distribution of Coccidioides in soils: A long-term ecological experiment. bioRxiv 2024, 2024.09.21.613892. [Google Scholar] [CrossRef]
- Segovia Mota, J.P. Análisis de la Distribución Actual de Coccidioides spp. en Muestras de Suelo de Baja California, México. M.S. Thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. 2024; p. 68. Available online: http://cicese.repositorioinstitucional.mx/jspui/handle/1007/4226 (accessed on 24 March 2025).
- Radosevich, M.; Head, J.; Couper, L.; Gomez-Weaver, A.; Camponuri, S.; Montoya, L.; Taylor, J.; Remais, J. Characterizing the soil microbial community associated with the fungal pathogen Coccidioides immitis. J. Fungi 2025, 11, 309. [Google Scholar] [CrossRef]
- Radosevich, M.T.; Dobson, S.; Weaver, A.K.; Lampman, P.T.A.; Kollath, D.; Couper, L.; Campbell, C.; Taylor, J.W.; Remais, J.V.; Kobziar, L.; et al. Detection of airborne Coccidioides spores using lightweight portable air samplers affixed to uncrewed aircraft systems in California’s Central Valley. Environ. Sci. Technol. Lett. 2025, 12, 580–586. [Google Scholar] [CrossRef]
- Marsden-Haug, N.; Goldoft, M.; Ralston, C.; Limaye, A.P.; Chua, J.; Hill, H.; Jecha, L.; Thompson, G.R., III; Chiller, T. Coccidioidomycosis acquired in Washington State. Clin. Infect. Dis. 2013, 56, 847–850. [Google Scholar] [CrossRef]
- Washington State Department of Health. Washington State Report on Fungal Disease. Office of Communicable Disease Epidemiology. 2014. Available online: https://doh.wa.gov/sites/default/files/legacy/Documents/5100//420-146-FungalDiseaseAnnualReport.pdf (accessed on 3 March 2025).
- Engelthaler, D.M.; Chatters, J.C.; Casadevall, A. Was coccidioides a pre-Columbian hitchhiker to southcentral Washington? MBio 2023, 14, e00232-23. [Google Scholar] [CrossRef]
- Ashraf, N.; Kubat, R.C.; Poplin, V.; Adenis, A.A.; Denning, D.W.; Wright, L.; McCotter, O.; Schwartz, I.S.; Jackson, B.R.; Chiller, T.; et al. Re-drawing the maps for endemic mycoses. Mycopathologia 2020, 185, 843–865. [Google Scholar] [CrossRef]
- Baptista Rosas, R.C.; Riquelme, M. The epidemiology of coccidioidomycosis in Mexico. Rev. Iberoam. De Micol. 2007, 24, 100–105. [Google Scholar] [CrossRef]
- Thompson, G.R., III; Chiller, T.M. Endemic mycoses: Underdiagnosed and underreported. Ann. Intern. Med. 2022, 175, 1759–1760. [Google Scholar] [CrossRef]
- Donovan, F.M.; Fernández, O.M.; Bains, G.; DiPompo, L. Coccidioidomycosis: A growing global concern. J. Antimicrob. Chemother. 2025, 80 (Suppl. 1), i40–i49. [Google Scholar] [CrossRef]
- Peçanha-Pietrobom, P.M.; Tirado-Sánchez, A.; Gonçalves, S.S.; Bonifaz, A.; Colombo, A.L. Diagnosis and treatment of pulmonary coccidioidomycosis and paracoccidioidomycosis. J. Fungi 2023, 9, 218. [Google Scholar] [CrossRef]
- Korsten, K.; Altenburg, J.; Gittelbauer, M.; van Hengel, P.; Jansen, R.; van Dijk, K. Coccidioidomycosis presenting years after returning from travel. Med. Mycol. Case Rep. 2024, 43, 100623. [Google Scholar] [CrossRef]
- Gorris, M.E.; Neumann, J.E.; Kinney, P.L.; Sheahan, M.; Sarofim, M.C. Economic valuation of coccidioidomycosis (valley fever) projections in the United States in response to climate change. Weather Clim. Soc. 2021, 13, 107–123. [Google Scholar] [CrossRef]
- Parker, Z.; Shasti, B.; Chung, J.; Taylor, K. Changing geographic distributions of Coccidioides spp. In the United States: A narrative review of climate change implications. Int. J. Infect. Dis. IJID 2022, 116, S22. [Google Scholar] [CrossRef]
- Duarte-Escalante, E.; Reyes-Montes, M.d.R.; Frías-De-León, M.G.; Meraz-Ríos, B. Effect of climate change on the incidence and geographical distribution of coccidioidomycosis. In The Impact of Climate Change on Fungal Diseases. Fungal Biology; Frías-De-León, M.G., Brunner-Mendoza, C., Reyes-Montes, M.d.R., Duarte-Escalante, E., Eds.; Springer: Cham, Switzerland, 2022; pp. 131–143. [Google Scholar] [CrossRef]
- Dixon, R.W.; Moore, T.W. Trend detection in Texas temperature and precipitation. Southwest. Geogr. 2011, 15, 80–103. [Google Scholar]
- Baptista-Rosas, R.C.; Hinojosa, A.; Riquelme, M. Ecological niche modeling of Coccidioides spp. in western North American deserts. Ann. N. Y. Acad. Sci. 2007, 1111, 35–46. [Google Scholar] [CrossRef]
- Dobos, R.R.; Benedict, K.; Jackson, B.R.; McCotter, O.Z. Using soil survey data to model potential Coccidioides soil habitat and inform Valley fever epidemiology. PLoS ONE 2021, 16, e0247263. [Google Scholar] [CrossRef]
- Edwards, P.Q.; Palmer, C.E. Prevalence of sensitivity to coccidioidin, with special reference to specific and nonspecific reactions to coccidioidin and to histoplasmin. Dis. Chest 1957, 31, 35–60. [Google Scholar] [CrossRef]
- Caldwell, C.T. Coccidioidal granuloma: A report of three cases recognized in Texas. Tex. State J. Med. 1932, 28, 327–333. [Google Scholar]
- Roberts, P.L.; Lisciandro, R.C. A community epidemic of coccidioidomycosis. Am. Rev. Respir. Dis. 1967, 96, 766–772. [Google Scholar] [CrossRef]
