Toxicological Risk Assessment and Source Identification of Groundwater Pollution: A Case of Sheep Herd Damage in a Pastoral Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Point Layout and Collection
2.3. Analytical Methods
2.4. Groundwater Quality and Health Risk Assessment
2.4.1. Groundwater Quality Assessment
2.4.2. Health Risk Assessment
2.5. Statistical Analysis
2.6. Livestock Damage
2.7. Data Analysis
3. Results and Discussion
3.1. Pollution Source Analysis
3.2. Toxicological Risk Assessment
3.3. Potential Characteristic Risk Factors in Groundwater
3.4. Causes Analysis of Damage to Sheep
3.5. Future-Oriented Environmental Damage Identification Outlook
- (1)
- Using multiple statistical analysis methods and integrating case information could accurately identify the sources of groundwater pollutants, thereby assisting administrative law enforcement personnel in handling similar pollution cases and enabling them to make scientific judgments and enforce decisions. Moreover, it provides guidelines for handling similar environmental damage appraisal cases.
- (2)
- The pollution sources in this case were traced to two rare earth enterprises. Thus, the sewage discharge, hazardous waste disposal, and other environmental protection measures of these two enterprises should be closely monitored and investigated by relevant environmental law enforcement personnel to prevent more serious pollution problems in the future.
- (3)
- Based on the current groundwater monitoring results, there are adverse effects on the growth of cattle and sheep in this region, primarily due to their ingestion of contaminated drinking water. Thus, to avoid unnecessary losses of livestock, cattle, sheep, and other livestock in this area should not use local groundwater as a drinking water source until it has been restored.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torres-Martínez, J.A.; Mora, A.; Knappett, P.S.K.; Ornelas-Soto, N.; Mahlknecht, J. Tracking Nitrate and Sulfate Sources in Groundwater of an Urbanized Valley Using a Multi-tracer Approach Combined with a Bayesian Isotope Mixing Model. Water Res. 2020, 182, 115962. [Google Scholar] [CrossRef] [PubMed]
- Abanyie Samuel, K.; Apea Ohene, B.; Abagale Samson, A.; Amuah Ebenezer Ebo, Y.; Sunkari Emmanuel, D. Sources and Factors Influencing Groundwater Quality and Associated Health Implications: A Review. Emerg. Contam. 2023, 9, 100207. [Google Scholar] [CrossRef]
- Neely, W.R.; Borsa, A.A.; Burney, J.A.; Levy, M.C.; Silverii, F.; Sneed, M. Characterization of Groundwater Recharge and Flow in California’s San Joaquin Valley from InSAR-observed Surface Deformation. Water Resour. Res. 2021, 57, e2020WR028451. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, L.; Zhu, M.; Jiang, C.; Dong, X.; Chen, Y. Quantitative Identification of Nitrate and Sulfate Sources of a Multiple Land-use Area Impacted by Mine Drainage. J. Environ. Manag. 2023, 325, 116551. [Google Scholar] [CrossRef]
- Bessa Santos, R.M.; Farias do Valle Junior, R.; Abreu Pires de Melo Silva, M.M.; Tarlé Pissarra, T.C.; Carvalho de Melo, M.; Valera, C.A.; Leal Pacheco, F.A.; Sanches Fernandes, L.F. A Framework Model to Integrate Sources and Pathways in the Assessment of River Water Pollution. Environ. Pollut. 2024, 347, 123661. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Yuksel, B.; Tepe, Y.; Aydin, H.; Topaldemir, H. Metal Pollution Assessment in the Surface Sediments of a River System in Türkiye: Integrating Toxicological Risk Assessment and Source Identification. Mar. Pollut. Bull. 2024, 203, 116514. [Google Scholar] [CrossRef]
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y. Water Quality Assessment of Lugu Lake Based on Nemerow Pollution Index Method. Sci. Rep. 2022, 12, 13613. [Google Scholar] [CrossRef]
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y.; Li, G. Water Quality Assessment Based on Nemerow pollution Index Method: A Case Study of Heilongtan Reservoir in Central Sichuan Province, China. PLoS ONE 2022, 17, e0273305. [Google Scholar] [CrossRef]
- Varol, M. Use of Water Quality Index and Multivariate Statistical Methods for the Evaluation of Water Quality of a Stream Affected by Multiple Stressors: A Case Study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef]
