Urban Stormwater and Groundwater Quality: Pathways, Risks, and Green Infrastructure Solutions
Abstract
1. Introduction
2. Sources and Composition of Stormwater Runoff
3. Mechanisms of Groundwater Contamination
4. Management of Stormwater Pollution Using Green Infrastructure
4.1. Rain Garden
4.2. Infiltration Basin
4.3. Bioswale
4.4. Urban Wetland
4.5. Urban Forestry and Vegetative Buffer
5. Case Studies and Monitoring Efforts
6. Other Mitigation Strategies
6.1. Policy and Regulatory Measures
6.2. Public Education and Community Engagement
7. Future Directions and Sustainability
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GI | Green Infrastructure |
| LID | Low-Impact Development |
| BMP | Best Management Practice |
| TSS | Total Suspended Solids |
| TP | Total Phosphorus |
| TN | Total Nitrogen |
| BOD5 | Biochemical Oxygen Demand (5-day) |
| COD | Chemical Oxygen Demand |
| PAHs | Polycyclic Aromatic Hydrocarbons |
| PCBs | Polychlorinated Biphenyls |
| PPCPs | Pharmaceuticals and Personal Care Products |
| WTR | Water Treatment Residuals |
| GAC | Granular Activated Carbon |
| TIN | Total Inorganic Nitrogen |
| CSOs | Combined Sewer Overflows |
| SWMM | Stormwater Management Model |
| OSTRICH | Optimization Software Toolkit for Research Involving Computational Heuristics |
| EPA | Environmental Protection Agency |
| EQS | Environmental Quality Standards |
| GWD | Groundwater Directive |
| OMP | Organic Micropollutant |
References
- Saito, L.; Christian, B.; Diffley, J.; Richter, H.; Rohde, M.M.; Morrison, S.A. Managing groundwater to ensure ecosystem function. Groundwater 2021, 59, 322–333. [Google Scholar] [CrossRef]
- Mumberg, T.; Ahrens, L.; Wanner, P. Managed aquifer recharge as a potential pathway of contaminants of emerging concern into groundwater systems–A systematic review. Chemosphere 2024, 364, 143030. [Google Scholar] [CrossRef] [PubMed]
- Baruch, E.M.; Voss, K.A.; Blaszczak, J.R.; Delesantro, J.; Urban, D.L.; Bernhardt, E.S. Not all pavements lead to streams: Variation in impervious surface connectivity affects urban stream ecosystems. Freshw. Sci. 2018, 37, 673–684. [Google Scholar] [CrossRef]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Zhang, X. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Neupane, B.; Vu, T.M.; Mishra, A.K. Evaluation of land-use, climate change, and low-impact development practices on urban flooding. Hydrol. Sci. J. 2021, 66, 1729–1742. [Google Scholar] [CrossRef]
- Kaur, L.; Rishi, M.S.; Sharma, S.; Khosla, A. Impervious surfaces an indicator of hydrological changes in urban watershed: A review. J. Environ. Soil. Sci. 2019, 4, 469–473. [Google Scholar]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Barber, L.B.; Burden, D.S.; Foreman, W.T.; Forshay, K.J.; Furlong, E.T.; Groves, J.F.; Hladik, M.L.; et al. Urban stormwater: An overlooked pathway of extensive mixed contaminants to surface and groundwaters in the United States. Environ. Sci. Technol. 2019, 53, 10070–10081. [Google Scholar] [CrossRef]
- Saifur, S.; Gardner, C.M. Loading, transport, and treatment of emerging chemical and biological contaminants of concern in stormwater. Water Sci. Technol. 2021, 83, 2863–2885. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P.T.; LeFevre, G.; Gulliver, J.S. Contamination of Soil and Groundwater Due to Stormwater Infiltration Practices, a Literature Review. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2008. [Google Scholar]
- Shokri, M.; Gao, Y.; Kibler, K.M.; Wang, D.; Wightman, M.J.; Rice, N. Contaminant transport from stormwater management areas to a freshwater karst spring in Florida: Results of near-surface geophysical investigations and tracer experiments. J. Hydrol. Reg. Stud. 2022, 40, 101055. [Google Scholar] [CrossRef]
- Gonzalez-Meler, M.A.; Cotner, L.; Massey, D.A.; Zellner, M.L.; Minor, E.S. The environmental and ecological benefits of green infrastructure for stormwater runoff in urban areas. JSM Environ. Sci. Ecol. 2013, 1, 1007. [Google Scholar]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Pinasseau, L.; Wiest, L.; Volatier, L.; Mermillod-Blondin, F.; Vulliet, E. Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. Environ. Pollut. 2020, 266, 115387. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- May, D.B.; Sivakumar, M. Prediction of urban stormwater quality using artificial neural networks. Environ. Model. Softw. 2009, 24, 296–302. [Google Scholar] [CrossRef]