- Teel, K.W.; Yow, M.D.; Williams, T.W., Jr. A localized outbreak of coccidioidomycosis in southern Texas. J. Pediatr. 1970, 77, 65–73. [Google Scholar] [CrossRef]
- Peterson, C.; Chu, V.; Lovelace, J.; Almekdash, M.H.; Lacy, M. Coccidioidomycosis cases at a regional referral Center, West Texas, USA, 2013-2019. Emerg. Infect. Dis. 2022, 28, 848–851. [Google Scholar] [CrossRef]
- Hugenholtz, P. Climate and coccidioidomycosis. Proc. Symp. Coccidioidomycosis U.S. Public Health Serv. Publ. 1957, 575, 136–143. [Google Scholar]
- Head, J.R.; Sondermeyer-Cooksey, G.; Heaney, A.K.; Yu, A.T.; Jones, I.; Bhattachan, A.; Campo, S.K.; Wagner, R.; Mgbara, W.; Phillips, S.; et al. Effects of precipitation, heat, and drought on incidence and expansion of coccidioidomycosis in western USA: A longitudinal surveillance study. Lancet Planet. Health 2022, 6, e793–e803. [Google Scholar] [CrossRef]
- Kollath, D.R.S. Disease Dynamics, Ecology, and Biology of Coccidioides spp. in Arizona. Doctoral Dissertation, Northern Arizona University, Flagstaff, AZ, USA, 2022. [Google Scholar]
- Heaney, A.K.; Camponuri, S.K.; Head, J.R.; Collender, P.; Weaver, A.; Sondermeyer Cooksey, G.; Yu, A.; Vugia, D.; Jain, S.; Bhattachan, A.; et al. Coccidioidomycosis seasonality in California: A longitudinal surveillance study of the climate determinants and spatiotemporal variability of seasonal dynamics, 2000–2021. Lancet Reg. Health Am. 2024, 38, 100864. [Google Scholar] [CrossRef]
- Comrie, A.C. Climate factors influencing coccidioidomycosis seasonality and outbreaks. Environ. Health Perspect. 2005, 113, 688–692. [Google Scholar] [CrossRef]
- Comrie, A.C.; Glueck, M.F. Assessment of climate-coccidioidomycosis model: Model sensitivity for assessing climatologic effects on the risk of acquiring coccidioidomycosis: Model sensitivity for assessing climatologic effects on the risk of acquiring coccidioidomycosis. Ann. N. Y. Acad. Sci. 2007, 1111, 83–95. [Google Scholar] [CrossRef]
- Tamerius, J.D.; Comrie, A.C. Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation. PLoS ONE 2011, 6, e21009. [Google Scholar] [CrossRef]
- Ajello, L.; Maddy, K.; Crecelius, G.; Hugenholtz, P.G.; Hall, L.B. Recovery of Coccidioides immitis from the air. Med. Mycol. 1965, 4, 92–95. [Google Scholar] [CrossRef]
- Daniels, J.I.; Wilson, W.J.; DeSantis, T.Z.; Gouveia, F.J.; Anderson, G.L.; Shinn, J.H.; Pappagianis, D. Development of a Quantitative TaqMan {trademark}-PCR Assay and Feasibility of Atmosphoric Collection for Coccidioides Immitis for Ecological Studies; (No. UCRL-ID-146977). Technical Report; Lawrence Livermore National Laboratory (LLNL): Livermore, CA, USA, 2002. [Google Scholar] [CrossRef]
- Tong, D.Q.; Gorris, M.E.; Gill, T.E.; Ardon-Dryer, K.; Wang, J.; Ren, L. Dust storms, Valley fever, and public awareness. GeoHealth 2022, 6, e2022GH000642. [Google Scholar] [CrossRef]
- Baumgardner, D.J. Soil-related bacterial and fungal infections. J. Am. Board Fam. Med. 2012, 25, 734–744. [Google Scholar] [CrossRef]
- Del Rocío Reyes-Montes, M.; Pérez-Huitrón, M.A.; Ocaña-Monroy, J.L.; Frías-De-León, M.G.; Martínez-Herrera, E.; Arenas, R.; Duarte-Escalante, E. The habitat of Coccidioides spp. and the role of animals as reservoirs and disseminators in nature. BMC Infect. Dis. 2016, 16, 550. [Google Scholar] [CrossRef]
- Eulálio, K.D.; de Macedo, R.L.; Cavalcanti, M.A.; Martins, L.M.; Lazéra, M.S.; Wanke, B. Coccidioides immitis isolated from armadillos (Dasypus novemcinctus) in the state of Piauí, northeast Brazil. Mycopathologia 2001, 149, 57–61. [Google Scholar] [CrossRef]
- de Aguiar Cordeiro, R.; de Castro e Silva, K.R.; Brilhante, R.S.N.; Moura, F.B.P.; Duarte, N.F.H.; de Farias Marques, F.J.; de Aguiar Cordeiro, R.; Filho, R.E.M.; de Araújo, R.W.B.; de Jesus Pinheiro Gomes Bandeira, T. Coccidioides posadasii infection in bats, Brazil. Emerg. Infect. Dis. 2012, 18, 668–670. [Google Scholar] [CrossRef]
- Brown, J.; Benedict, K.; Park, B.J.; Thompson, G.R., III. Coccidioidomycosis: Epidemiology. Clin. Epidemiol. 2013, 5, 185–197. [Google Scholar] [CrossRef]
- Emmons, C.W. Isolation of Coccidioides from soil and rodents. Public Health Rep. 1942, 57, 109. [Google Scholar] [CrossRef]
- Emmons, C.W.; Ashburn, L.L. The Isolation of Haplosporangium parvum n. sp. and Coccidioides immitis from Wild Rodents. Their Relationship to Coccidioidomycosis. Public Health Rep. 1942, 57, 1715. [Google Scholar] [CrossRef]
- Taylor, J.W.; Barker, B.M. The endozoan, small-mammal reservoir hypothesis and the life cycle of Coccidioides species. Med. Mycol. 2019, 57 (Suppl. 1), S16–S20. [Google Scholar] [CrossRef]
- Maddy, K.T.; Coccozza, J. The probable geographic distribution of Coccidioides immitis in Mexico. Bol. De La Oficina Sanit. Panamericana. Pan Am. Sanit. Bur. 1964, 57, 44–54. [Google Scholar]
- Sharpton, T.J.; Stajich, J.E.; Rounsley, S.D.; Gardner, M.J.; Wortman, J.R.; Jordar, V.S.; Maiti, R.; Kodira, C.D.; Neafsey, D.E.; Zeng, Q.; et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009, 19, 1722–1731. [Google Scholar] [CrossRef]
