Evidence About the Possible Role of Phthalates and Bisphenol A in Recurrent Pregnancy Loss and Endocrine Dysfunctions: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Analytical Procedure
2.3. Statistical Elaboration
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Infertility Prevalence Estimates, 1990–2021; World Health Organization Geneva: Geneva, Switzerland, 2023.
- Ribeiro, E.; Ladeira, C.; Viegas, S. Occupational Exposure to Bisphenol A (BPA): A Reality That Still Needs to Be Unveiled. Toxics 2017, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Calafat, A.M.; Hauser, R. Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J. Androl. 2009, 30, 287–297. [Google Scholar] [CrossRef]
- Pan, G.; Hanaoka, T.; Yoshimura, M.; Zhang, S.; Wang, P.; Tsukino, H.; Inoue, K.; Nakazawa, H.; Tsugane, S.; Takahashi, K. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalates (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross sectional study in China. Environ. Health Perspect. 2006, 114, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, A.; Rutkowska, A.; Rachon, D. Health risk of exposure to bisphenol A (BPA). Rocz. Panstw. Zakl. Hig. 2015, 66, 5–11. [Google Scholar]
- Wang, Y.; Qian, H. Phthalates and their impacts on human health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Hauser, R.; Calafat, A. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.; Lewis, L.R.; Borkowski, G.; Flaws, J.A. Late-life consequences of short-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate during adulthood in female mice. Reprod. Toxicol. 2020, 93, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Zong, T.; Lai, I.; Hu, J.; Guo, M.; Li, M.; Zhang, L.; Zhong, C.; Yang, B.; Wu, L.; Zhang, D.; et al. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice. J. Hazard. Mater. 2015, 297, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.W.; Huang, K.; Yan, S.Q.; Mao, L.J.; Ge, X.; Xu, Y.Q.; Xu, Y.Y.; Sheng, J.; Jin, Z.X.; et al. Urinary concentrations of phthalate metabolites in early pregnancy associated with clinical pregnancy loss in Chinese women. Sci. Rep. 2017, 7, 6800. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.W.; Kuo, P.L.; Huang, H.B.; Chang, J.W.; Chiang, H.C.; Huang, P.C. Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive aged women. Environ. Pollut. 2018, 241, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Jukic, A.M.; Calafat, A.M.; McConnaughey, D.R.; Longnecker, M.P.; Hoppin, J.A.; Weinberg, C.R.; Wilcox, A.J.; Baird, D.D. Urinary concentrations of phthalate metabolites and bisphenol A and associations with follicular-phase length, luteal phase length, fecundability and early pregnancy loss. Environ. Health Perspect. 2016, 124, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Messerlian, C.; Souter, I.; Gaskins, A.J.; Williams, P.I.; Ford, J.B.; Chiu, Y.H.; Calafat, A.M.; Hauser, R. Urinary phthalate metabolites and ovarian reserve among women seeking infertility care. Hum. Reprod. 2016, 31, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Machtinger, R.; Gaskins, A.J.; Racowsky, C.; Mansur, A.; Adir, M.; Baccarelli, A.A.; Calafat, A.M.; Hauser, R. Urinary concentrations of biomarkers of phthalates and phthalate alternatives and IVF outcomes. Environ. Int. 2018, 111, 23–31. [Google Scholar] [CrossRef]
- Deng, T.; Du, Y.; Wang, Y.; Teng, X.; Hua, X.; Yuan, X.; Yao, Y.; Guo, N.; Li, Y. The associations of urinary phthalate metabolites with the intermediate and pregnancy outcomes of women receiving IVF/ICSI treatments: A prospective single-center study. Ecotoxicol. Environ. Saf. 2020, 188, 109884. [Google Scholar] [CrossRef] [PubMed]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and mechanisms of phthalates’ action on reproductive processes and reproductive health: A literature review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef]
