Low Concentrations of Ibuprofen Had No Adverse Effects on Deleatidium spp. Mayfly Nymphs: A 7-Day Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Water Media and Mayfly Food
2.2. Mayfly Collection
2.3. Experimental Design
2.4. Mayfly Endpoints
2.5. Water Chemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Measured Ibuprofen and Imidacloprid Concentrations
3.2. Mayfly Responses to Ibuprofen Dose Concentrations
3.3. Comparisons with No-Toxicant and Imidacloprid Controls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef]
- Bagnis, S.; Fitzsimons, M.F.; Snape, J.; Tappin, A.; Comber, S. Processes of distribution of pharmaceuticals in surface freshwaters: Implications for risk assessment. Environ. Chem. Lett. 2018, 16, 1193–1216. [Google Scholar]
- Hussain, A.; Ashique, S.; Mohd, Z.H.; Afzal, O.; Asiri, Y.I.; Kumar, P.; Dua, K.; Webster, T.J.; Altamimi, A.S.A.; Altamimi, M.A. Pharmaceutical contaminants in aquatic systems, conventional and green strategies, recent updates, challenges and policies, and potential outcomes. J. Mol. Liq. 2023, 389, 122905. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020, 6, e04087. [Google Scholar] [PubMed]
- Jan-Roblero, J.; Cruz-Maya, J.A. Ibuprofen: Toxicology and biodegradation of an emerging contaminant. Molecules 2023, 28, 2097. [Google Scholar] [CrossRef]
- Żur, J.; Piński, A.; Marchlewicz, A.; Hupert-Kocurek, K.; Wojcieszyńska, D.; Guzik, U. Organic micropollutants paracetamol and ibuprofen—Toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ. Sci. Pollut. Res. 2018, 25, 21498–21524. [Google Scholar]
- Candido, J.P.; Andrade, S.J.; Fonseca, A.L.; Silva, F.S.; Silva, M.R.A.; Kondo, M.M. Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environ. Sci. Pollut. Res. 2016, 23, 19911–19920. [Google Scholar] [CrossRef]
- Parolini, M. Toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 2020, 740, 140043. [Google Scholar]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: As review. Environ. Int. 2015, 74, 291–303. [Google Scholar]
- Chowdhury, S.; Dubey, V.K.; Choudhury, S.; Das, A.; Jeengar, D.; Sujatha, B.; Kumar, A.; Kumar, N.; Semwal, A.; Kumar, V. Insects as bioindicator: A hidden gem for environmental monitoring. Front. Environ. Sci. 2023, 11, 1146052. [Google Scholar]
- Landcare Research. Single gill mayfly (Deleatidium). 2024. Available online: https://www.landcareresearch.co.nz/tools-and-resources/identification/freshwater-invertebrates-guide/identification-guide-what-freshwater-invertebrate-is-this/jointed-legs/insects-and-springtails/mayflies/single-gill-mayfly-deleatidium/ (accessed on 13 December 2024).
- Monjardim, M.; Paresque, R.; Salles, F.F. Phylogeny and classification of Leptophlebiidae (Ephemeroptera) with an emphasis on neotropical fauna. Syst. Entomol. 2020, 45, 415–429. [Google Scholar]
- Oetken, M.; Nentwig, G.; Löffler, D.; Ternes, T.; Oehlmann, J. Effects of pharmaceuticals on aquatic invertebrates. part I. the antiepileptic drug carbamazepine. Arch. Environ. Contam. Toxicol. 2005, 49, 353–361. [Google Scholar]
- Amoatey, P.; Baawain, M.S. Effects of pollution on freshwater aquatic organisms. Water Environ. Res. 2019, 91, 1272–1287. [Google Scholar] [PubMed]
- Weis, J.S.; Smith, G.; Zhou, T.; Santiago-Bass, C.; Weis, P. Effects of contaminants on behavior: Biochemical mechanisms and ecological consequences. BioScience 2001, 51, 209. [Google Scholar]
- Camp, A.A.; Buchwalter, D.B. Can’t take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid. Aquat Toxicol. 2016, 178, 49–57. [Google Scholar]
- Macaulay, S.J.; Hageman, K.J.; Alumbaugh, R.E.; Lyons, S.M.; Piggott, J.J.; Matthaei, C.D. Chronic toxicities of neonicotinoids to nymphs of the common New Zealand mayfly Deleatidium spp. Environ. Toxicol. Chem. 2019, 38, 2459–2471. [Google Scholar]
- Hunn, J.; Macaulay, S.J.; Matthaei, C. Food shortage amplifies negative sub-lethal impacts 3 of low-level exposure to the neonicotinoid insecticide imidacloprid on stream mayfly nymphs. Water 2019, 11, 2142. [Google Scholar]
- Bernot, M.J.; Bernot, R.J.; Matthaei, C.D. Emerging organic contaminants (EOCs) in freshwaters in Dunedin, New Zealand. N. Z. J. Mar. Freshw. Res. 2019, 53, 3–14. [Google Scholar]
- Macaulay, S.J.; Buchwalter, D.B.; Matthaei, C.D. Water temperature interacts with the insecticide imidacloprid to alter acute lethal and sublethal toxicity to mayfly larvae. N. Z. J. Mar. Freshw. Res. 2020, 54, 115–130. [Google Scholar]
- Moermond, C.T.A.; Kase, R.; Korkaric, M.; Ågerstrand, M. CRED: Criteria for reporting and evaluating ecotoxicity data. Environ. Toxicol. Chem. 2016, 35, 1297–1309. [Google Scholar] [PubMed]
- Hughes, S.R.; Kay, P.; Brown, L.E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 2013, 47, 661–677. [Google Scholar]
- Van der Hoeven, N. Is it safe to pool the blank control data with the solvent control data? Ecotoxicol. Environ. Saf. 2010, 73, 1480–1483. [Google Scholar]
- Bolker, B. Dealing with quasi-models in R. 2022. Available online: https://cran.r-project.org/web/packages/bbmle/vignettes/quasi.pdf (accessed on 8 June 2024).