- Barker, B.M.; Litvintseva, A.P.; Riquelme, M.; Vargas-Gastélum, L. Coccidioides ecology and genomics. Med. Mycol. 2019, 57 (Suppl. 1), S21–S29. [Google Scholar] [CrossRef]
- Rivera-Ovalle, L.; Vega-Manriquez, X.; Posadas-Leal, C.; Santos-Díaz, R.; Rangel-Flores, J.; Carreón-Lizcano, P. Detection of anti-Coccidioides immitis antibodies in the serum of small wild mammals in a locality of the Potosino Plateau. Rev. Chapingo Ser. Zonas Áridas 2022, 17, 330–339. [Google Scholar]
- Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E. Coccidioides niches and habitat parameters in the southwestern United States: A matter of scale: A matter of scale. Ann. N. Y. Acad. Sci. 2007, 1111, 47–72. [Google Scholar] [CrossRef]
- Álvarez-Gandía, Y.D.; Lewis, C.; Barker, B.M.; Catalán-Dibene, J.; Kaufeld, K.A.; Kollath, D.; Lauer, A.; Mead, H.; Oltean, H.; Ramsey, M.; et al. Understanding soil properties conducive for Coccidioides ssp. presence in the United States. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. EGU25-7658. [Google Scholar] [CrossRef]
- Maddy, K.T. Coccidioidomycosis of cattle in the southwestern United States. J. Am. Vet. Med. Assoc. 1954, 124, 456–464. [Google Scholar]
- Maddy, K.T. Coccidioidomycosis in animals. Vet. Med. 1959, 54, 233–242. [Google Scholar]
- Pearson, D.; Ebisu, K.; Wu, X.; Basu, R. A review of coccidioidomycosis in California: Exploring the intersection of land use, population movement, and climate change. Epidemiol. Rev. 2019, 41, 145–157. [Google Scholar] [CrossRef]
- Friedman, L.; Smith, C.E.; Pappagianis, D.; Berman, R.J. Survival of Coccidioides immitis under controlled conditions of temperature and humidity. Am. J. Public Health Nations Health 1956, 46, 1317–1324. [Google Scholar] [CrossRef]
- Fredrickson, E.; Havstad, K.M.; Estell, R.; Hyder, P. Perspectives on desertification: South-western United States. J. Arid Environ. 1998, 39, 191–207. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T. Effects of climate change on natural-caused fire activity in western U.S. national forests. Atmosphere 2021, 12, 981. [Google Scholar] [CrossRef]
- Tong, D.Q.; Wang, J.X.L.; Gill, T.E.; Lei, H.; Wang, B. Intensified dust storm activity and Valley fever infection in the southwestern United States. Geophys. Res. Lett. 2017, 44, 4304–4312. [Google Scholar] [CrossRef]
- Pu, B.; Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 2017, 7, 5553. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Anenberg, S.C.; Neumann, J.E.; Penn, S.L.; Weiss, N.; Crimmins, A.; Fann, N.; Martinich, J.; Roman, H.; Mickley, L.J. Effects of increasing aridity on ambient dust and public health in the U.S. southwest under climate change. GeoHealth 2019, 3, 127–144. [Google Scholar] [CrossRef]
- Zhuang, Y.; Fu, R.; Santer, B.D.; Dickinson, R.E.; Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2111875118. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Laws, R.L.; Jain, S.; Cooksey, G.S.; Mohle-Boetani, J.; McNary, J.; Wilken, J.; Harrison, R.; Leistikow, B.; Vugia, D.J.; Windham, G.C.; et al. Coccidioidomycosis outbreak among inmate wildland firefighters: California, 2017. Am. J. Ind. Med. 2021, 64, 266–273. [Google Scholar] [CrossRef]
- Donnelly, M.A. Notes from the field: Coccidioidomycosis outbreak among wildland firefighters-California, 2021. Morb. Mortal. Wkly. Rep. 2022, 71, 1095–1096. [Google Scholar] [CrossRef]
- Phillips, S.; Jones, I.; Sondermyer-Cooksey, G.; Yu, A.T.; Heaney, A.K.; Zhou, B.; Bhattachan, A.; Weaver, A.K.; Campo, S.K.; Mgbara, W.; et al. Association between wildfires and coccidioidomycosis incidence in California, 2000–2018: A synthetic control analysis. Environ. Epidemiol. 2023, 7, e254. [Google Scholar] [CrossRef]
- Mulliken, J.S.; Hampshire, K.N.; Rappold, A.G.; Fung, M.; Babik, J.M.; Doernberg, S.B. Risk of systemic fungal infections after exposure to wildfires: A population-based, retrospective study in California. Lancet Planet. Health 2023, 7, e381–e386. [Google Scholar] [CrossRef]
- Mims, S.A.; Mims, F.M. III. Fungal spores are transported long distances in smoke from biomass fires. Atmos. Environ. 2004, 38, 651–655. [Google Scholar] [CrossRef]
- Moore, R.A.; Bomar, C.; Kobziar, L.N.; Christner, B.C. Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. ISME J. 2021, 15, 461–472. [Google Scholar] [CrossRef]
- Pappagianis, D.; Einstein, H. Tempest from Tehachapi takes toll or coccidioides conveyed aloft and afar. West. J. Med. 1978, 129, 527–530. [Google Scholar]
- Williams, P.L.; Sable, D.L.; Mendez, P.; Smyth, L.T. Symptomatic coccidioidomycosis following a severe natural dust storm. An outbreak at the Naval Air Station, Lemoore, Calif. Chest 1979, 76, 566–570. [Google Scholar] [CrossRef]
- Comrie, A.C. No consistent link between dust storms and Valley fever (coccidioidomycosis). GeoHealth 2021, 5, e2021GH000504. [Google Scholar] [CrossRef]
- Ardon-Dryer, K.; Gill, T.E.; Tong, D.Q. When a dust storm is not a dust storm: Reliability of dust records from the storm events database and implications for geohealth applications. GeoHealth 2023, 7, e2022GH000699. [Google Scholar] [CrossRef]
