Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Syntrichia Moss Collection Strategy
2.2. Sampling Methodology
2.3. Sample Preparation and Chemical Analysis
2.4. Data Processing and Contamination Assessment
2.5. Meteorological Data Collection
2.6. Statistical Analysis
3. Results and Discussion
3.1. Correlations Between PTE and Meteorological Parameters
3.2. Temporal Trends and Winter-to-Summer Patterns
3.3. Spatial Trends in Elemental Concentrations
3.4. Multi-Index Approach Synergizing CF, EF, PLI, and PMF
3.5. Multivariate Analysis of PTE Contamination Patterns
3.6. Understanding the PTE Contamination Sources in Thessaloniki
- Baseline Levels: It could elevate the background concentrations of major crustal elements (Al, Fe, Ca, Mg, Ti, Si if measured) in the moss samples, particularly during or shortly after dust events. This is pertinent as our sampling campaign spanned March to July, a period when Saharan dust events can occur.
- EF Interpretation: Elevated natural background levels of these elements due to desert dust could influence the calculation and interpretation of EFs for other elements that might also have anthropogenic sources but are normalized to a crustal reference element (like Ti or Al). If the reference element’s concentration is inflated by desert dust, it could potentially mask or underestimate anthropogenic enrichment for other PTEs.
- Source Apportionment by PMF: While PMF identified a crustal factor, it may not be able to fully distinguish between local geogenic sources and long-range transported desert dust without specific chemical tracers or mineralogical markers (e.g., palygorskite), or characteristic elemental ratios like Ca/Fe as suggested by Vasilatou et al. [74] that are more uniquely associated with Saharan dust.
3.7. Considerations and Limitations
4. The Effects of PTEs on Human Health
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Power, A.L.; Tennant, R.K.; Stewart, A.G.; Gosden, C.; Worsley, A.T.; Jones, R.; Love, J. The evolution of atmospheric particulate matter in an urban landscape since the Industrial Revolution. Sci. Rep. 2023, 13, 8964. [Google Scholar] [CrossRef] [PubMed]
- James, N. Urbanization and Its Impact on Environmental Sustainability. J. Appl. Geogr. Stud. 2024, 3, 54–66. [Google Scholar] [CrossRef]
- Mistri, M.; Munari, C.; Pagnoni, A.; Chenet, T.; Pasti, L.; Cavazzini, A. Accumulation of trace metals in crayfish tissues: Is Procambarus clarkii a vector of pollutants in Po Delta inland waters? Eur. Zool. J. 2020, 87, 46–57. [Google Scholar] [CrossRef]
- Streit, B. Bioaccumulation processes in ecosystems. Experientia 1992, 48, 955–970. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, R.; Zhang, Y.; Su, H.; Wang, P.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Squire, G. Ecosystem health towards sustainability. Ecosyst. Health Sustain. 2015, 1, 11878976. [Google Scholar] [CrossRef]
- Rüegg, S.R.; Häsler, B.; Zinsstag, J. (Eds.) Integrated Approaches to Health: A Handbook for the Evaluation of One Health; Brill|Wageningen Academic: Wageningen, The Netherlands, 2018; ISBN 978-90-8686-324-2. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Macro- and Secondary Elements and Their Role in Human Health. In Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 257–315. ISBN 978-94-024-1221-5. [Google Scholar] [CrossRef]
- Paseka, R.E.; Bratt, A.R.; MacNeill, K.L.; Burian, A.; See, C.R. Elemental Ratios Link Environmental Change and Human Health. Front. Ecol. Evol. 2019, 7, 378. [Google Scholar] [CrossRef]
- Baishaw, S.; Edwards, J.; Daughtry, B.; Ross, K. Mercury in seafood: Mechanisms of accumulation and consequences for consumer health. Rev. Environ. Health 2007, 22, 91–114. [Google Scholar] [CrossRef]
- Buch, A.C.; Brown, G.G.; Correia, M.E.F.; Lourençato, L.F.; Silva-Filho, E.V. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms. Sci. Total Environ. 2017, 589, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ekwealor, J.T.B.; Mishler, B.D.; Silva, A.T.; Yu, L.; Jones, A.K.; Nelson, A.D.L.; Oliver, M.J. Syntrichia ruralis: Emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants. New Phytol. 2024, 243, 981–996. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Yang, Q.; Zhao, M.; Bai, W.; Liang, Y.; Liu, X.; Gao, B.; Zhang, D. Transcriptional profiling analysis providing insights into desiccation tolerance mechanisms of the desert moss Syntrichia caninervis. Front. Plant Sci. 2023, 14, 1127541. [Google Scholar] [CrossRef]
- Commission Decides to Refer GREECE to the Court of Justice. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_2151 (accessed on 28 December 2024).