- Miao, M.; Yuan, W.; Yang, F.; Liang, H.; Zhou, Z.; Li, R.; Gao, E.; Li, D.K. Associations between bisphenol A exposure and re-productive hormones among female workers. Int. J. Environ. Res. Public Health 2015, 12, 13240–13250. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.G.J.M.; Lemmen, J.G.; Carlsson, B.; Christopher Corton, J.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.C.; Leonard, L.S.; Maness, S.C.; Wagner, S.B.L.; Conner, K.; Zacharewski, T.; Safe, S.; McDonnell, D.P.; Gaido, K.W. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol. Cell. Endocrinol. 1998, 142, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.A.; Koehler, K.E.; Susiarjo, M.; Hodges, C.A.; Ilagan, A.; Voigt, R.C.; Thomas, S.; Thomas, B.F.; Hassold, T.J. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 2003, 13, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Machtinger, R.; Combelles, C.M.; Missmer, S.A.; Correira, K.F.; Fox, J.H.; Racowsky, C. The association between severe obesity and characteristics of failed fertilized oocytes. Hum. Reprod. 2012, 27, 3198–3207. [Google Scholar] [CrossRef]
- Can, A.; Semiz, O.; Cinar, O. Bisphenol A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol. Hum. Reprod. 2005, 11, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.S.; Kim, D.; vom Saal, F.S.; Taylor, J.A.; Cheng, T.G.; Lamb, J.D.; Fujimoto, V.J. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil. Steril. 2011, 96, 672–677.e2. [Google Scholar] [CrossRef] [PubMed]
- Mok-Lin, E.; Ehrlich, S.; Williams, P.L.; Petrozza, J.; Wright, D.L.; Calafat, A.M.; Ye, X.; Hauser, R. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int. J. Androl. 2010, 33, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, S.; Williams, P.L.; Missmer, S.A.; Flaws, J.A.; Ye, X.; Calafat, A.M.; Petrozza, J.C.; Wright, D.; Hauser, R. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum. Reprod. 2021, 27, 3583–3592. [Google Scholar] [CrossRef]
- Minguez-Alarcón, L.; Gaskins, A.J.; Chiu, Y.H.; Williams, P.I.; Ehrlich, S.; Chavarro, J.E.; Petrozza, J.C.; Ford, J.B.; Calafat, A.M.; Hauser, R. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum. Reprod. 2015, 30, 2120–2128. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cang, X.; Liu, J. Molecular mechanism of bisphenol A on androgen receptor antagonism. Toxicol. Vitr. 2019, 61, 104621. [Google Scholar] [CrossRef]
- Koch, H.M.; Lorber, M.; Christensen, K.L.; Palmke, C.; Koslitz, S.; Brüning, T. Identifying sources of phthalate exposure with human biomonitoring: Results of a 48 h fasting study with urine collection and personal activity patterns. Int. J. Hyg. Environ. Health 2013, 216, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Chen, D.; He, Y.; Zhu, W.; Zhou, W.; Zhang, J. Bisphenol-A and female infertility: A possible role of gene-environment interactions. Int. J. Environ. Res. Public Health 2015, 12, 11101–11116. [Google Scholar] [CrossRef] [PubMed]
- Rudel, R.A.; Gray, J.M.; Engel, C.L.; Rawsthorne, T.W.; Dodson, R.E.; Ackerman, J.M.; Rizzo, J.; Nudelman, J.L.; Brody, J.G. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environ. Health Perspect. 2011, 119, 914–920. [Google Scholar] [CrossRef]
- Sajiki, J.; Miyamoto, F.; Fukata, H.; Mori, C.; Yonekubo, J.; Hayakawa, K. Bisphenol A (BPA) and its source in foods in Japanese markets. Food Addit. Contam. 2007, 24, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef]
- Krais, A.M.; Andersen, C.; Eriksson, A.C.; Johnsson, E.; Nielsen, J.; Pagels, J.; Gudmundsson, A.; Lindh, C.H.; Wierzbicka, A. Excretion of urinary metabolites of the phthalate esters DEP and DEHP in 16 volunteers after inhalation and dermal exposure. Int. J. Environ. Res. Public Health 2018, 15, 2514. [Google Scholar] [CrossRef] [PubMed]
- Völkel, W.; Bittner, N.; Dekant, W. Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography tandem mass spectrometry. Drug Metab. Dispos. 2005, 33, 1748–1757. [Google Scholar] [CrossRef] [PubMed]
- Pizzorno, J. Environmental toxins and infertility. Integr. Med. 2018, 17, 8–11. [Google Scholar]
- Thong, E.P.; Codner, E.; Laven, J.S.E.; Teede, H. Diabetes: A metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol. 2020, 8, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Concepción-Zavaleta, M.J.C.; Coronado-Arroyo, J.C.; Quiroz-Aldave, J.E.; Concepción-Urteaga, L.A.; Paz-Ibarra, J. Thyroid dysfunction and female infertility. A comprehensive review. Diabetes Metab. Syndr. 2023, 17, 102876. [Google Scholar] [CrossRef]
- WHO. Biological Monitoring of Chemical Exposure in the Workplace; World Health Organization: Geneva, Switzerland, 1996; Volume 1.