- Schneider, E.; Hajjeh, R.A.; Spiegel, R.A.; Jibson, R.W.; Harp, E.L.; Marshall, G.A.; Gunn, R.A.; McNeil, M.M.; Pinner, R.W.; Baron, R.C.; et al. A coccidioidomycosis outbreak following the Northridge, Calif, earthquake. J. Am. Med. Assoc. 1997, 277, 904–908. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Schneider, E.; Hajjeh, R.A.; Spiegel, R.A. An outbreak of coccidioidomycosis (valley fever) caused by landslides triggered by the 1994 Northridge, California, earthquake. Geol. Soc. Am. Rev. Eng. Geol. 1998, 12, 53–62. [Google Scholar] [CrossRef]
- Jibson, R.W. A public health issue related to collateral seismic hazards: The valley fever outbreak triggered by the 1994 Northridge, California earthquake. Surv. Geophys. 2002, 23, 511–528. [Google Scholar] [CrossRef]
- Stotzky, G.; Goos, R.D.; Timonin, M.I. Microbial changes occurring in soil as a result of storage. Plant Soil 1962, 16, 1–18. [Google Scholar] [CrossRef]
- Grossbard, E.; Hall, D.M. An investigation into the possible changes in the microbial population of soils stored at −15° C. Plant Soil 1964, 21, 317–332. [Google Scholar] [CrossRef]
- Forster, J.C. Soil sampling, handling, storage and analysis. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 49–121. [Google Scholar] [CrossRef]
- Delavaux, C.S.; Bever, J.D.; Karppinen, E.M.; Bainard, L.D. Keeping it cool: Soil sample cold pack storage and DNA shipment up to 1 month does not impact metabarcoding results. Ecol. Evol. 2020, 10, 4652–4664. [Google Scholar] [CrossRef]
- Vandeputte, D.; Tito, R.Y.; Vanleeuwen, R.; Falony, G.; Raes, J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 2017, 41 (Suppl. 1), S154–S167. [Google Scholar] [CrossRef]
- Brock, M.T.; Morrison, H.G.; Maignien, L.; Weinig, C. Impacts of sample handling and storage conditions on archiving physiologically active soil microbial communities. FEMS Microbiol. Lett. 2024, 371, fnae044. [Google Scholar] [CrossRef]
- Pop, C.-E.; Fendrihan, S.; Crăciun, N.; Vasilighean, G.; Chifor, D.E.; Topârceanu, F.; Florea, A.; Mihăilescu, D.F.; Mernea, M. Antarctic soil and viable Microbiota after long-term storage at constant −20 °C. Biology 2025, 14, 222. [Google Scholar] [CrossRef]
- Lee, K.M.; Adams, M.; Klassen, J.L. Evaluation of DESS as a storage medium for microbial community analysis. PeerJ 2019, 7, e6414. [Google Scholar] [CrossRef]
- Carroll, I.M.; Ringel-Kulka, T.; Siddle, J.P.; Klaenhammer, T.R.; Ringel, Y. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS ONE 2012, 7, e46953. [Google Scholar] [CrossRef]
- Kia, E.; Wagner Mackenzie, B.; Middleton, D.; Lau, A.; Waite, D.W.; Lewis, G.; Chan, Y.-K.; Silvestre, M.; Cooper, G.J.S.; Poppitt, S.D.; et al. Integrity of the human faecal Microbiota following long-term sample storage. PLoS ONE 2016, 11, e0163666. [Google Scholar] [CrossRef]
- Fouhy, F.; Deane, J.; Rea, M.C.; O’Sullivan, Ó.; Ross, R.P.; O’Callaghan, G.; Stanton, C. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS ONE 2015, 10, e0119355. [Google Scholar] [CrossRef]
- Stenberg, B.; Johansson, M.; Pell, M.; Sjödahl-Svensson, K.; Stenström, J.; Torstensson, L. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol. Biochem. 1998, 30, 393–402. [Google Scholar] [CrossRef]
- Sorensen, P.O.; Finzi, A.C.; Giasson, M.-A.; Reinmann, A.B.; Sanders-DeMott, R.; Templer, P.H. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biol. Biochem. 2018, 116, 39–47. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Sci. Plant Nutr. 2004, 50, 821–829. [Google Scholar] [CrossRef]
- Yang, K.; Peng, C.; Peñuelas, J.; Kardol, P.; Li, Z.; Zhang, L.; Ni, X.; Yue, K.; Tan, B.; Yin, R.; et al. Immediate and carry-over effects of increased soil frost on soil respiration and microbial activity in a spruce forest. Soil Biol. Biochem. 2019, 135, 51–59. [Google Scholar] [CrossRef]
- Gorris, M.E.; Cat, L.A.; Zender, C.S.; Treseder, K.K.; Randerson, J.T. Coccidioidomycosis dynamics in relation to climate in the southwestern United States. GeoHealth 2018, 2, 6–24. [Google Scholar] [CrossRef]
- Smenderovac, E.; Emilson, C.; Rheault, K.; Brazeau, É.; Morency, M.-J.; Gagné, P.; Venier, L.; Martineau, C. Drying as an effective method to store soil samples for DNA-based microbial community analyses: A comparative study. Sci. Rep. 2024, 14, 1725. [Google Scholar] [CrossRef]
- Landor, L.A.; Stevenson, T.; Mayers, K.M.; Fleming, M.S.; Bauer, S.; Babel, H.R.; Thiele, S. DNA, RNA, and prokaryote community sample stability at different ultra-low temperature storage conditions. Environ. Sustain. 2024, 7, 77–83. [Google Scholar] [CrossRef]
- Narvaez Villarrubia, C.W.; Tumas, K.C.; Chauhan, R.; MacDonald, T.; Dattelbaum, A.M.; Omberg, K.; Gupta, G. Long-term stabilization of DNA at room temperature using a one-step microwave assisted process. Emergent Mater. 2022, 5, 307–314. [Google Scholar] [CrossRef]
- Qiagen. (January, 2020). DNeasy® PowerLyzer® PowerSoil® Kit Handbook. Available online: https://www.qiagen.com/aq/resources/download.aspx?id=329362e4-03e6-4ae1-9e4e-bbce41abe4b7&lang=en (accessed on 30 May 2025).