- Natali, M.; Zanella, A.; Rankovic, A.; Banas, D.; Cantaluppi, C.; Abbadie, L.; Lata, J.-C. Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses. Environ. Sci. Pollut. Res. 2016, 23, 23496–23510. [Google Scholar] [CrossRef]
- Donovan, G.H.; Jovan, S.E.; Gatziolis, D.; Burstyn, I.; Michael, Y.L.; Amacher, M.C.; Monleon, V.J. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution. Sci. Total Environ. 2016, 559, 84–93. [Google Scholar] [CrossRef]
- Steinnes, E.; Uggerud, H.T.; Pfaffhuber, K.A.; Berg, T. Atmospheric Deposition of Heavy Metals in Norway. National Moss Survey 2015; NILU: Kjeller, Norway, 2017; ISBN 978-82-425-2859-9. [Google Scholar]
- Betsou, C.; Diapouli, E.; Tsakiri, E.; Papadopoulou, L.; Frontasyeva, M.; Eleftheriadis, K.; Ioannidou, A. First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere 2021, 12, 208. [Google Scholar] [CrossRef]
- Lazo, P.; Kika, A.; Qarri, F.; Bekteshi, L.; Allajbeu, S.; Stafilov, T. Air Quality Assessment by Moss Biomonitoring and Trace Metals Atmospheric Deposition. Aerosol Air Qual. Res. 2022, 22, 220008. [Google Scholar] [CrossRef]
- Chaligava, O.; Zinicovscaia, I.; Peshkova, A.; Yushin, N.; Frontasyeva, M.; Vergel, K.; Nurkassimova, M.; Cepoi, L. Major and Trace Airborne Elements and Ecological Risk Assessment: Georgia Moss Survey 2019–2023. Plants 2024, 13, 3298. [Google Scholar] [CrossRef]
- Rajandu, E.; Kaljuvee, K.-L.; Kulp, M.; Kaasik, M.; Elvisto, T.; Küttim, M. Syntrichia ruralis as a suitable bioindicator for urban areas—The case study of Tallinn city. Folia Cryptogam. Est. 2024, 61, 25–34. [Google Scholar] [CrossRef]
- Sfetsas, T.; Ghoghoberidze, S.; Karnoutsos, P.; Tziakas, V.; Karagiovanidis, M.; Katsantonis, D. Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study. Atmosphere 2024, 15, 1378. [Google Scholar] [CrossRef]
- Habibie, M.I.; Dayuf Yusuf, M.; Setyaningrum, N.; Pianto, T.A.; Nurdiansyah, N.; Aziz, M.L. Mapping and Monitoring Urban Areas Using Sentinel 1 and Sentinel 2. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 29–30 September 2021; pp. 125–129. [Google Scholar] [CrossRef]
- Urošević, M.A.; Vuković, G.; Jovanović, P.; Vujičić, M.; Sabovljević, A.; Sabovljević, M.; Tomašević, M. Urban background of air pollution: Evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban For. Urban Green. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Salo, H.; Paturi, P.; Mäkinen, J. Moss bag (Sphagnum papillosum) magnetic and elemental properties for characterising seasonal and spatial variation in urban pollution. Int. J. Environ. Sci. Technol. 2016, 13, 1515–1524. [Google Scholar] [CrossRef]
- Nickel, S.; Schröder, W. Correlating elements content in mosses collected in 2015 across Germany with spatially associated characteristics of sampling sites and their surroundings. Environ. Sci. Eur. 2019, 31, 80. [Google Scholar] [CrossRef]
- Lazo, P.; Stafilov, T.; Qarri, F.; Allajbeu, S.; Bekteshi, L.; Frontasyeva, M.; Harmens, H. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol. Indic. 2019, 101, 1007–1017. [Google Scholar] [CrossRef]
- Hristozova, G.; Marinova, S.; Svozilík, V.; Nekhoroshkov, P.; Frontasyeva, M.V. Biomonitoring of elemental atmospheric deposition: Spatial distributions in the 2015/2016 moss survey in Bulgaria. J. Radioanal. Nucl. Chem. 2020, 323, 839–849. [Google Scholar] [CrossRef]
- Svozilíková Krakovská, A.; Svozilík, V.; Zinicovscaia, I.; Vergel, K.; Jančík, P. Analysis of Spatial Data from Moss Biomonitoring in Czech–Polish Border. Atmosphere 2020, 11, 1237. [Google Scholar] [CrossRef]
- Chaligava, O.; Shetekauri, S.; Badawy, W.M.; Frontasyeva, M.V.; Zinicovscaia, I.; Shetekauri, T.; Kvlividze, A.; Vergel, K.; Yushin, N. Characterization of Trace Elements in Atmospheric Deposition Studied by Moss Biomonitoring in Georgia. Arch. Environ. Contam. Toxicol. 2021, 80, 350–367. [Google Scholar] [CrossRef]