- McFadden, D. Quantitative Methods for Analysing Travel Behaviour of Individuals: Some Recent Developments; Cowles Foundation for Research in Economics, Yale University: New Haven, NW, USA, 1977. Available online: https://ideas.repec.org/p/cwl/cwldpp/474.html (accessed on 12 February 2024).
- Nakagawa, S.; Cuthill, I.C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol Rev. 2007, 82, 591–605. [Google Scholar]
- Heckmann, L.H.; Callaghan, A.; Hooper, H.L.; Connon, R.; Hutchinson, T.H.; Maund, S.J.; Sibly, R.M. Chronic toxicity of ibuprofen to Daphnia magna: Effects on life history traits and population dynamics. Toxicol. Lett. 2007, 172, 137–145. [Google Scholar]
- Han, S.; Choi, K.; Kim, J.; Ji, K.; Kim, S.; Ahn, B.; Yun, J.; Choi, K.; Khim, J.S.; Zhang, X.; et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat. Toxicol. 2010, 98, 256–264. [Google Scholar]
- Du, J.; Mei, C.F.; Ying, G.G.; Xu, M.Y. Toxicity thresholds for diclofenac, acetaminophen and ibuprofen in the water flea Daphnia magna. Bull. Environ. Contam. Toxicol. 2016, 97, 84–90. [Google Scholar]
- Sung, H.H.; Chiu, Y.W.; Wang, S.Y.; Chen, C.M.; Huang, D.J. Acute toxicity of mixture of acetaminophen and ibuprofen to green neon shrimp, Neocaridina denticulate. Environ. Toxicol. Pharmacol. 2014, 38, 8–13. [Google Scholar]
- Pounds, N.; Maclean, S.; Webley, M.; Pascoe, D.; Hutchinson, T. Acute and chronic effects of ibuprofen in the mollusc Planorbis carinatus (Gastropoda: Planorbidae). Ecotoxicol. Environ. Saf. 2008, 70, 47–52. [Google Scholar] [PubMed]
- Quinn, B.; Gagné, F.; Blaise, C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci. Total Environ. 2008, 389, 306–314. [Google Scholar] [PubMed]
- Muñiz-González, A.B. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. Environ. Toxicol. Pharmacol. 2021, 81, 103537. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, Y.; Nie, X.; Pan, B.; Ku, P.; Bao, S. Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 179, 49–56. [Google Scholar] [CrossRef] [PubMed]
- De Lange, H.J.; Noordoven, W.; Murk, A.J.; Lürling, M.; Peters, E.T.H.M. Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat. Toxicol. 2006, 78, 209–216. [Google Scholar] [CrossRef]
- Láng, J.; Kőhidai, L. Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. Chemosphere 2012, 89, 592–601. [Google Scholar] [CrossRef]
- Xia, L.; Zheng, L.; Zhou, J.L. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio). Chemosphere 2017, 182, 416–425. [Google Scholar] [CrossRef]
- Ogueji, E.; Nwani, C.; Iheanacho, S.; Mbah, C.; Okeke, C.; Yaji, A. Acute toxicity effects of ibuprofen on behaviour and haematological parameters of African catfish Clarias gariepinus (Burchell, 1822). Afr. J. Aquat. Sci. 2018, 43, 293–303. [Google Scholar] [CrossRef]
- Nilsen, E.; Smalling, K.L.; Ahrens, L.; Gros, M.; Miglioranza, K.S.B.; Picó, Y.; Schoenfuss, H.L. Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ. Toxicol. Chem. 2018, 38, 6–60. [Google Scholar] [CrossRef] [PubMed]
- Hagger, J.A.; Jones, M.B.; Leonard, D.R.P.; Owen, R.; Galloway, T.S. Biomarkers and integrated environmental risk assessment: Are there more questions than answers? Integr. Environ. Assess. Manag. Int. J. 2006, 2, 312–329. [Google Scholar] [CrossRef]
- Mouneyrac, C.; Amiard-Triquet, C. Biomarkers of ecological relevance in ecotoxicology. In Encyclopedia of Aquatic Ecotoxicology; Férard, J.F., Blaise, C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 221–236. [Google Scholar]