- Qiagen. (June, 2023). DNeasy® PowerSoil® Pro Kit Handbook. Available online: https://www.qiagen.com/tg/resources/resourcedetail?id=9bb59b74-e493-4aeb-b6c1-f660852e8d97&lang=en (accessed on 30 May 2025).
- Davis, B.L. An epidemic of coccidioidal infection (Coccidioidomycosis). J. Am. Med. Assoc. 1942, 118, 1182–1186. [Google Scholar] [CrossRef]
- Egeberg, R.O.; Ely, A.F. Coccidioides immitis in the soil of the southern San Joaquin valley. Am. J. Med. Sci. 1956, 231, 151–154. [Google Scholar] [CrossRef]
- Swatek, F.E.; Omieczynski, D.T. Isolation and identification of coccidioides immitis from natural sources. Mycopathol. Et Mycol. Appl. 1970, 41, 155–166. [Google Scholar] [CrossRef]
- Elconin, A.F.; Egeberg, R.O.; Egeberg, M.C. Significance of soil salinity on the ecology of Coccidioides immitis. J. Bacteriol. 1964, 87, 500–503. [Google Scholar] [CrossRef]
- Herzog, H.A. The moral status of mice. Am. Psychol. 1988, 43, 473–474. [Google Scholar] [CrossRef]
- Baertschi, B.; Gyger, M. Ethical considerations in mouse experiments. Curr. Protoc. Mouse Biol. 2011, 1, 155–167. [Google Scholar] [CrossRef]
- Bora, S.S.; Ronghang, R.; Das, P.; Naorem, R.S.; Hazarika, D.J.; Gogoi, R.; Banu, S.; Barooah, M. Endophytic microbial community structure and dynamics influence Agarwood formation in Aquilaria malaccensis Lam. Curr. Microbiol. 2025, 82, 66. [Google Scholar] [CrossRef]
- Chu, L.; Zheng, W.; Zhao, X.; Song, X. Effects of different ionic liquids on microbial growth and microbial communities’ structure of soil. Bull. Environ. Contam. Toxicol. 2025, 114, 19. [Google Scholar] [CrossRef]
- Jimenez, L. Bacterial community composition and diversity of soils from different geographical locations in the northeastern USA. Microbiol. Res. 2025, 16, 47. [Google Scholar] [CrossRef]
- Tang, B.; Song, J.; Zhang, J.; Rehman, A.; Li, B.; Long, Y.; Li, N.; Mao, R.; Feng, J.; Chen, J.; et al. Effects of hyporheic water exchange on microbial community structure and function: A case study in the beiluo river, loess plateau, China. Freshw. Biol. 2025, 70, e14361. [Google Scholar] [CrossRef]
- Wannassi, T.; Naccache, C.; Chermiti, B.; Khemakhem, M.M. Exploration of bacterial composition and diversity within the apricot seed wasp Eurytoma samsonowi (Hymenoptera: Eurytomidae) by 16S rRNA Illumina sequencing. Symbiosis 2025, 95, 99–110. [Google Scholar] [CrossRef]
- Mao, Y.; Li, X.; Lou, H.; Shang, X.; Mai, Y.; Yang, L.; Peng, F.; Fu, X. Detection of Coccidioides posadasii in a patient with meningitis using metagenomic next-generation sequencing: A case report. BMC Infect. Dis. 2021, 21, 968. [Google Scholar] [CrossRef]
- Larkin, P.M.K.; Lawson, K.L.; Contreras, D.A.; Le, C.Q.; Trejo, M.; Realegeno, S.; Hilt, E.E.; Chandrasekaran, S.; Garner, O.B.; Fishbein, G.A.; et al. Amplicon-based next-generation sequencing for detection of fungi in formalin-fixed, paraffin-embedded tissues: Correlation with histopathology and clinical applications. J. Mol. Diagn. 2020, 22, 1287–1293. [Google Scholar] [CrossRef]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef]
- Kadri, S.; Craven, K.E.; Fussell, A.M.; Gee, E.P.S.; Jordan, D.; Klee, E.W.; Krumm, N.; Temple-Smolkin, R.L.; Zehir, A.; Zhang, W.; et al. Clinical bioinformatician body of Knowledge-bioinformatics and software core: A report of the Association for molecular pathology. J. Mol. Diagn. 2025, 27, 566–582. [Google Scholar] [CrossRef]
- Edwards, M.C.; Gibbs, R.A. Multiplex PCR: Advantages, development, and applications. PCR Methods Appl. 1994, 3, S65–S75. [Google Scholar] [CrossRef]
- Bouam, A.; Vincent, J.J.; Drancourt, M.; Raoult, D.; Levy, P.Y. Preventing contamination of PCR-based multiplex assays including the use of a dedicated biosafety cabinet. Lett. Appl. Microbiol. 2021, 72, 98–103. [Google Scholar] [CrossRef]
- Serapide, F.; Pallone, R.; Quirino, A.; Marascio, N.; Barreca, G.S.; Davoli, C.; Lionello, R.; Matera, G.; Russo, A. Impact of multiplex PCR on diagnosis of bacterial and fungal infections and choice of appropriate antimicrobial therapy. Diagnostics 2025, 15, 1044. [Google Scholar] [CrossRef]
- Saubolle, M.A.; Wojack, B.R.; Wertheimer, A.M.; Fuayagem, A.Z.; Young, S.; Koeneman, B.A. Multicenter clinical validation of a cartridge-based realtime PCR system for detection of Coccidioides spp. in lower respiratory specimens. J. Clin. Microbiol. 2018, 56, e01277-17. [Google Scholar] [CrossRef]
- Bialek, R.; Kern, J.; Herrmann, T.; Tijerina, R.; Ceceñas, L.; Reischl, U.; González, G.M. PCR assays for identification of Coccidioides posadasii based on the nucleotide sequence of the antigen 2/proline-rich antigen. J. Clin. Microbiol. 2004, 42, 778–783. [Google Scholar] [CrossRef]