- Šajn, R.; Bačeva Andonovska, K.; Stafilov, T.; Barandovski, L. Moss as a Biomonitor to Identify Atmospheric Deposition of Minor and Trace Elements in Macedonia. Atmosphere 2024, 15, 297. [Google Scholar] [CrossRef]
- Fernández, J.A.; Aboal, J.R.; Carballeira, A. Identification of pollution sources by means of moss bags. Ecotoxicol. Environ. Saf. 2004, 59, 76–83. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Ejembi, J.I.; Nwigboji, I.H.; Franklin, L.; Malozovsky, Y.; Zhao, G.L.; Bagayoko, D. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide. J. Appl. Phys. 2014, 116, 103711. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; United States Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- De Beuckelaer, A. A closer examination on some parametric alternatives to the ANOVA F-test. Stat. Pap. 1996, 37, 291–305. [Google Scholar] [CrossRef]
- Delacre, M.; Leys, C.; Mora, Y.L.; Lakens, D. Taking Parametric Assumptions Seriously: Arguments for the Use of Welch’s F-test instead of the Classical F-test in One-Way ANOVA. Int. Rev. Soc. Psychol. 2019, 32, 13. [Google Scholar] [CrossRef]
- Wang, Y.; Dicle, C.; Sznaier, M.; Camps, O. Self Scaled Regularized Robust Regression. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3261–3269. [Google Scholar] [CrossRef]
- Forero, P.A.; Giannakis, G.B. Sparsity-Exploiting Robust Multidimensional Scaling. IEEE Trans. Signal Process. 2012, 60, 4118–4134. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Mao, J.-W.; Zhao, J.-Q.; Gao, X.; Weyer, S.; Horn, I.; Holtz, F.; Sossi, P.A.; Wang, D.-C. Tin isotopes as geochemical tracers of ore-forming processes with Sn mineralization. Am. Mineral. 2022, 107, 2111–2127. [Google Scholar] [CrossRef]
- Merget, R.; Rosner, G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci. Total Environ. 2001, 270, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Cicchella, D.; Zuzolo, D.; Albanese, S.; Fedele, L.; Di Tota, I.; Guagliardi, I.; Thiombane, M.; De Vivo, B.; Lima, A. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J. Geochem. Explor. 2020, 213, 106519. [Google Scholar] [CrossRef]
- Dimitriou, K.; Mihalopoulos, N. Air Quality Assessment in Six Major Greek Cities with an Emphasis on the Athens Metropolitan Region. Atmosphere 2024, 15, 1074. [Google Scholar] [CrossRef]
- Anatolaki, C.; Tsitouridou, R. Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece. Atmos. Res. 2007, 85, 413–428. [Google Scholar] [CrossRef]
- Likus-Cieślik, J.; Pietrzykowski, M. Sulfur Contamination and Environmental Effects: A Case Study of Current SO2 Industrial Emission by Biomonitoring and Regional Post-Mining Hot-Spots. Open Biotechnol. J. 2021, 15, 82–96. [Google Scholar] [CrossRef]
- Progiou, A.; Liora, N.; Sebos, I.; Chatzimichail, C.; Melas, D. Measures and Policies for Reducing PM Exceedances through the Use of Air Quality Modeling: The Case of Thessaloniki, Greece. Sustainability 2023, 15, 930. [Google Scholar] [CrossRef]
- Canturk, U. Determining the plants to be used in monitoring the change in thallium concentrations in the air. CERNE 2023, 29, e-103282. [Google Scholar] [CrossRef]
- Joselow, M.M.; Tobias, E.; Koehler, R.; Coleman, S.; Bogden, J.; Gause, D. Manganese pollution in the city environment and its relationship to traffic density. Am. J. Public Health 1978, 68, 557–560. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Zhang, S.-P.; Ni, S.-J.; Long, Z.-J. Characteristics, Sources, and Health Risk Assessment of Trace Elements in PM10 at an Urban Site in Chengdu, Southwest China. Aerosol Air Qual. Res. 2018, 18, 357–370. [Google Scholar] [CrossRef]
- Stančić, Z.; Fiket, Ž.; Vuger, A. Tin and Antimony as Soil Pollutants along Railway Lines—A Case Study from North-Western Croatia. Environments 2022, 9, 10. [Google Scholar] [CrossRef]