- Meng, F.; Cao, R.; Zhu, X.; Zhang, Y.; Liu, M.; Wang, J.; Chen, J.; Geng, N. A Nationwide Investigation on the Characteristics and Health Risk of Trace Elements in Surface Water Across China. Water Res. 2024, 250, 121076. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Chen, S.; Shen, X.; Meng, J.; Geng, J.; Yang, Y.; Yang, Z.; Zhang, J.; Zhang, H.; et al. Pollution Appraisal, Health Risk Assessment and Source Apportionment of Reservoirs’ Heavy Metals in an Agricultural Base, Northern Anhui Province, China. Pol. J. Environ. Stud. 2024, 33, 3759–3769. [Google Scholar] [CrossRef]
- Collins, A.L.; Pulley, S.; Foster, I.D.L.; Gellis, A.; Porto, P.; Horowitz, A.J. Sediment Source Fingerprinting as an Aid to Catchment Management: A Review of the Current State of Knowledge and a Methodological Decision-tree for End-users. J. Environ. Manag. 2017, 194, 86–108. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.; Tepe, Y.; Ustaoglu, F. A Holistic Approach to the Eco-geochemical Risk Assessment of Trace Elements in the Estuarine Sediments of the Southeastern Black Sea. Mar. Pollut. Bull. 2023, 189, 114732. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Y.; Zhou, Q. Human Health Risk Assessment Based on Toxicity Characteristic Leaching Procedure and Simple Bioaccessibility Extraction Test of Toxic Metals in Urban Street Dust of Tianjin, China. PLoS ONE 2014, 9, e92459. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Lu, C. Tracing Sulfate Origin and Transformation in an Area with Multiple Sources of Pollution in Northern China by Using Environmental Isotopes and Bayesian Isotope Mixing Model. Environ. Pollut. 2020, 265, 115105. [Google Scholar] [CrossRef]
- Carrey, R.; Baleste, E.; Blanch, A.R.; Lucena, F.; Pons, P.; Manuel Lopez, J.; Rull, M.; Sola, J.; Micola, N.; Fraile, J.; et al. Combining Multi-isotopic and Molecular Source Tracking Methods to Identify Nitrate Pollution Sources in Surface and Groundwater. Water Res. 2021, 188, 116537. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Heidari, K.; Meshkinian, A.; Kamani, H.; Mohammadi, A.A.; Conti, G.O. Non-carcinogenic Risk Assessment of Exposure to Heavy Metals in Underground Water Resources in Saraven, Iran: Spatial Distribution, Montecarlo Simulation, Sensitive Analysis. Environ. Res. 2022, 204, 112002. [Google Scholar] [CrossRef]
- You, X.; Liu, S.; Dai, C.; Guo, Y.; Zhong, G.; Duan, Y. Contaminant Occurrence and Migration Between High- and Low-permeability Zones in Groundwater Systems: A Review. Sci. Total Environ. 2020, 743, 140703. [Google Scholar] [CrossRef]
- Li, W.; Dong, S.; Lin, H.; Li, F.; Cheng, H.; Jin, Z.; Wang, S.; Zhang, H.; Hou, P.; Xia, B. Vulnerability of Farmers and Herdsmen Households in Inner Mongolian Plateau to Arid Climate Disasters and Their Development Model. J. Clean Prod. 2023, 402, 136853. [Google Scholar] [CrossRef]
- Hai, C.; Zhao, M.; Hao, R.; Guo, Y.; Li, J. Studies on the Soil Surface Layer Moisture Changes of Different Land Use Types in Spring in North Foot of Yinshan Mountain. J. Arid Land Resour. Environ. 2005, 19, 150–154. [Google Scholar] [CrossRef]
- Gong, M.; Cai, J.; Yan, G.; Liu, C.; Liu, Z. Petrogeochemical Characteristics and Zircon SHRIMP U-Pb Ages of the Alkaline Intrusions on Northern Side of the Yinshan Mountains-Yanshan Mountains and Their Tectonic Significances. Geol. Rev. 2019, 65, 894–915. [Google Scholar] [CrossRef]
- GB/T 14848-2017; Standard for Groundwater Quality. Ministry of Land and Resources and Ministry of Water Resources of the People’s Republic of China. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2017.
- HJ 493-2009; Water Quality—Technical Regulation of the Preservation and Handling of Samples. Ministry of Ecology and Environment of the People’s Republic of China. China Environmental Science Publishing House: Beijing, China, 2009.
- HJ 164-2020; Technical Specifications for Environmental Monitoring of Groundwater. Ministry of Ecology and Environment of the People’s Republic of China. China Environment Publishing Group: Beijing, China, 2020.