- Sheff, K.W.; York, E.R.; Driebe, E.M.; Barker, B.M.; Rounsley, S.D.; Waddell, V.G.; Beckstrom-Sternberg, S.M.; Beckstrom-Sternberg, J.S.; Keim, P.S.; Engelthaler, D.M. Development of a rapid, cost-effective TaqMan Real-Time PCR Assay for identification and differentiation of Coccidioides immitis and Coccidioides posadasii. Med. Mycol. 2010, 48, 466–469. [Google Scholar] [CrossRef]
- Bott, T.; Shaw, G.; Gregory, S. A simple method for testing and controlling inhibition in soil and sediment samples for qPCR. J. Microbiol. Methods 2023, 212, 106795. [Google Scholar] [CrossRef]
Study | Year | Sampling Areas (States) | Remarks |
---|---|---|---|
Cairns et al. [27] | 2000 | Baja California, Mexico | Endemic |
Greene et al. [28] | 2000 | California and Nevada–Arizona border, USA | Endemic |
Cordeiro et al. [29] | 2006 | Ceará, Brazil | Endemic |
Mandel et al. [30] | 2007 | Arizona, USA | Endemic |
De Macêdo et al. [31] | 2011 | Piauí, Brazil | Endemic |
Baptista-Rosas et al. [32] | 2012 | Baja California, Mexico | Endemic |
Barker et al. [33] | 2012 | Arizona, USA | Endemic |
Lauer et al. [34] | 2012 | California, USA | Endemic |
Lauer et al. [35] | 2014 | California, USA | Endemic |
Johnson et al. [36] | 2014 | Utah, USA | Screening for Coccidioides in Dinosaur National Monument soils |
Litvintseva et al. [37] | 2015 | Washington, USA | Verifying the existence of C. immitis in the soil of Washington State |
Vargas-Gastelum et al. [38] | 2015 | Baja California, Mexico | Endemic |
Chow et al. [39] | 2016 | Arizona, USA | Endemic |
Colson et al. [40] | 2017 | California, USA | Endemic |
Clifford et al. [41] | 2017 | Washington, USA | Investigating additional locations in central Washington State |
Alvarado et al. [42] | 2018 | Falcon and Lara, Venezuela | Endemic |
Bowers et al. [43] | 2019 | Arizona, USA | Endemic |
Kollath et al. [44] | 2020 | Arizona, USA | The fungus was found at two previously undiscovered sites in northern Arizona |
Gade et al. [45] | 2020 | Arizona, USA | Endemic |
Lauer et al. [46] | 2020 | California, USA | Endemic |
Lauer et al. [47] | 2020 | California, USA | Endemic |
Chow et al. [48] | 2021 | Washington, USA | Endemic |
Mead et al. [49] | 2022 | Arizona, USA | Northern Arizona soils contain Coccidioides, which is believed to be less common than in southern Arizona |
Ramsey et al. [50] | 2023 | Arizona, USA | Endemic |
Wagner et al. [51] | 2023 | California, USA | Endemic |
Kollath et al. [52] | 2023 | Arizona, USA | Endemic |
Lauer et al. [53] | 2023 | California, USA | Endemic |
Porter et al. [54] | 2024 | Arizona, USA | Endemic |
Head et al. [55] | 2024 | California, USA | Endemic |
Segovia Mota [56] | 2024 | Baja California, Mexico | Endemic |
Radosevich et al. [57] | 2025 | California, USA | Endemic |
Radosevich et al. [58] | 2025 | California, USA | Endemic |
Study | Year | Primary Research Objectives |
---|---|---|
Cairns et al. [27] | 2000 | Evaluating the coccidioidomycosis outbreak in individuals coming from an endemic zone |
Greene et al. [28] | 2000 | The efficacy of soil isolation and molecular identification of Coccidioides immitis |
Cordeiro et al. [29] | 2006 | Identifying the ecological and phenotypic traits of Coccidioides spp. in Northeast Brazil |
Mandel et al. [30] | 2007 | Examining evidence for sexual reproduction and gene acquisition through genomic and demographic analyses of the mating type loci in Coccidioides species |
De Macêdo et al. [31] | 2011 | Identification of C. posadasii in soil samples associated with coccidioidomycosis outbreaks |
Baptista-Rosas et al. [32] | 2012 | Molecular detection of Coccidioides spp. in Baja California environmental samples to link Valley fever to soil and climate |
Barker et al. [33] | 2012 | Identification and phylogenetic examination of Coccidioides posadasii in soil samples from Arizona |
Lauer et al. [34] | 2012 | Multiplex polymerase chain reaction (PCR)’s efficacy in detecting Coccidioides immitis |
Lauer et al. [35] | 2014 | Effectiveness of integrating satellite imagery, soil type data, and multiplex PCR for predicting and identifying growth areas of C. immitis |
Johnson et al. [36] | 2014 | Detection of Coccidioides immitis and Coccidioides posadasii DNA in soil samples obtained from Dinosaur National Monument, Utah |
Litvintseva et al. [37] | 2015 | Discovery of Coccidioides in Washington State soils associated with recent human infections |
Vargas-Gastelum et al. [38] | 2015 | The use of 454 pyrosequencing to uncover the effects of seasonal fluctuations on fungal diversity in a semi-arid ecosystem |
Chow et al. [39] | 2016 | Efficiency of air sampling and molecular detection methods for environmental monitoring of Coccidioides |
Colson et al. [40] | 2017 | Examining the relationship between growing coccidioidomycosis cases in California’s Antelope Valley, 1999–2014, and large-scale land development and fugitive dust |