- Savery, L.C.; Wise, S.S.; Falank, C.; Wise, J.; Gianios, C., Jr.; Thompson, W.D.; Perkins, C.; Mason, M.D.; Payne, R.; Kerr, I.; et al. Global Assessment of Silver Pollution using Sperm Whales (Physeter macrocephalus) as an Indicator Species. Environ. Anal. Toxicol. 2013, 3, 1000169. [Google Scholar] [CrossRef]
- Padhye, L.P.; Jasemizad, T.; Bolan, S.; Tsyusko, O.V.; Unrine, J.M.; Biswal, B.K.; Balasubramanian, R.; Zhang, Y.; Zhang, T.; Zhao, J.; et al. Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Sci. Total Environ. 2023, 871, 161926. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Yenokyan, T.; Sahakyan, L. Geospatial patterns and geochemical compositional characteristics of molybdenum in different mediums of an urban environment. Environ. Res. 2023, 239, 117340. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K.; Bijay-Singh. Chapter One—Genesis of seleniferous soils and associated animal and human health problems. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 154, pp. 1–80. [Google Scholar] [CrossRef]
- Diac, C.; Maxim, F.I.; Tirca, R.; Ciocanea, A.; Filip, V.; Vasile, E.; Stamatin, S.N. Electrochemical Recycling of Platinum Group Metals from Spent Catalytic Converters. Metals 2020, 10, 822. [Google Scholar] [CrossRef]
- Ito, A.; Miyakawa, T. Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron. Environ. Sci. Technol. 2023, 57, 4091–4100. [Google Scholar] [CrossRef]
- Brahney, J.; Ballantyne, A.P.; Sievers, C.; Neff, J.C. Increasing Ca2+ deposition in the western US: The role of mineral aerosols. Aeolian Res. 2013, 10, 77–87. [Google Scholar] [CrossRef]
- Bellis, D.; Ma, R.; Bramall, N.; McLeod, C.W.; Chapman, N.; Satake, K. Airborne uranium contamination—As revealed through elemental and isotopic analysis of tree bark. Environ. Pollut. 2001, 114, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Karle, N.N.; Sakai, R.K.; Chiao, S.; Fitzgerald, R.M.; Stockwell, W.R. Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels. Atmosphere 2024, 15, 740. [Google Scholar] [CrossRef]
- Birmili, W.; Allen, A.G.; Bary, F.; Harrison, R.M. Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. Technol. 2006, 40, 1144–1153. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Haynes, H.M.; Taylor, K.G.; Rothwell, J.; Byrne, P. Characterisation of road-dust sediment in urban systems: A review of a global challenge. J. Soils Sediments 2020, 20, 4194–4217. [Google Scholar] [CrossRef]
- Lazo, P.; Steinnes, E.; Qarri, F.; Allajbeu, S.; Kane, S.; Stafilov, T.; Frontasyeva, M.V.; Harmens, H. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe. Chemosphere 2018, 190, 337–349. [Google Scholar] [CrossRef]
- Aničić, M.; Tasić, M.; Frontasyeva, M.V.; Tomašević, M.; Rajšić, S.; Mijić, Z.; Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ. Pollut. 2009, 157, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef]
- Yakasai, H.M.; Rahman, M.F.; Yasid, N.A.; Ahmad, S.A.; Halmi, M.I.E.; Shukor, M.Y. Elevated Molybdenum Concentrations in Soils Contaminated with Spent Oil Lubricant. J. Environ. Microbiol. Toxicol. 2017, 5, 1–3. [Google Scholar] [CrossRef]
- Karageorgis, A.P.; Botsou, F.; Kaberi, H.; Iliakis, S. Geochemistry of major and trace elements in surface sediments of the Saronikos Gulf (Greece): Assessment of contamination between 1999 and 2018. Sci. Total Environ. 2020, 717, 137046. [Google Scholar] [CrossRef]
- Saggu, G.S.; Mittal, S.K. Source apportionment of PM10 by positive matrix factorization model at a source region of biomass burning. J. Environ. Manag. 2020, 266, 110545. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, J.; Feng, X.; Hu, G.; Li, X.; Zhang, L.; Yang, L.; Wang, G.; Sun, G.; Li, Z. Fate of thallium during precalciner cement production and the atmospheric emissions. Process Saf. Environ. Prot. 2021, 151, 158–165. [Google Scholar] [CrossRef]