- Scaravelli, G.; De Luca, R.; Spoletini, R.; Speziale, L.; Fedele, F.; Bolli, S.; Mazzola, M.; Bertini, A.; Di Monte, C.; Vigiliano, V. Medically assisted reproduction in Italy, 2020 data from the Italian MAR register. Minerva Obstet Gynecol 2024, 76, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Tranfo, G.; Caporossi, L.; Paci, E.; Aragona, C.; Romanzi, D.; De Carolis, C.; De Rosa, M.; Capanna, S.; Papaleo, B.; Pera, A. Urinary phthalate monoesters concentration in couples with infertility problems. Toxicol. Lett. 2012, 213, 15–20. [Google Scholar] [CrossRef]
- Caporossi, L.; Alteri, A.; Campo, G.; Paci, E.; Tranfo, G.; Capanna, S.; Papaleo, E.; Pigini, D.; Viganò, P.; Papaleo, B. Cross sectional study on exposure to BPA and phthalates and semen parameters in men attending a fertility center. Int. J. Environ. Res. Public Health 2020, 17, 489. [Google Scholar] [CrossRef] [PubMed]
- Kroll, M.H.; Chesler, R.; Hagengruber, C.; Blank, D.W.; Kestner, J.; Rawe, M. Automated determination of urinary creatinine without sample dilution: Theory and practice. Clin. Chem. 1986, 32, 446–452. [Google Scholar] [CrossRef] [PubMed]
- ACGIH—American Conference of Governmental Industrial Hygienists. Recommendation, TLVs and BEIs; Signature Publications: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Giskeødegård, G.F.; Lydersen, S. Many methods for measuring levels of a substance in a sample have a lower detection limit. Data from these measurements must be handled in a way that avoids systematic errors. Tidsskr. Nor. Legeforen 2022, 142. [Google Scholar] [CrossRef]
- European Chemical Agency. Substance Information. Available online: https://echa.europa.eu/it/substance-information/-/substanceinfo/100.001.409 (accessed on 22 January 2025).
- Land, K.L.; Miller, F.G.; Fugate, A.C.; Hannon, P.R. The effects of endocrine disrupting chemicals on ovarian and ovulation related fertility outcomes. Mol. Reprod. Dev. 2022, 89, 608–631. [Google Scholar] [CrossRef] [PubMed]
- Hannon, P.R.; Akin, J.W.; Curry, T.E. Exposure to a phthalate mixture disrupts ovulatory progesterone receptor signaling in human granulosa cells in vitro. Biol. Reprod. 2023, 109, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Rossbach, B.; Drexler, H.; Angerer, J. Internal exposure of the general population to DEHP and other phthalate—Determination of secondary and primary phthalate monoester metabolites in urine. Environ. Res. 2003, 93, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Marques-Pinto, A.; Carvalho, D. Human infertility: Are endocrine disruptors to blame? Endocr. Connect. 2013, 2, R15–R29. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Mariana, M.; Feiteiro, J.; Verde, I.; Cairrao, E. The effects of phthalates in the cardiovascular and reproductive systems: A review. Environ. Int. 2016, 94, 758–776. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Chou, W.C.; Waits, A.; Liao, K.W.; Kuo, P.L.; Huang, C. Cumulative risk assessment of phthalates exposure for recurrent pregnancy loss in reproductive-aged women population using multiple hazard indices approaches. Environ. Int. 2021, 154, 106657. [Google Scholar] [CrossRef]