- Suter, G.; Cormier, S.; Barron, M. A weight of evidence framework for environmental assessments: Inferring qualities. Integr. Environ. Assess Manag. 2017, 13, 1038–1044. [Google Scholar] [CrossRef]
- Martin, P.; Bladier, C.; Meek, B.; Bruyere, O.; Feinblatt, E.; Touvier, M.; Watier, L.; Makowski, D. Weight of evidence for hazard identification: A critical review of the literature. Environ. Health Perspect. 2018, 126, 076001. [Google Scholar] [CrossRef] [PubMed]
- Relyea, R.; Hoverman, J. Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecol. Lett. 2006, 9, 1157–1171. [Google Scholar]
- Wolf, J.C.; Segner, H.E. Hazards of current concentration-setting practices in environmental toxicology studies. Crit. Rev. Toxicol. 2023, 53, 297–310. [Google Scholar]
- Geiger, E.; Hornek-Gausterer, R.; Saçan, M.T. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2016, 129, 189–198. [Google Scholar] [CrossRef]
- Kidd, K.A.; Backhaus, T.; Brodin, T.; Inostroza, P.A.; McCallum, E.S. Environmental risks of pharmaceutical mixtures in aquatic ecosystems: Reflections on a decade of research. Environ. Toxicol. Chem. 2024, 43, 549–558. [Google Scholar]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
Nominal | Achieved Start Day 0 (n = 3) | %N | Achieved End Day 6 (n = 3) | %N | Median (n = 6) | %N |
---|---|---|---|---|---|---|
Ibuprofen | ||||||
2.0 (Low) | 1.7 (±0.1) | 85 | 1.17 (±0.05) | 59 | 1.45 | 73.0 |
65.5 (Medium) | 57.2 (±3) | 87 | 57.5 (±7) | 88 | 57.8 | 88.0 |
2147.5 (High, IBF-HIGH) | 2034 (±62) | 95 | 2090 (±43) | 97 | 2070 | 96.4 |
Imidacloprid | ||||||
1.4 (IMIDA) | 1.50 (±0) | 107 | 2.03 (±0.29) | 145 | 1.77 | 126.4 |
dfs | Slope | az-/bt-Value | p-Value | Effect Size p2 | |
---|---|---|---|---|---|
Survival | 43 | −0.10 | −1.92 a | 0.06 | 0.076 |
Moulting | 43 | −0.03 | −1.27 b | 0.20 | 0.030 |
Impairment | 43 | 0.23 | 1.81 a | 0.06 | 0.095 |
Immobility | 43 | 0.29 | 1.71 a | 0.06 | 0.139 |
df | F-/Χ2-Value | p-Value | η2 | Post Hoc Test Ranking | |
---|---|---|---|---|---|
Survival | 17 | 3.44 | 0.06 | 0.24 | |
Moulting | 17 | 3.66 | 0.047 | 0.30 | CONT = IM, CONT = IBF-H, IM > IBF-H |
Impairment | 17 | 0.91 | 0.42 | 0.10 | |
Immobility | 17 | 0.62 | 0.62 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batucan, N.S.P.; Tremblay, L.A.; Northcott, G.L.; Matthaei, C.D. Low Concentrations of Ibuprofen Had No Adverse Effects on Deleatidium spp. Mayfly Nymphs: A 7-Day Experiment. Environments 2025, 12, 102. https://doi.org/10.3390/environments12040102
Batucan NSP, Tremblay LA, Northcott GL, Matthaei CD. Low Concentrations of Ibuprofen Had No Adverse Effects on Deleatidium spp. Mayfly Nymphs: A 7-Day Experiment. Environments. 2025; 12(4):102. https://doi.org/10.3390/environments12040102
Chicago/Turabian StyleBatucan, Niña Sarah P., Louis A. Tremblay, Grant L. Northcott, and Christoph D. Matthaei. 2025. "Low Concentrations of Ibuprofen Had No Adverse Effects on Deleatidium spp. Mayfly Nymphs: A 7-Day Experiment" Environments 12, no. 4: 102. https://doi.org/10.3390/environments12040102
APA StyleBatucan, N. S. P., Tremblay, L. A., Northcott, G. L., & Matthaei, C. D. (2025). Low Concentrations of Ibuprofen Had No Adverse Effects on Deleatidium spp. Mayfly Nymphs: A 7-Day Experiment. Environments, 12(4), 102. https://doi.org/10.3390/environments12040102