- Vikström, A.; Sandström, K.; Wilhelmsson, B.; Broström, M.; Carlborg, M.; Eriksson, M. Volatilisation of elements during clinker formation in a carbon dioxide atmosphere. Adv. Cem. Res. 2025, 37, 289–300. [Google Scholar] [CrossRef]
- Lin, X.; Wang, X.; Zhou, J.; Chi, Q.; Nie, L.; Zhang, B.; Xu, S.; Zhao, S.; Liu, H.; Sun, B.; et al. Concentrations, variations and distribution of molybdenum (Mo) in catchment outlet sediments of China: Conclusions from the China geochemical baselines project. Appl. Geochem. 2019, 103, 50–58. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kosmopoulos, P.G.; Nastos, P.T.; Kambezidis, H.D.; Sharma, M.; Mehdi, W. Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS. Geomat. Nat. Hazards Risk 2012, 3, 35–54. [Google Scholar] [CrossRef]
- Vasilatou, V.; Manousakas, M.; Gini, M.; Diapouli, E.; Scoullos, M.; Eleftheriadis, K. Long Term Flux of Saharan Dust to the Aegean Sea around the Attica Region, Greece. Front. Mar. Sci. 2017, 4, 42. [Google Scholar] [CrossRef]
- Balis, D.S.; Amiridis, V.; Nickovic, S.; Papayannis, A.; Zerefos, C. Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece. Geophys. Res. Lett. 2004, 31, L13104. [Google Scholar] [CrossRef]
- Remoundaki, E.; Bourliva, A.; Kokkalis, P.; Mamouri, R.E.; Papayannis, A.; Grigoratos, T.; Samara, C.; Tsezos, M. PM10 composition during an intense Saharan dust transport event over Athens (Greece). Sci. Total Environ. 2011, 409, 4361–4372. [Google Scholar] [CrossRef]
- Aničić, M.; Tasić, M.; Frontasyeva, M.V.; Tomašević, M.; Rajšić, S.; Strelkova, L.P.; Popović, A.; Steinnes, E. Active biomonitoring with wet and dry moss: A case study in an urban area. Environ. Chem. Lett. 2009, 7, 55–60. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int. J. Nanomed. 2017, 12, 2913–2922. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xin, Y.; Li, Q.; Shang, Y.; Ping, Z.; Min, J.; Cahill, C.M.; Rogers, J.T.; Wang, F. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: A systematic review and meta-analysis. Environ. Health 2020, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Markiv, B.; Expósito, A.; Ruiz-Azcona, L.; Santibáñez, M.; Fernández-Olmo, I. Environmental exposure to manganese and health risk assessment from personal sampling near an industrial source of airborne manganese. Environ. Res. 2023, 224, 115478. [Google Scholar] [CrossRef] [PubMed]
- Campanella, B.; Colombaioni, L.; Benedetti, E.; Di Ciaula, A.; Ghezzi, L.; Onor, M.; D’Orazio, M.; Giannecchini, R.; Petrini, R.; Bramanti, E. Toxicity of Thallium at Low Doses: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4732. [Google Scholar] [CrossRef]
- Czubacka, E.; Czerczak, S. Are platinum nanoparticles safe to human health? Med. Pr. 2019, 70, 487–495. [Google Scholar] [CrossRef]
Site Type | Selection Criteria | Locations |
---|---|---|
Motorway | Chosen to assess the effects of traffic-related pollutant emitted along the heavily trafficked roadway. High traffic density involving passenger and commercial vehicles contributes to microelement deposition from vehicle wear and emissions. | L01, L02, L03 |
Airport Surroundings | Aircraft emissions contribute significantly to local air quality through the deposition of elements, which can be linked to aviation fuel and exhaust. This provides insights into localized deposition patterns related to aviation activities. | L15, L16 |
City Center | This zone reflects the complexity of central urban environments, where elevated population density and diverse land uses contribute to a multifactorial pollution profile. The interplay of vehicular traffic, commercial operations, and residential energy use in this area is expected to significantly influence the spatial heterogeneity of PTE concentrations. | L04, L05, L06, L11, L12, L14 |