Clifford et al. [41] | 2017 | Investigating the distribution of Coccidioides immitis in south central Washington State |
Alvarado et al. [42] | 2018 | Using molecular identification of Coccidioides spp. in soil samples from endemic Venezuela, comparing soil-derived Coccidioides ITS2 PCR amplicons from high-throughput sequencing with clinical-derived sequences from GENBANK and comparing the mycobiome of low-positive and high-positive sites to find fungal communities connected to Coccidioides prevalence |
Bowers et al. [43] | 2019 | Direct identification of Coccidioides in Arizona soils via CocciEnv qPCR assay |
Kollath et al. [44] | 2020 | Examining the influence of animal burrows on the ecology and distribution of Coccidioides spp. in Arizona soils |
Gade et al. [45] | 2020 | Developing a unique airborne Coccidioides detection method and using it to study arthroconidia distribution in Phoenix, Arizona |
Lauer et al. [46] | 2020 | Assessing environmental risk determinants and exposure routes of Valley fever inferred from field observations in California |
Lauer et al. [47] | 2020 | Identifying Coccidioides in a seismically affected region of the USA |
Chow et al. [48] | 2021 | Variables affecting the distribution of Coccidioides immitis in soil, Washington State, 2016 |
Mead et al. [49] | 2022 | Examination of the host, pathogen, and environment utilizing a disease triangle framework concerning coccidioidomycosis in Northern Arizona |
Ramsey et al. [50] | 2023 | Investigating the correlation between Coccidioides posadasii and biological soil crusts |
Wagner et al. [51] | 2023 | Identification of Coccidioides in various land management regions and its association with temporal variables and soil fungal communities |
Kollath et al. [52] | 2023 | Employing naturally occurring soil microorganisms in Arizona to suppress the proliferation of Coccidioides spp. |
Lauer et al. [53] | 2023 | Assessing the risk of exposure to Coccidioides spp. in the Temblor Special Recreation Management Area (SRMA), Kern County, California |
Porter et al. [54] | 2024 | Assessing the exposure risk of aerosolized Coccidioides in a city endemic to Valley fever |
Head et al. [55] | 2024 | Examining the influence of small mammals and their burrows on the distribution of Coccidioides in soil |
Segovia Mota [56] | 2024 | Examining the distribution of Coccidioides spp. in Baja California soils via droplet digital PCR |
Radosevich et al. [57] | 2025 | Characterizing the soil microbial community associated with Coccidioides immitis |
Radosevich et al. [58] | 2025 | Identification of airborne Coccidioides spores with lightweight portable air samplers mounted on unmanned aerial vehicles in California’s Central Valley |
State | Endemic | Reportable | State | Endemic | Reportable | State | Endemic | Reportable |
---|---|---|---|---|---|---|---|---|
Alabama | × | √ | Kentucky | × | √ | North Dakota | × | √ |
Alaska | × | × | Louisiana | × | √ | Ohio | × | √ |
Arizona | √ | √ | Maine | × | × | Oklahoma | × | × |
Arkansas | × | √ | Maryland | × | √ | Oregon | × | √ |
California | √ | √ | Massachusetts | × | × | Pennsylvania | × | × |
Colorado | × | √ | Michigan | × | √ | Rhode Island | × | √ |
Connecticut | × | × | Minnesota | × | √ | South Carolina | × | × |
Delaware | × | √ | Mississippi | × | × | South Dakota | × | √ |
District of Columbia | × | √ | Missouri | × | √ | Tennessee | × | × |
Florida | × | × | Montana | × | √ | Texas | √ | × |
Georgia | × | × | Nebraska | × | √ | Utah | √ | √ |
Hawaii | × | × | Nevada | √ | √ | Vermont | × | × |
Idaho | × | × | New Hampshire | × | √ | Virginia | × | × |
Illinois | × | × | New Jersey | × | × | Washington | √ | √ |
Indiana | × | √ | New Mexico | √ | √ | West Virginia | × | × |
Iowa | × | × | New York | × | × | Wisconsin | × | √ |
Kansas | × | √ | North Carolina | × | × | Wyoming | × | √ |
Study | Year | Sampling Seasons | Remarks |
---|---|---|---|
Cairns et al. [27] | 2000 | No particular reference | |
Greene et al. [28] | 2000 | Approximately 4–6 weeks after the last rainfall in spring and fall | Highest precipitation occurs in winter |
Cordeiro et al. [29] | 2006 | No particular reference | |
Mandel et al. [30] | 2007 | No particular reference | |
De Macêdo et al. [31] | 2011 | No particular reference | |
Baptista-Rosas et al. [32] | 2012 | 2–3 months following the seasonal rains | Highest precipitation occurs in winter |
Barker et al. [33] | 2012 | No particular reference | |
Lauer et al. [34] | 2012 | Monthly | |
Lauer et al. [35] | 2014 | Monthly | |
Johnson et al. [36] | 2014 | No particular reference | |
Litvintseva et al. [37] | 2015 | Fall and spring | Highest precipitation occurs in winter |
Vargas-Gastelum et al. [38] | 2015 | Winter and summer | Highest precipitation occurs in winter |