- Hwang, H.M.; Fiala, M.J.; Park, D.; Wade, T.L. Review of pollutants in urban road dust and stormwater runoff: Part 1. Heavy metals released from vehicles. Int. J. Urban Sci. 2016, 20, 334–360. [Google Scholar] [CrossRef]
- Liu, A.; Ma, Y.; Gunawardena, J.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution. Ecotoxicol. Environ. Saf. 2018, 164, 696–703. [Google Scholar] [CrossRef]
- Mishra, S.; Tirkey, N.; Mishra, S. Chronic and acute health impacts, including neurological disorders, development abnormalities, carcinogenicity, and organ damage. In Heavy Metal Contamination in the Environment; CRC Press: Boca Raton, FL, USA, 2024; pp. 124–156. [Google Scholar]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Niu, S.; Chen, Y.; Yu, J.; Rao, Z.; Zhan, N. Characteristics of particle size distribution and related contaminants of highway-deposited sediment, Maanshan City, China. Environ. Geochem. Health 2019, 41, 2697–2708. [Google Scholar] [CrossRef]
- Conrad, S.R.; Santos, I.R.; White, S.A.; Hessey, S.; Sanders, C.J. Elevated dissolved heavy metal discharge following rainfall downstream of intensive horticulture. Appl. Geochem. 2020, 113, 104490. [Google Scholar] [CrossRef]
- Jani, J.; Yang, Y.Y.; Lusk, M.G.; Toor, G.S. Composition of nitrogen in urban residential stormwater runoff: Concentrations, loads, and source characterization of nitrate and organic nitrogen. PLoS ONE 2020, 15, e0229715. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Toor, G.S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, Y.; Zhang, X.; Yu, Y.; Zhou, X.; Shen, Z. Nitrogen transport and sources in urban stormwater with different rainfall characteristics. Sci. Total Environ. 2022, 837, 155902. [Google Scholar] [CrossRef]
- Ahmed, W.; Hamilton, K.; Toze, S.; Cook, S.; Page, D. A review on microbial contaminants in stormwater runoff and outfalls: Potential health risks and mitigation strategies. Sci. Total Environ. 2019, 692, 1304–1321. [Google Scholar] [CrossRef]
- Selvakumar, A.; Borst, M. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons. J. Water Health 2006, 4, 109–124. [Google Scholar] [CrossRef]
- Rowny, J.G.; Stewart, J.R. Characterization of nonpoint source microbial contamination in an urbanizing watershed serving as a municipal water supply. Water Res. 2012, 46, 6143–6153. [Google Scholar] [CrossRef]
- Alja’fari, J.; Sharvelle, S.; Brinkman, N.E.; Jahne, M.; Keely, S.; Wheaton, E.A.; Meixner, T. Characterization of roof runoff microbial quality in four US cities with varying climate and land use characteristics. Water Res. 2022, 225, 119123. [Google Scholar] [CrossRef] [PubMed]
- De Lambert, J.R.; Walsh, J.F.; Scher, D.P.; Firnstahl, A.D.; Borchardt, M.A. Microbial pathogens and contaminants of emerging concern in groundwater at an urban subsurface stormwater infiltration site. Sci. Total Environ. 2021, 775, 145738. [Google Scholar] [CrossRef]
- Graham, K.E.; Anderson, C.E.; Boehm, A.B. Viral pathogens in urban stormwater runoff: Occurrence and removal via vegetated biochar-amended biofilters. Water Res. 2021, 207, 117829. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.E.; Pitt, R. Influencing factors and a proposed evaluation methodology for predicting groundwater contamination potential from stormwater infiltration activities. Water Environ. Res. 2007, 79, 29–36. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef]
- Elliott, S.M.; Kiesling, R.L.; Berg, A.M.; Schoenfuss, H.L. A pilot study to assess the influence of infiltrated stormwater on groundwater: Hydrology and trace organic contaminants. Water Environ. Res. 2022, 94, e10690. [Google Scholar] [CrossRef] [PubMed]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydraulic and pollutant removal performance of fine media stormwater filtration systems. Environ. Sci. Technol. 2008, 42, 2535–2541. [Google Scholar] [CrossRef]
- Fischer, D.; Charles, E.G.; Baehr, A.L. Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins. J. Environ. Eng. 2003, 129, 464–471. [Google Scholar] [CrossRef]