Industrial Zone | This area includes industries such as chemical manufacturing, metal processing, construction materials, automotive and machinery, textile and plastic production, etc., it is a key hotspot for pollution assessments (Sindos Industrial Area) | L07, L08, L09, L13 |
Road Adjacent to Oil and Fuel Terminal | Examines the influence of oil and fuel storage and transport activities. Handling and transfer processes at this terminal are potential sources of elements commonly associated with fuel combustion and lubricant use/degradation. | L10 |
Publication | Samples | Season or Month | Year(s) | Country | Area (km2) | Urban | Chemical Elements | No. of Species |
---|---|---|---|---|---|---|---|---|
Natali et al., [14] | 110 | Winter (December) | 2013 | FR | 17,174 | Yes | 20 | 9 |
Donovan et al., [15] | 346 | Winter (December) | 2013 | USA | 376 | Yes | 1 | 1 |
Steinnes et al., [16] | 229 | June to September | 2015 | NO | 385,207 | No | 13 | Not indicated |
Nickel and Schröder [25] | 400 | Summer | 2015 | DE | 357,596 | No | 13 | 1 |
Lazo et al., [26] | 55 | August -September | 2015 | AL | 28,748 | No | 20 | 1 |
Hristozova et al., [27] | 115 | Not indicated | 2015–2016 | BU | 110,993 | No | 34 | 3 |
Krakovská et al., [28] | 94 | Not indicated | 2015, 2016 | CZ | 3600 | No | 38 | 9 |
Betsou et al., [17] | 105 | End of summer | 2016 | GR | 52,035 | No | 30 | 10 |
Lazo et al., [18] | 47 | October-November & June-July | 2010, 2011 | AL | 28,748 | No | 10 | 1 |
Chaligava et al., [29] | 120 | Summer | 2014–2017 | GE | 69,700 | No | 41 | 3 |
Chaligava et al., [19] | 95 | Not indicated | 2021–2023 | GE | 69,700 | No | 15 | 4 |
Šajn et al., [30] | 72 | August to September | 2020 | MK | 25,700 | No | 28 | 4 |
Rajandu et al., [20] | 49 | April | 2018 | EE | 159.2 | Yes | 3 | 5 |
Month | Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | Wind Speed (km/h) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Maximum | Minimum | Maximum | Minimum | Mean | High | ||
January | 6.6 | 11.2 | 2.9 | 80.3 | 52.6 | 22.4 | 8.7 | 33.1 |
February | 11.5 | 16.7 | 7.0 | 84.3 | 52.3 | 19.1 | 5.4 | 27.6 |
March | 13.2 | 17.8 | 9.3 | 87.1 | 58.0 | 49.7 | 5.0 | 27.3 |
April | 18.0 | 23.9 | 12.9 | 82.9 | 43.3 | 25.5 | 5.5 | 27.2 |
May | 20.2 | 25.0 | 16.1 | 82.4 | 49.0 | 20.5 | 5.7 | 28.7 |
June | 27.7 | 33.3 | 22.7 | 79.0 | 41.7 | 16.8 | 5.8 | 28.9 |
July | 29.7 | 35.5 | 24.3 | 76.4 | 38.0 | 13.1 | 6.3 | 29.3 |
PTEs | Meteorological Parameters | Correlations (R) | 95% CI for R | p-Values |
---|---|---|---|---|
Be | Temperature Mean | −0.229 | (–0.359, –0.090) | 0.001 |
Tl | Temperature Mean | 0.260 | (0.123, 0.388) | 0.000 |
Pt | Temperature Maximum | −0.756 | (–0.811, –0.688) | 0.000 |
Tl | Temperature Maximum | 0.789 | (0.729, 0.837) | 0.000 |
Tl | Temperature Minimum | 0.775 | (0.711, 0.826) | 0.000 |
S | Temperature Minimum | −0.253 | (–0.381, –0.116) | 0.000 |
P | Relative Humidity Minimum | 0.317 | (0.183, 0.439) | 0.000 |
K | Relative Humidity Minimum | 0.218 | (0.079, 0.349) | 0.002 |
Se | Relative Humidity Minimum | −0.334 | (–0.454, –0.202) | 0.000 |
Tl | Relative Humidity Minimum | −0.411 | (–0.522, −0.286) | 0.000 |
K | Rainfall | −0.172 | (–0.292, –0.042) | 0.007 |
Na | Wind Speed Mean | −0.170 | (–0.304, –0.029) | 0.019 |
Fe | Wind Speed High | 0.215 | (0.092, 0.332) | 0.002 |
Tl | Wind Speed High | 0.113 | (0.000, 0.221) | 0.048 |
Elements | Factors | df | Mean Squares | F-Statistics | p-Value | Model Adjusted R2 |
---|---|---|---|---|---|---|
Be | Months | 2 | 0.007286 | 5.07 | 0.013 ** | 79.23% |
Locations | 15 | 0.017836 | 12.41 | 0.000 *** | ||
B | Months | 2 | 3.408 | 0.26 | 0.771 ns | 74.78% |
Locations | 15 | 135.181 | 10.39 | 0.000 *** | ||
Ca | Months | 2 | 77342816 | 2.42 | 0.106 ns | 90.57% |
Locations | 15 | 986819357 | 30.91 | 0.000 *** | ||