- Patel, S.; Zhou, C.; Rattan, S.; Flaws, J.A. Effects of Endocrine-Disrupting Chemicals on the Ovary. Biol. Reprod. 2015, 93, 20. [Google Scholar] [CrossRef] [PubMed]
- Hannon, P.R.; Flawes, J.A. The effects of phthalates on the ovary. Front. Endocrinol. 2015, 6, 8. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, W.; De Felici, M.; Zhang, X.F. Di(2-ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. Environ. Mol. Mutagen. 2016, 57, 579–588. [Google Scholar] [CrossRef]
- Radwan, P.; Wielgomas, B.; Radwan, M.; Krasinski, R.; Klimowska, A.; Kaleta, D.; Jurewicz, J. Urinary bisphenol A concentrations and in vitro fertilization outcomes among women from a fertility clinic. Reprod. Toxicol. 2020, 96, 216–220. [Google Scholar] [CrossRef]
- Shen, J.; Kang, Q.; Mao, Y.; Yuan, M.; Le, F.; Yang, X.; Xu, X.; Jinet, F. Urinary bisphenol A concentration is correlated with poorer oocyte retrieval and embryo implantation outcomes in patients with tubal factor infertility undergoing in vitro fertilization. Ecotoxicol. Environ. Saf. 2020, 187, 109816. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeon, J.H.; Jeong, K.; Chung, H.W.; Lee, H.; Sung, Y.A.; Ye, S.; Ha, S.H. The association of ovarian reserve with exposure to bisphenol A and phthalate in reproductive-aged women. J. Korean Med. Sci. 2021, 36, e1. [Google Scholar] [CrossRef]
- Lara Urbanetz, L.A.M.; Soares, M.S.J.; Rosa Maciel, G.A.; dos Santos Simões, R.; Pinheiro Baracat, M.C.; Baracat, E.C. Does bisphenol A (BPA) participate in the pathogenesis of Polycystic Ovary Syndrome (PCOS)? Clinics 2023, 78, 100310. [Google Scholar] [CrossRef]
- Zhan, W.; Tang, W.; Shen, X.; Xu, H.; Zhang, J. Exposure to bisphenol A and its analogs and polycystic ovarian syndrome in women of childbearing age: A multicenter case-control study. Chemosphere 2023, 313, 137463. [Google Scholar] [CrossRef]
- Ghanati, K.; Jahanbakhsh, M.; Shakoori, A.; Aghebat-Bekheir, S.; Khalili-Rikabadi, A.; Sadighara, P. The association between polycystic ovary syndrome and environmental pollutants based on animal and human study—A systematic review. Rev. Environ. Health 2023, 39, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.C.; Tzeng, C.R. The impact of phthalate on reproductive function in women with endometriosis. Reprod. Med. Biol. 2021, 20, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Gaskins, A.J.; Souter, I.; Smith, K.W.; Dodge, L.E.; Ehrlich, S.; Meeker, J.D.; Calafat, A.M.; Williams, P.L. Urinary Phthalate Metabolite Concentrations and Reproductive Outcomes among Women Undergoing in Vitro Fertilization: Results from the EARTH Study. Environ. Health Perspect. 2016, 124, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Messerlian, C.; Wylie, B.J.; Mínguez-Alarcón, L.; Williams, P.L.; Ford, J.B.; Souter, I.C.; Calafat, A.M.; Hauser, R. Urinary concentrations of phthalate metabolites and pregnancy loss among women conceiving with medically assisted reproduction. Epidemiology 2016, 27, 879–888. [Google Scholar] [CrossRef]