- Jannat, J.N.; Mia, M.Y.; Jion, M.M.M.F.; Islam, M.S.; Ali, M.M.; Siddique, M.A.B.; Rakib, M.R.J.; Ibrahim, S.M.; Pal, S.C.; Costache, R.; et al. Pollution Trends and Ecological Risks of Heavy Metal(loid)s in Coastal Zones of Bangladesh: A Chemometric Review. Mar. Pollut. Bull. 2023, 191, 114960. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guideline for Drinking Water Quality (Fourth Edition). Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 13 July 2025).
- Li, B.; Song, J.; Guan, M.; Chen, Z.; Tang, B.; Long, Y.; Mao, R.; Zhao, J.; Xu, W.; Zhang, Y. With Spatial Distribution, Risk Evaluation of Heavy Metals and Microplastics to Emphasize the Composite Mechanism in Hyporheic Sediments of Beiluo River. J. Hazard. Mater. 2024, 462, 132784. [Google Scholar] [CrossRef] [PubMed]
- Senoro, D.B.; De Jesus, K.L.M.; Monjardin, C.E.F. Pollution and Risk Evaluation of Toxic Metals and Metalloid in Water Resources of San Jose, Occidental Mindoro, Philippines. Sustainability 2023, 15, 3667. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Kanel, S.R.; Nakarmi, A. Groundwater pollution: Occurrence, Detection, and Remediation of Organic and Inorganic Pollutants. Water Environ. Res. 2020, 92, 1659–1668. [Google Scholar] [CrossRef]
- Nawaz, R.; Nasim, I.; Irfan, A.; Islam, A.; Naeem, A.; Ghani, N.; Irshad, M.A.; Latif, M.; Nisa, B.U.; Ullah, R. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. Toxics 2023, 11, 577. [Google Scholar] [CrossRef]
- Sheng, D.; Meng, X.; Wen, X.; Wu, J.; Yu, H.; Wu, M.; Zhou, T. Hydrochemical Characteristics, Quality and Health Risk Assessment of Nitrate Enriched Coastal Groundwater in Northern China. J. Clean Prod. 2023, 403, 136872. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Risk Assessment Guidance for Superfund; Human Health Evaluation Manual, Part B Volume I); [9285.7-01B]; Office of Emergency and Remedial Response: Washington, DC, USA, 1991. [Google Scholar]
- USEPA (U.S. Environmental Protection Agency). Risk Assessment Guidance for Superfund; Human Health Evaluation Manual (Part E, Volume I:); Supplemental Guidance for Dermal Risk Assessment; EPA/540/R/99/005, OSWER 9285.7-02EP, PB99-963312; Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2004. [Google Scholar]
- Peng, H.; Yang, W.; Xiong, S.; Li, X.; Niu, G.; Lu, T.; Ferrer, A.S.N. Hydrochemical Characteristics and Health Risk Assessment of Groundwater in Karst Areas of Southwest China: A Case Study of Bama, Guangxi. J. Clean Prod. 2022, 341, 130872. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, F.; Li, F.; Chen, G.; Yang, G.; Wang, J.; Du, K.; Liu, S.; Li, Z. Ammonia Nitrogen Sources and Pollution along Soil Profiles in an In-situ Leaching Rare Earth Ore. Environ. Pollut. 2020, 267, 115449. [Google Scholar] [CrossRef]
- Din, I.U.; Muhammad, S.; Rehman, I.U.; Tokatli, C. Spatial Distribution of Potentially Toxic Elements Contaminations and Risk Indices of Water and Sediments in the Darband and Samana Streams, Pakistan. Environ. Monit. Assess. 2023, 195, 1343. [Google Scholar] [CrossRef]