Ce | Months | 2 | 22.424 | 2.90 | 0.070 ns | 74.88% |
Locations | 15 | 77.913 | 10.08 | 0.000 *** | ||
Fe | Months | 2 | 304266 | 0.04 | 0.958 ns | 74.05% |
Locations | 15 | 70816331 | 10.07 | 0.000 *** | ||
Mg | Months | 2 | 132977 | 0.67 | 0.520 ns | 94.66% |
Locations | 15 | 11260505 | 56.56 | 0.000 *** | ||
Mn | Months | 2 | 29611 | 0.05 | 0.954 ns | 52.42% |
Locations | 15 | 2867061 | 4.58 | 0.000 *** | ||
Hg | Months | 2 | 0.001077 | 0.89 | 0.420 ns | 77.62% |
Locations | 15 | 0.014339 | 11.88 | 0.000 *** | ||
Mo | Months | 2 | 0.3143 | 1.44 | 0.253 ns | 86.22% |
Locations | 15 | 4.4830 | 20.55 | 0.000 *** | ||
P | Months | 2 | 4275261 | 104.83 | 0.000 *** | 87.11% |
Locations | 15 | 339493 | 8.32 | 0.000 *** | ||
Pt | Months | 2 | 0.000013 | 2.35 | 0.113 ns | 82.61% |
Locations | 15 | 0.000090 | 15.70 | 0.000 *** | ||
K | Months | 2 | 1268404 | 11.55 | 0.000 *** | 70.87% |
Locations | 15 | 792401 | 7.22 | 0.000 *** | ||
Se | Months | 2 | 0.014685 | 2.19 | 0.130 ns | 78.38% |
Locations | 15 | 0.081953 | 12.20 | 0.000 *** | ||
Ag | Months | 2 | 0.004897 | 0.56 | 0.578 ns | 89.89% |
Locations | 15 | 0.253965 | 28.93 | 0.000 *** | ||
Na | Months | 2 | 12586 | 3.39 | 0.047 ** | 68.68% |
Locations | 15 | 28048 | 7.55 | 0.000 *** | ||
Sr | Months | 2 | 32.91 | 0.75 | 0.480 ns | 82.70% |
Locations | 15 | 700.34 | 16.01 | 0.000 *** | ||
S | Months | 2 | 336447 | 7.39 | 0.002 *** | 80.47% |
Locations | 15 | 594374 | 13.06 | 0.000 *** | ||
Tl | Months | 2 | 0.233731 | 119.11 | 0.000 *** | 84.65% |
Locations | 15 | 0.004960 | 2.53 | 0.015 ** | ||
Sn | Months | 2 | 0.4811 | 0.31 | 0.732 ns | 88.95% |
Locations | 15 | 40.1792 | 26.30 | 0.000 *** | ||
Ti | Months | 2 | 36.5 | 0.02 | 0.981 ns | 75.00% |
Locations | 15 | 19604.9 | 10.53 | 0.000 *** | ||
U | Months | 2 | 0.006034 | 0.19 | 0.831 ns | 89.43% |
Locations | 15 | 0.895999 | 27.63 | 0.000 *** |
Location | Type | Be | B | Ca | Ce | Fe | Mg | Mn | Hg | Mo | P | Pt | K | Se | Ag | Na | Sr | S | Tl | Sn | Ti | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L01 | M | 0.32 | 16.0 | 74,421.4 | 21.0 | 10,353.3 | 4496.7 | 265.2 | 0.05 | 1.05 | 320.9 | 0.003 | 2877.6 | 0.38 | 0.10 | 136.1 | 70.6 | 536.1 | 0.24 | 1.90 | 258.6 | 0.86 |
L02 | M | 0.09 | 30.2 | 19,985.7 | 4.6 | 2369.1 | 2240.4 | 109.9 | 0.07 | 0.86 | 750.6 | 0.002 | 3801.7 | 0.11 | 0.11 | 73.3 | 31.4 | 1295.2 | 0.25 | 0.88 | 82.5 | 0.15 |
L03 | M | 0.41 | 29.8 | 55,326.2 | 24.7 | 12,076.2 | 4888.2 | 311.5 | 0.06 | 0.96 | 392.8 | 0.005 | 3980.8 | 0.55 | 0.09 | 148.8 | 66.3 | 540.7 | 0.19 | 1.64 | 307.3 | 0.69 |
L04 | C | 0.23 | 33.2 | 49,967.5 | 14.6 | 9012.5 | 7869.0 | 238.4 | 0.06 | 3.24 | 708.5 | 0.004 | 3365.0 | 0.47 | 0.13 | 299.1 | 80.4 | 1616.2 | 0.20 | 4.40 | 259.2 | 2.36 |
L05 | C | 0.29 | 35.8 | 49,463.1 | 20.1 | 11,515.6 | 4412.5 | 276.0 | 0.12 | 4.44 | 1326.5 | 0.017 | 4207.6 | 0.48 | 0.36 | 188.2 | 73.2 | 1982.9 | 0.19 | 12.51 | 311.6 | 0.77 |
L06 | C | 0.40 | 35.5 | 36,317.7 | 20.3 | 12,163.9 | 4471.3 | 354.4 | 0.11 | 2.41 | 1628.9 | 0.004 | 3945.6 | 0.65 | 0.21 | 164.7 | 68.6 | 1886.6 | 0.23 | 10.73 | 279.4 | 0.69 |
L07 | I | 0.33 | 33.0 | 30,391.6 | 20.3 | 15,520.4 | 3536.9 | 556.2 | 0.09 | 1.95 | 1146.7 | 0.002 | 4250.0 | 0.65 | 0.27 | 162.9 | 44.6 | 1220.4 | 0.26 | 4.66 | 365.3 | 0.59 |
L08 | I | 0.26 | 46.2 | 48,610.4 | 16.7 | 19,565.1 | 3847.2 | 806.0 | 0.11 | 2.84 | 1009.9 | 0.003 | 4345.9 | 0.51 | 0.21 | 242.4 | 54.8 | 1500.5 | 0.19 | 6.28 | 321.2 | 1.03 |
L09 | I | 0.31 | 31.3 | 48,697.5 | 21.7 | 12,953.0 | 3889.8 | 427.4 | 0.06 | 1.65 | 1121.1 | 0.003 | 3965.5 | 0.63 | 0.10 | 221.8 | 61.1 | 1409.2 | 0.28 | 2.60 | 395.7 | 1.11 |
L10 | R | 0.33 | 39.5 | 56,382.0 | 19.2 | 12,310.2 | 3874.5 | 391.3 | 0.11 | 2.51 | 1205.5 | 0.005 | 5034.6 | 0.57 | 0.20 | 482.6 | 74.2 | 1763.3 | 0.19 | 3.05 | 378.0 | 1.79 |