- Minguez-Alarcon, L.; Messerlian, C.; Bellavia, A.; Gaskins, A.J.; Chiu, Y.H.; Ford, J.B.; Azevedo, A.R.; Petrozza, J.C.; Calafa, A.M.; Hauser, R.; et al. Urinary concentrations of bisphenol A, parabens and phthalate metabolite mixtures in relation to reproductive success among women undergoing in vitro fertilization. Environ. Int. 2019, 126, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, F.; Ben, Y.; Su, Y. Association between phthalate exposure and risk of spontaneous pregnancy loss: A systematic review and meta-analysis. Environ. Pollut. 2020, 267, 115446. [Google Scholar] [CrossRef]
- Mu, D.; Gao, F.; Fan, Z.; Shen, H.; Peng, H.; Hu, J. Levels of phthalate metabolites in urine of pregnant women and risk of clinical pregnancy loss. Environ. Sci. Technol. 2015, 49, 10651–10657. [Google Scholar] [CrossRef] [PubMed]
- Begum, T.F.; Fujimoto, V.Y.; Gerona, R.; McGough, A.; Lenhart, N.; Wong, R.; Mok-Lin, E.; Melamed, J.; Butts, C.D.; Bloom, M.S. A pilot investigation of couple-level phthalates exposure and in vitro fertilization (IVF) outcomes. Reprod. Toxicol. 2021, 99, 56–64. [Google Scholar] [CrossRef]
- Yland, J.J.; Zhang, Y.; Williams, P.L.; Mustieles, V.; Vagios, S.; Souter, I.; Calafat, A.M.; Hauser, R.; Messerlian, C. Phthalate and DINCH urinary concentrations across pregnancy and risk of preterm birth. Environ. Pollut. 2022, 292, 118476. [Google Scholar] [CrossRef] [PubMed]
- Pariente, G.; Leibson, T.; Carls, A.; Adams-Webber, T.; Ito, S.; Koren, G. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med. 2016, 13, e1002160. [Google Scholar] [CrossRef] [PubMed]
- Frommea, H.; Boltea, G.; Koch, H.M.; Angererb, J.; Boehmera, S.; Drexlerb, H.; Mayerc, R.; Lieblc, B. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int. J. Hyg. Environ. Health 2007, 210, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Hoppin, J.A.; Brock, J.W.; Davis, B.J.; Baird, D.D. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ. Health Perspect. 2002, 110, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Meeker, J.D.; Park, S.; Silva, M.J.; Calafat, A.M. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ. Health Perspect. 2004, 112, 1734–1740. [Google Scholar] [CrossRef]
- Yan, X.; Calafat, A.; Lashley, S.; Smulian, J.; Ananth, C.; Barr, D.; Silva, M.; Ledoux, T.; Hore, P.; Robson, M.G. Phthalates biomarker identification and exposure estimates in a population of pregnant women. Hum. Ecol. Risk Assess. 2009, 15, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Vandentorren, S.; Zeman, F.; Morin, L.; Sarter, H.; Bidondo, M.L.; Oleko, A.; Leridon, H. Bisphenol-A and phthalates contamination of urine samples by catheters in the Elfe pilot study: Implications for large-scale biomonitoring studies. Environ. Res. 2011, 111, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Zeman, F.A.; Boudet, C.; Tack, K.; Floch Barneaud, A.; Brochot, C.; Péry, A.R.R.; Oleko, A.; Vandentorren, S. Exposure assessment of phthalates in French pregnant women: Results of the ELFE pilot study. Int. J. Hyg. Environ. Health 2013, 216, 271–279. [Google Scholar] [CrossRef]
- Kuromoto, K.; Watanabe, M.; Adachi, K.; Ohashi, K.; Iwatani, Y. Increases in urinary creatinine and blood pressure during early pregnancy in pre-eclampsia. Ann. Clin. Biochem. 2010, 47, 336–342. [Google Scholar] [CrossRef] [PubMed]