- Setälä, H.; Francini, G.; Allen, J.A.; Jumpponen, A.; Hui, N.; Kotze, D.J. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ. Pollut. 2017, 231, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Bolan, N.; Li, Y.; Ding, S.; Atugoda, T.; Vithanage, M.; Kirkham, M.B. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Res. 2021, 196, 117011. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Li, X.; Mei, Q.; Chen, L.; Zhang, H.; Dong, B.; Dai, X.; Zhou, J. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Res. 2019, 157, 228–237. [Google Scholar] [CrossRef]
- Wang, C.; O’Connor, D.; Wang, L.; Wu, W.M.; Luo, J.; Hou, D. Microplastics in urban runoff: Global occurrence and fate. Water Res. 2022, 225, 119129. [Google Scholar] [CrossRef]
- Ozturk, Z.C.; Dursun, S. Low impact development and green infrastructure. Sci. J. Environ. Sci. 2016, 5, 251–257. [Google Scholar]
- Shafique, M.; Kim, R. Green stormwater infrastructure with low impact development concept: A review of current research. Desalination Water Treat. 2017, 83, 16–29. [Google Scholar] [CrossRef]
- Pereira, B.; David, L.M.; Galvão, A. Green infrastructures in stormwater control and treatment strategies. Proceedings 2020, 48, 7. [Google Scholar]
- Chaves, M.T.R.; Farias, T.R.L.; Eloi, W.M. Comparative analysis of bioretention design strategies for urban runoff infiltration: A critical overview. Ecol. Eng. 2024, 207, 107352. [Google Scholar] [CrossRef]
- Nazarpour, S.; Gnecco, I.; Palla, A. Evaluating the effectiveness of bioretention cells for urban stormwater management: A systematic review. Water 2023, 15, 913. [Google Scholar] [CrossRef]
- Zhang, W.L.; Zhang, S.H.; Zhang, J.J. Stormwater quantity and quality control performance of bioretention systems: A literature review. J. Appl. Ecol. 2023, 34, 264–276. [Google Scholar]
- Liu, K.; Li, X.; Lei, P.; Wang, H.; Yuan, S.; Li, L.; Dai, X. Heavy metals removal from stormwater runoff by bioretention cells: Recent advances and future prospects. J. Water Process Eng. 2025, 75, 108027. [Google Scholar] [CrossRef]
- Onur, M. The Employment of Rain Gardens in Urban Water Management to Improve Biodiversity and Ecosystem Resilience. In Nature-Based Solutions for Circular Management of Urban Water; Springer International Publishing: Cham, Switzerland, 2024; pp. 73–91. [Google Scholar]
- Chen, Y.; Wu, Q.; Tang, Y.; Liu, Z.; Ye, L.; Chen, R.; Yuan, S. Application of biochar as an innovative soil ameliorant in bioretention system for stormwater treatment: A review of performance and its influencing factors. Water Sci. Technol. 2022, 86, 1232–1252. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Sun, H.; Che, W.; Li, J. A mixed-flow bioretention system amended with water treatment residuals to enhance nitrogen and phosphorus removal performance. Desalination Water Treat. 2021, 236, 144–154. [Google Scholar] [CrossRef]
- Rahmah, A.N.; Nuryanti, P. Happy beach coastal landscape design, based on landscape engineering adjustment. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 501, p. 012040. [Google Scholar]
- Skorobogatov, A.; He, J.; Chu, A.; Valeo, C.; van Duin, B. The impact of media, plants and their interactions on bioretention performance: A review. Sci. Total Environ. 2020, 715, 136918. [Google Scholar] [CrossRef]
- Morash, J.; Wright, A.; LeBleu, C.; Meder, A.; Kessler, R.; Brantley, E.; Howe, J. Increasing sustainability of residential areas using rain gardens to improve pollutant capture, biodiversity and ecosystem resilience. Sustainability 2019, 11, 3269. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A.; Anderson, T.A. Aquatic phytoremediation strategies for chromium removal. Rev. Environ. Sci. Bio/Technol. 2020, 19, 897–944. [Google Scholar] [CrossRef]
- Edwards, E.C.; Nelson, C.; Harter, T.; Bowles, C.; Li, X.; Lock, B.; Fogg, G.E.; Barbara, S. Potential effects on groundwater quality associated with infiltrating stormwater through dry wells for aquifer recharge. J. Contam. Hydrol. 2022, 246, 103964. [Google Scholar] [CrossRef]
- Bardin, J.P.; Gautier, A.; Barraud, S.; Chocat, B. The purification performance of infiltration basins fitted with pretreatment facilities: A case study. Water Sci. Technol. 2001, 43, 119–128. [Google Scholar] [CrossRef] [PubMed]
- El Mrabet, E.; El Mezouary, L.; El Mansouri, B. A study of water infiltration basin and clogging using column experiments. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 314, p. 04005. [Google Scholar]