L11 | C | 0.31 | 30.7 | 70,344.6 | 21.3 | 15,117.9 | 5317.7 | 383.5 | 0.21 | 4.35 | 939.1 | 0.021 | 4156.6 | 0.48 | 1.26 | 298.1 | 95.1 | 1753.7 | 0.30 | 8.33 | 328.0 | 1.25 |
L12 | C | 0.27 | 39.9 | 48,958.1 | 19.5 | 21,724.9 | 4391.4 | 3249.9 | 0.14 | 4.05 | 876.1 | 0.006 | 4323.8 | 0.45 | 0.31 | 211.9 | 74.5 | 1662.4 | 0.32 | 7.21 | 318.4 | 0.79 |
L13 | I | 0.34 | 32.9 | 71,358.0 | 17.6 | 16,223.7 | 4107.4 | 3080.3 | 0.26 | 2.14 | 799.2 | 0.005 | 3506.2 | 0.40 | 0.26 | 210.0 | 67.5 | 1139.7 | 0.28 | 4.55 | 326.2 | 0.88 |
L14 | C | 0.29 | 36.2 | 24,067.5 | 15.1 | 13,004.8 | 10,636.3 | 351.9 | 0.26 | 1.33 | 675.4 | 0.002 | 3502.2 | 0.84 | 0.03 | 226.9 | 48.1 | 990.3 | 0.22 | 0.66 | 226.8 | 1.31 |
L15 | A | 0.25 | 25.0 | 59,230.7 | 10.4 | 6595.7 | 4718.6 | 173.5 | 0.10 | 1.52 | 751.3 | 0.003 | 4121.5 | 0.29 | 0.05 | 349.4 | 65.5 | 1105.2 | 0.24 | 1.18 | 180.5 | 1.24 |
L16 | A | 0.19 | 30.0 | 14,300.5 | 11.7 | 6695.8 | 3903.2 | 183.0 | 0.17 | 0.97 | 1101.1 | 0.001 | 4569.2 | 0.45 | 0.06 | 189.3 | 53.9 | 915.0 | 0.26 | 0.88 | 202.5 | 0.24 |
Mean | 0.29 | 32.8 | 47,363.9 | 17.4 | 12,325.1 | 4787.6 | 697.4 | 0.12 | 2.27 | 922.1 | 0.005 | 3997.1 | 0.49 | 0.24 | 225.3 | 64.4 | 1332.3 | 0.24 | 4.47 | 283.8 | 0.98 | |
Median | 0.30 | 33.0 | 49,210.6 | 19.4 | 12,237.0 | 4402.0 | 353.2 | 0.11 | 2.04 | 907.6 | 0.004 | 4051.1 | 0.48 | 0.17 | 211.0 | 66.9 | 1352.2 | 0.24 | 3.72 | 309.4 | 0.87 | |
SE | 0.02 | 1.62 | 4390.20 | 1.23 | 1176.07 | 468.97 | 236.64 | 0.02 | 0.30 | 81.43 | 0.00 | 124.40 | 0.04 | 0.07 | 23.41 | 3.70 | 107.74 | 0.01 | 0.89 | 19.57 | 0.13 | |
RSD% | 286.4 | 405.0 | 169.7 | 253.0 | 162.0 | 155.2 | 26.3 | 85.4 | 91.5 | 183.1 | 0.5 | 703.2 | 208.7 | 16.31 | 140.7 | 335.0 | 209.1 | 510.3 | 26.0 | 262.6 | 85.8 | |
Reference Elemental Concentrations from Moss Grown in a Controlled Environment | ||||||||||||||||||||||
BsV1 | 0.017 | 27.4 | 16,206.2 | 0.834 | 506.7 | 3437.8 | 33.0 | 0.07 | 0.281 | 1037.1 | 0.001 | 2995.2 | 0.21 | 0.03 | 115.5 | 59.6 | 1305.8 | 0.01 | 0.66 | 19.5 | 0.13 | |
BsV2 | 0.022 | 29.6 | 14,671.6 | 1.119 | 569.7 | 3100.4 | 42.6 | 0.06 | 0.283 | 1161.2 | 0.001 | 3278.8 | 0.21 | 0.04 | 95.7 | 54.8 | 1762.8 | 0.01 | 0.46 | 19.6 | 0.16 | |
BsV3 | 0.021 | 29.1 | 15,155.5 | 1.044 | 531.1 | 3590.0 | 38.2 | 0.05 | 0.258 | 924.8 | 0.001 | 3277.2 | 0.19 | 0.04 | 99.0 | 58.3 | 1167.2 | 0.01 | 0.40 | 17.9 | 0.15 | |
Mean | 0.020 | 28.7 | 15,344.4 | 1.00 | 535.8 | 3376.1 | 37.9 | 0.06 | 0.3 | 1041.0 | 0.001 | 3183.7 | 0.20 | 0.04 | 103.4 | 57.6 | 1411.9 | 0.01 | 0.50 | 19.0 | 0.15 | |
SE | 0.01 | 0.54 | 369.84 | 0.07 | 14.97 | 118.12 | 2.27 | 0.00 | 0.01 | 55.74 | 0.001 | 76.97 | 0.01 | 0.01 | 5.00 | 1.17 | 146.92 | 0.00 | 0.07 | 0.45 | 0.01 | |
RSD% | 3.3 | 1.4 | 1.2 | 4.31 | 0.89 | 1.8 | 0.7 | 1.11 | 2.5 | 0.4 | 3.333 | 2.9 | 2.27 | 10.26 | 4.4 | 1.3 | 8.1 | 2.05 | 10.84 | 2.6 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfetsas, T.; Ghoghoberidze, S.; Karnoutsos, P.; Tziakas, V.; Karagiovanidis, M.; Katsantonis, D. Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling. Environments 2025, 12, 188. https://doi.org/10.3390/environments12060188
Sfetsas T, Ghoghoberidze S, Karnoutsos P, Tziakas V, Karagiovanidis M, Katsantonis D. Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling. Environments. 2025; 12(6):188. https://doi.org/10.3390/environments12060188
Chicago/Turabian StyleSfetsas, Themistoklis, Sopio Ghoghoberidze, Panagiotis Karnoutsos, Vassilis Tziakas, Marios Karagiovanidis, and Dimitrios Katsantonis. 2025. "Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling" Environments 12, no. 6: 188. https://doi.org/10.3390/environments12060188
APA StyleSfetsas, T., Ghoghoberidze, S., Karnoutsos, P., Tziakas, V., Karagiovanidis, M., & Katsantonis, D. (2025). Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling. Environments, 12(6), 188. https://doi.org/10.3390/environments12060188