Cases (n = 186) | Controls (n = 196) | p Value | |
---|---|---|---|
Age (range) | 37.6 (29–43) | 33.4 (21–44) | 0.000 * |
BMI a (% of subjects in the class) | |||
Normal | 73.3 | 59.2 | 0.101 |
Overweight | 11.3 | 14.8 | |
Obese | 4.3 | 8.7 | |
Underweight | 9.1 | 8.7 | |
Unknown | 1.6 | 8.7 | |
Present smokers (%) | 16.1 | 6.1 | 0.010 * |
Previously smokers (%) | 23.1 | 20.4 | |
Alcohol consumption (%) | |||
Daily | 5.9 | 7.7 | 0.000 * |
Weekly | 44.6 | 26.0 | |
Monthly | 23.7 | 28.1 | |
Never | 21.0 | 37.2 | |
Missing | 4.8 | 1.0 | |
Residence area (%) | |||
Urban | 79.0 | 85.7 | 0.469 |
Rural | 11.8 | 9.2 | |
Coast | 2.2 | 1.0 | |
Industrial | 1.1 | 0.0 | |
Urban and industrial | 1.1 | 0.0 | |
Other | 3.7 | 0.5 | |
Missing | 1.1 | 1.5 | |
Use of plastic containers for fat food storage (%) | |||
Never | 17.2 | 14.3 | 0.244 |
Daily | 23.1 | 21.4 | |
Weekly | 38.2 | 46.9 | |
Monthly | 18.8 | 16.8 | |
Missing | 2.7 | 0.5 | |
Eating canned food at least weekly (%) | 43.5 | 40.3 | 0.290 |
Eating soya products at least weekly (%) | 17.8 | 11.8 | 0.070 |
Use of scents at least weekly (%) | 80.1 | 80.7 | 0.560 |
Use of nail polishes at least weekly (%) | 40.9 | 32.6 | 0.148 |
Use of hair sprays at least weekly (%) | 16.6 | 14.3 | 0.399 |
Working activity (%) | |||
Armed forces | 0.5 | 0.0 | 0.110 |
Industrial workers | 1.1 | 2.6 | |
Education/learning area/ professionals/PC operators | 60.7 | 58.2 | |
Health workers | 8.6 | 11.7 | |
Cleaning activity/catering | 7.5 | 6.6 | |
Trade | 8.1 | 5.6 | |
Unemployed | 2.2 | 4.1 | |
Others | 11.3 | 11.2 |
Parameters | MnBP 1 | MEP 2 | MBzP 3 | MnOP 4 | DEHP 5 | BPA 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases | Controls | Cases | Controls | Cases | Controls | Cases | Controls | Cases | Controls | Cases | Controls | |
N subjects | 186 | 196 | 186 | 196 | 186 | 196 | 186 | 196 | 186 | 196 | 125 | 112 |
Arithmetic mean | 25.69 | 21.76 | 191.82 | 101.06 | 5.53 | 2.75 | 2.14 | 1.86 | 16.52 | 11.08 | 1.73 | 0.90 |
Median | 16.29 | 11.55 | 13.26 | 28.59 | 2.62 | 1.33 | 1.25 | 1.03 | 8.57 | 5.65 | 0.57 | 0.24 |
Standard deviation | 38.39 | 53.24 | 762.55 | 292.23 | 11.47 | 3.83 | 2.69 | 1.86 | 24.30 | 11.08 | 3.82 | 4.16 |
5° percentile | 1.25 | 1.25 | 0.77 | 1.50 | 0.27 | 0.38 | 0.08 | 0.29 | 1.15 | 0.92 | 0.05 | 0.07 |
95° percentile | 108.39 | 58.02 | 635.08 | 421.62 | 23.72 | 9.71 | 8.44 | 6.18 | 58.26 | 28.52 | 8.49 | 2.88 |
p value (Mann–Whitney test) | 0.011 * | 0.036 * | 0.000 * | 0.526 | 0.000 * | 0.000 * | ||||||
LOD 7 (µg/L) | 0.8 | 3.0 | 1.2 | 0.1 | 0.15 MEHP 8 0.05 MEHHP 9 | 0.02 | ||||||
% > LOD | 97.3 | 97.4 | 62.9 | 79.1 | 69.4 | 51.5 | 91.4 | 100.0 | 99.5 | 100.0 | 99.2 | 100.0 |
µg/g Creatinine (Geometric Mean ± SD a) | |||||||
---|---|---|---|---|---|---|---|
Infertility Factors | N | MnBP | MEP | MBzP | MnOP | DEHP | BPA |
Controls | 196 | 9.32 ± 3.76 | 22.86 ± 6.45 | 1.49 ± 2.94 | 1.11 ± 2.48 | 5.46 ± 2.76 | 0.28 ± 3.06 |
Ovulatory and endocrine dysfunctions | 30 | 21.95 ± 3.84 * | 10.71 ± 9.08 | 3.97 ± 3.80 * | 0.81 ± 4.27 | 12.64 ± 3.06 * | 0.64 ± 2.31 * |
Endometriosis | 20 | 15.07 ± 2.94 | 29.04 ± 6.02 | 2.02 ± 3.33 | 1.14 ± 3.21 | 8.78 ± 2.43 | 0.94 ± 3.93 |