- Yüksel, B.; Ustaoglu, F.; Tokatli, C.; Islam, M.S. Ecotoxicological Risk Assessment for Sediments of Cavuslu Stream in Giresun, Turkey: Association between Garbage Disposal Facility and Metallic Accumulation. Environ. Sci. Pollut. Res. 2022, 29, 17223–17240. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Bu, L.; Duan, X.; Zhu, S.; Kong, M.; Zhu, N.; Zhou, S. Mini Review on the Roles of Nitrate/Nitrite in Advanced Oxidation Processes: Radicals Transformation and Products Formation. J. Clean Prod. 2020, 273, 123065. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, X.; Yi, G.; Zhang, W.; Gao, R.; Tang, D.K.H.; Xiao, R.; Zhang, Z.; Yao, Y.; Li, R. Promoting Nitrogen Conversion in Aerobic Biotransformation of Swine Slurry with the Co-application of Manganese Sulfate and Biochar. J. Environ. Manag. 2024, 356, 120604. [Google Scholar] [CrossRef] [PubMed]
- Zilio, M.; Orzi, V.; Chiodini, M.E.; Riva, C.; Acutis, M.; Boccasile, G.; Adani, F. Evaluation of Ammonia and Odour Emissions from Animal Slurry and Digestate Storage in the Po Valley (Italy). Waste Manag. 2020, 103, 296–304. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Tepe, Y. Water Quality and Sediment Contamination Assessment of Pazarsuyu Stream, Turkey Using Multivariate Statistical Methods and Pollution Indicators. Int. Soil. Water. Conse. 2019, 7, 47–56. [Google Scholar] [CrossRef]
- Karadeniz, S.; Ustaoğlu, F.; Aydin, H.; Yüksel, B. Toxicological Risk Assessment Using Spring Water Quality Indices in Plateaus of Giresun Province/Turkiye: A Holistic Hydrogeochemical Data Analysis. Environ. Geochem. Health 2024, 46, 285. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.; Xing, L.; Jia, Y. Spatial Variation in Arsenic and Fluoride Concentrations of Shallow Groundwater from the Town of Shahai in the Hetao Basin, Inner Mongolia. Appl. Geochem. 2012, 27, 2187–2196. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Gao, D. Study on Chronic Fluorosis of Goats—The Experimental Results of Natural Grazing and Artificial Fluoride Poisoning. J. Environ. Eng.-ASCE 1981, 11, 17–21. [Google Scholar]
- Xu, G.; Masters, D.G.; Yu, S.; Lu, D.; White, C.L. An Investigation of Fluorosis of Cattle and Goats in Western Inner Mongolia. In Proceedings of the Mineral Problems in Sheep in Northern China and Other Regions of Asia, Beijing, China, 25–30 September 1995; pp. 56–60. [Google Scholar]
- Qu, W.J.; Zhong, D.B.; Wu, P.F.; Wang, J.F.; Han, B. Sodium Fluoride Modulates Caprine Osteoblast Proliferation and Differentiation. J. Bone Miner. Metab. 2008, 26, 328–334. [Google Scholar] [CrossRef]
- Reis, L.S.L.S.; Pardo, P.E.; Camargos, A.S.; Oba, E. Mineral Element and Heavy Metal Poisoning in Animals. Saudi J. Med. Med. Sci. 2010, 1, 560–579. [Google Scholar]
- Toghdory, A.; Asadi, M.; Ghoorchi, T.; Hatami, M. Impacts of Organic Manganese Supplementation on Blood Mineral, Biochemical, and Hematology in Afshari Ewes and Their Newborn Lambs in the Transition Period. J. Trace Elem. Med. Biol. 2023, 79, 127215. [Google Scholar] [CrossRef] [PubMed]
- Llonch, L.; Verdú, M.; Guivernau, M.; Viñas, M.; Martí, S.; Medinyà, C.; Riera, J.; Cucurull, J.; Devant, M. Dose Effect of Drinking Water Nitrate on Health, Feed Intake, Rumen Fermentation and Microbiota, and Nitrogen Excretion in Holstein Heifers for a Sustainable Water Use. Sustainability 2024, 16, 8814. [Google Scholar] [CrossRef]
- Wright, C.L. Management of Water Quality for Beef Cattle. Vet. Clin. N. Am.-Food Anim. Pract. 2007, 23, 91–103. [Google Scholar] [CrossRef] [PubMed]
- NY 5027-2008; Pollution-Free Food-Water Quality of Livestock and Poultry Drinking Water. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Agricultural Publishing House: Beijing, China, 2008.