Chow et al. [39] | 2016 | Fall | Summer and winter precipitation follow a bimodal pattern |
Colson et al. [40] | 2017 | Spring | Highest precipitation occurs in winter |
Clifford et al. [41] | 2017 | No particular reference | |
Alvarado et al. [42] | 2018 | Venezuela’s dry seasons | |
Bowers et al. [43] | 2019 | Fall and spring | Summer and winter precipitation follow a bimodal pattern |
Kollath et al. [44] | 2020 | Spring and summer (pre- and post-monsoon) | Summer and winter precipitation follow a bimodal pattern |
Gade et al. [45] | 2020 | Summer and fall | Summer and winter precipitation follow a bimodal pattern |
Lauer et al. [46] | 2020 | Winter, spring/summer and fall | |
Lauer et al. [47] | 2020 | Summer | Highest precipitation occurs in winter |
Chow et al. [48] | 2021 | Autumn | Highest precipitation occurs in winter |
Mead et al. [49] | 2022 | No particular reference | |
Ramsey et al. [50] | 2023 | Pre- and post-winter | Summer and winter precipitation follow a bimodal pattern |
Wagner et al. [51] | 2023 | Monthly | |
Kollath et al. [52] | 2023 | No particular reference | |
Lauer et al. [53] | 2023 | Spring, summer and fall | Highest precipitation occurs in winter |
Porter et al. [54] | 2024 | Summer and fall, 2016 and winter, 2018 through summer, 2019 | |
Head et al. [55] | 2024 | Spring, summer, and fall | Highest precipitation occurs in winter |
Segovia Mota [56] | 2024 | Dry season | |
Radosevich et al. [57] | 2025 | Fall | Highest precipitation occurs in winter |
Radosevich et al. [58] | 2025 | Spring | Highest precipitation occurs in winter |
Study | Year | Techniques Used for Coccidioides Detection |
---|---|---|
Cairns et al. [27] | 2000 | Mice inoculation and culture |
Greene et al. [28] | 2000 | Culture, PCR amplification utilizing ITS-specific markers, multiplex PCR, and microsatellite typing |
Cordeiro et al. [29] | 2006 | Culture and mice inoculation |
Mandel et al. [30] | 2007 | Mice inoculation, PCR amplification with Coccidioides-specific primers, and species determination via microsatellite primers |
De Macêdo et al. [31] | 2011 | Mice inoculation, PCR and semi-nested PCR for cultured microorganisms and soil |
Baptista-Rosas et al. [32] | 2012 | Nested PCR method |
Barker et al. [33] | 2012 | Mice inoculation, plating, and PCR using Coccidioides-specific primers (direct or with a nested reaction) |
Lauer et al. [34] | 2012 | Multiplex PCR |
Lauer et al. [35] | 2014 | Multiplex PCR |
Johnson et al. [36] | 2014 | Endpoint nested PCR |
Litvintseva et al. [37] | 2015 | CocciDx real-time PCR assay and culture |
Vargas-Gastelum et al. [38] | 2015 | Nested PCR |
Chow et al. [39] | 2016 | Single-tube (ST) nested qPCR, generation of droplets and droplet digital PCR (ddPCR) |
Colson et al. [40] | 2017 | Nested PCR |
Clifford et al. [41] | 2017 | Real-time PCR assay |
Alvarado et al. [42] | 2018 | Plating, mice inoculation, and CocciEnv qPCR assay |
Bowers et al. [43] | 2019 | CocciDx, CocciEnv qPCR assay and Sanger sequencing |
Kollath et al. [44] | 2020 | CocciDx and CocciEnv qPCR assay |
Gade et al. [45] | 2020 | Single-tube (ST) nested qPCR assay |
Lauer et al. [46] | 2020 | Nested PCR |
Lauer et al. [47] | 2020 | Nested PCR |
Chow et al. [48] | 2021 | TaqMan-based single-tube (ST) nested qPCR assay, culture and ITS sequencing |
Mead et al. [49] | 2022 | CocciDx and CocciEnv qPCR assay |
Ramsey et al. [50] | 2023 | qPCR assay |
Wagner et al. [51] | 2023 | CocciEnv qPCR assay |
Kollath et al. [52] | 2023 | qPCR assay |
Lauer et al. [53] | 2023 | Nested PCR |
Porter et al. [54] | 2024 | A single-tube nested real-time PCR test based on the CocciEnv real-time PCR target |
Head et al. [55] | 2024 | CocciEnv qPCR assay |
Segovia Mota [56] | 2024 | ddPCR |
Radosevich et al. [57] | 2025 | CocciEnv qPCR assay |
Radosevich et al. [58] | 2025 | CocciEnv qPCR assay |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, T.; Ibarra-Mejia, G.; Romero-Olivares, A.L.; Gill, T.E. Environmental Detection of Coccidioides: Challenges and Opportunities. Environments 2025, 12, 258. https://doi.org/10.3390/environments12080258
Hossain T, Ibarra-Mejia G, Romero-Olivares AL, Gill TE. Environmental Detection of Coccidioides: Challenges and Opportunities. Environments. 2025; 12(8):258. https://doi.org/10.3390/environments12080258
Chicago/Turabian StyleHossain, Tanzir, Gabriel Ibarra-Mejia, Adriana L. Romero-Olivares, and Thomas E. Gill. 2025. "Environmental Detection of Coccidioides: Challenges and Opportunities" Environments 12, no. 8: 258. https://doi.org/10.3390/environments12080258
APA StyleHossain, T., Ibarra-Mejia, G., Romero-Olivares, A. L., & Gill, T. E. (2025). Environmental Detection of Coccidioides: Challenges and Opportunities. Environments, 12(8), 258. https://doi.org/10.3390/environments12080258