Idiopathic | 52 | 13.44 ± 2.74 | 19.49 ± 10.81 | 2.26 ± 3.48 | 1.38 ± 4.35 | 9.69 ± 2.99 * | 0.44 ± 4.56 |
Recurrent Pregnancy Losses (RPL) | 18 | 14.52 ± 4.50 | 40.07 ± 21.03 * | 2.38 ± 2.54 | 0.56 ± 3.25 | 10.61 ± 2.56 | 0.41 ± 3.68 |
Reduced ovarian reserve | 50 | 8.72 ± 3.66 | 7.67 ± 7.07 * | 1.74 ± 3.48 | 1.02 ± 3.11 | 5.39 ± 3.50 | 0.61 ± 2.58 |
Reduced ovarian reserve + endometriosis | 3 | 14.70 ± 1.08 | 10.88 ± 7.19 | 0.57 ± 1.54 | 1.30 ± 1.51 | 6.03 ± 1.81 | - |
Tubal factors | 13 | 13.82 ± 2.73 | 12.86 ± 8.87 | 3.31 ± 5.28 | 1.64 ± 3.50 | 11.77 ± 3.84 | 1.07 ± 5.43 |
p value Kruskal–Wallis | 0.027 * | 0.021 * | 0.001 * | 0.135 | 0.000 * | 0.000 * | |
p value Dunn post hoc test | 0.029 * | 0.029 * 0.025 * | 0.004 * | 0.135 | 0.019 * 0.007 * | 0.016 * |
Working Activity | Cases | Controls | OR | 95% CI | p Value |
---|---|---|---|---|---|
Soldiers/policewomen | 1 | 0 | - | - | - |
Industrial workers | 2 | 5 | 2.307 | 0.348–15.293 | 0.386 |
Teachers/professionals | 112 | 114 | 0.699 | 0.412–1.187 | 0.185 |
Nurses/doctors/health professionals | 16 | 23 | 0.759 | 0.330–1.747 | 0.517 |
Cleaning women/caterer | 14 | 13 | 2.060 | 0.721–5.887 | 0.177 |
Cashier/traders | 15 | 11 | 2.580 | 0.870–7.646 | 0.087 |
Other | 4 | 8 | 0.559 | 0.107–2.919 | 0.490 |
Habits | Cases | Controls | OR | 95% CI | p Value |
---|---|---|---|---|---|
Use of plastic containers for storage of fat food | 147 | 167 | 0.930 | 0.480–1.804 | 0.830 |
Use of canned food | 155 | 154 | 2.021 | 1.022–3.996 | 0.043 * |
Use of soya products | 90 | 86 | 1.111 | 0.669–1.844 | 0.685 |
Use of scents | 162 | 180 | 0.607 | 0.265–1.387 | 0.236 |
Use of nail polish | 150 | 160 | 0.634 | 0.327–1.228 | 0.176 |
Use of hair spray | 51 | 49 | 1.357 | 0.749–2.459 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caporossi, L.; Viganò, P.; Paci, E.; Capanna, S.; Alteri, A.; De Rosa, M.; Pigini, D.; Partenzi, E.; Papaleo, B. Evidence About the Possible Role of Phthalates and Bisphenol A in Recurrent Pregnancy Loss and Endocrine Dysfunctions: A Case–Control Study. Environments 2025, 12, 38. https://doi.org/10.3390/environments12020038
Caporossi L, Viganò P, Paci E, Capanna S, Alteri A, De Rosa M, Pigini D, Partenzi E, Papaleo B. Evidence About the Possible Role of Phthalates and Bisphenol A in Recurrent Pregnancy Loss and Endocrine Dysfunctions: A Case–Control Study. Environments. 2025; 12(2):38. https://doi.org/10.3390/environments12020038
Chicago/Turabian StyleCaporossi, Lidia, Paola Viganò, Enrico Paci, Silvia Capanna, Alessandra Alteri, Mariangela De Rosa, Daniela Pigini, Elisa Partenzi, and Bruno Papaleo. 2025. "Evidence About the Possible Role of Phthalates and Bisphenol A in Recurrent Pregnancy Loss and Endocrine Dysfunctions: A Case–Control Study" Environments 12, no. 2: 38. https://doi.org/10.3390/environments12020038
APA StyleCaporossi, L., Viganò, P., Paci, E., Capanna, S., Alteri, A., De Rosa, M., Pigini, D., Partenzi, E., & Papaleo, B. (2025). Evidence About the Possible Role of Phthalates and Bisphenol A in Recurrent Pregnancy Loss and Endocrine Dysfunctions: A Case–Control Study. Environments, 12(2), 38. https://doi.org/10.3390/environments12020038