- Yousfi, I.; Salem, H.B.; Aouadi, D.; Abidi, S. Effect of Sodium Chloride, Sodium Sulfate or Sodium Nitrite in Drinking Water on Intake, Digestion, Growth Rate, Carcass Traits and Meat Quality of Barbarine Lamb. Small Rumin. Res. 2016, 143, 43–52. [Google Scholar] [CrossRef]
Principal Component | Initial Eigenvalue | Extract the Load Sum of Squares | Square Sum of Rotational Loads | ||||||
---|---|---|---|---|---|---|---|---|---|
Eigenvalue | Variance Proportion/% | Accumulation/% | Eigenvalue | Variance Proportion/% | Accumulation /% | Eigenvalue | Variance Proportion/% | Accumulation /% | |
1 | 8.583 | 57.219 | 57.219 | 8.583 | 57.219 | 57.129 | 4.941 | 32.942 | 32.942 |
2 | 2.269 | 15.128 | 72.347 | 2.269 | 15.128 | 72.347 | 4.543 | 30.289 | 63.232 |
3 | 1.854 | 12.361 | 84.708 | 1.854 | 12.361 | 84.708 | 2.398 | 15.985 | 79.217 |
4 | 1.151 | 7.670 | 92.379 | 1.151 | 7.670 | 92.379 | 1.974 | 13.162 | 92.379 |
5 | 0.755 | 5.030 | 97.409 | ||||||
6 | 0.318 | 2.117 | 99.526 | ||||||
7 | 0.071 | 0.474 | 100.000 |
Index | As | Mn | F− | NO2− | NO3− | Fe |
---|---|---|---|---|---|---|
HQ children | ||||||
G1 | 0.119 | 3.680 | 34.170 | 0.111 | 12.881 | 0.007 |
G2 | 0.179 | 4.396 | 24.450 | 1.048 | 15.620 | 0.000 |
G3 | 0.179 | 0.041 | 0.883 | 0.172 | 0.505 | 0.000 |
G4 | 0.119 | 1.058 | 10.973 | 0.794 | 21.580 | 0.002 |
G5 | 0.000 | 0.000 | 0.529 | 0.000 | 0.000 | 0.000 |
G6 | 0.000 | 0.304 | 1.073 | 0.000 | 0.000 | 0.000 |
G7 | 0.107 | 0.049 | 0.364 | 0.136 | 6.664 | 0.002 |
G8 | 0.167 | 0.079 | 0.745 | 0.010 | 0.002 | 0.002 |
mean value | 0.109 | 1.201 | 9.148 | 0.284 | 7.157 | 0.002 |
HQ adults | ||||||
G1 | 0.097 | 2.996 | 27.818 | 0.090 | 10.487 | 0.006 |
G2 | 0.146 | 3.579 | 19.905 | 0.853 | 12.717 | 0.000 |
G3 | 0.146 | 0.033 | 0.719 | 0.140 | 0.411 | 0.000 |
G4 | 0.097 | 0.861 | 8.933 | 0.647 | 17.569 | 0.002 |
G5 | 0.000 | 0.000 | 0.431 | 0.000 | 0.000 | 0.000 |
G6 | 0.000 | 0.248 | 0.874 | 0.000 | 0.000 | 0.000 |
G7 | 0.087 | 0.040 | 0.297 | 0.111 | 5.425 | 0.002 |
G8 | 0.136 | 0.065 | 0.607 | 0.008 | 0.001 | 0.001 |
meanvalue | 0.089 | 0.978 | 7.448 | 0.231 | 5.826 | 0.001 |
Parameters | pH | As | Mg2+ | Mn | Fe | F− | Cl− | SO42− | NH3-N | TDS | NO2− | NO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHO (2022) | 6.5 ≤ pH ≤ 8.5 | 0.01 | 80 | 0.08 | 0.3 | 1.5 | 250 | 250 | 1.5 | 600 | 3 | 50 |
China | 6.5 ≤ pH ≤ 8.5 | 10 | ~ | 0.1 | 0.3 | 1 | 250 | 250 | 0.5 | 1000 | 1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cheng, H.; Yang, Y.; Su, J.; Sun, J.; Li, X.; Zhao, Q. Toxicological Risk Assessment and Source Identification of Groundwater Pollution: A Case of Sheep Herd Damage in a Pastoral Area. Environments 2025, 12, 240. https://doi.org/10.3390/environments12070240
Wang W, Cheng H, Yang Y, Su J, Sun J, Li X, Zhao Q. Toxicological Risk Assessment and Source Identification of Groundwater Pollution: A Case of Sheep Herd Damage in a Pastoral Area. Environments. 2025; 12(7):240. https://doi.org/10.3390/environments12070240
Chicago/Turabian StyleWang, Wei, Honger Cheng, Yuewei Yang, Jianjun Su, Jialu Sun, Xiaojing Li, and Qian Zhao. 2025. "Toxicological Risk Assessment and Source Identification of Groundwater Pollution: A Case of Sheep Herd Damage in a Pastoral Area" Environments 12, no. 7: 240. https://doi.org/10.3390/environments12070240
APA StyleWang, W., Cheng, H., Yang, Y., Su, J., Sun, J., Li, X., & Zhao, Q. (2025). Toxicological Risk Assessment and Source Identification of Groundwater Pollution: A Case of Sheep Herd Damage in a Pastoral Area. Environments, 12(7), 240. https://doi.org/10.3390/environments12070240