- Tedoldi, D.; Couvidat, J.; Gautier, M.; Zhan, Q.; Winiarski, T.; Lipeme Kouyi, G.; Chatain, V. In-depth characterization of sediment contamination in stormwater infiltration basins. Blue-Green Syst. 2024, 6, 1–19. [Google Scholar] [CrossRef]
- Edwards, E.C.; Harter, T.; Fogg, G.E.; Washburn, B.; Hamad, H. Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. J. Hydrol. 2016, 539, 539–553. [Google Scholar] [CrossRef]
- Ekka, S.A.; Rujner, H.; Leonhardt, G.; Blecken, G.-T.; Viklander, M.; William, F. Hunt, Next generation swale design for stormwater runoff treatment: A comprehensive approach. J. Environ. Manag. 2021, 279, 111756. [Google Scholar] [CrossRef]
- Burgis, C.R.; Hayes, G.M.; Henderson, D.A.; Zhang, W.; Smith, J.A. Green stormwater infrastructure redirects deicing salt from surface water to groundwater. Sci. Total Environ. 2020, 729, 138736. [Google Scholar] [CrossRef]
- Feraud, M.; Holden, P.A. Evaluating the relationships between specific drainage area characteristics and soil metal concentrations in long-established bioswales receiving suburban stormwater runoff. Sci. Total Environ. 2021, 757, 143778. [Google Scholar] [CrossRef]
- Buates, J.; Sun, Y.; He, M.; Mohanty, S.K.; Khan, E.; Tsang, D.C.W. Performance of wood waste biochar and food waste compost in a pilot-scale sustainable drainage system for stormwater treatment. Environ. Pollut. 2024, 348, 123767. [Google Scholar] [CrossRef]
- Huff Chester, A.L.; Gallagher, N.; Huang, S.; Jaffé, P.R.; Novak, P.J. Stormwater applications of zeolite-coated biofilm carriers for ammonium removal with possible applications to PFAS biotransformation. Environ. Sci. Water Res. Technol. 2023, 9, 2749–2762. [Google Scholar] [CrossRef]
- Bhurtyal, A.; Ahmari, H. Application of expanded shale as filtration media in bioswales for stormwater treatment. Sustainability 2025, 17, 2051. [Google Scholar] [CrossRef]
- Ulrich, B.A.; Weelborg, K.; Haile, T.M.; Singh, U.B.; Magner, J. Field evaluation of a biochar-amended stormwater filtration system for retention of nutrients, metals, and Escherichia coli. Environ. Sci. Water Res. Technol. 2024, 10, 2546–2558. [Google Scholar] [CrossRef]
- Sweeney, L.C.; Knappenberger, T.; Brantley, E.F.; Shaw, J.N. Zeolite amended bioretention media improves nitrogen removal from stormwater. Agric. Environ. Lett. 2022, 7, e20060. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Y.; Liu, W.; Cai, H.; Zhu, C.; Wang, M. Photochemical reaction of 4-chlorobiphenyl with nitrous acid in atmospheric aqueous solution. RSC Adv. 2025, 15, 30436–30445. [Google Scholar] [CrossRef] [PubMed]
- Greenway, M. Constructed Wetlands for Water Pollution Control-Processes, Parameters and Performance. Dev. Chem. Eng. Miner. Process 2004, 12, 491–504. [Google Scholar]
- Malaviya, P.; Singh, A. Constructed wetlands for management of urban stormwater runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Bavor, H.J.; Davies, C.M.; Sakadevan, K. Stormwater treatment: Do constructed wetlands yield improved pollutant management performance over a detention pond system? Water Sci. Technol. 2001, 44, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Geronimo, F.K.F.; Jeon, M.; Kim, L.H. Investigation of the factors affecting the treatment performance of a stormwater horizontal subsurface flow constructed wetland treating road and parking lot runoff. Water 2021, 13, 1242. [Google Scholar] [CrossRef]
- Grinberga, L.; Lauva, D.; Lagzdins, A. Treatment of storm water from agricultural catchment in pilot scale constructed wetland. Rigas Teh. Univ. Zinat. Raksti 2021, 25, 640–649. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Xiong, J.; Li, L.; Zhao, B.; Sohail, I.; He, Z. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. J. Environ. Manag. 2021, 280, 111794. [Google Scholar] [CrossRef]
- Gazis, A.; Gikas, G.D.; Chamalidou, E. Removal of polycyclic aromatic hydrocarbons from polluted water using constructed wetlands: A review. Int. J. Eng. Technol. Inform. 2022, 3, 45–56. [Google Scholar]
- Al-Benna, S.; Gallagher, N.; Huang, S.; Jaffé, P.R.; Novak, P.J. Biochar and fungi as bioretention amendments for bacteria and polycyclic aromatic hydrocarbons (PAHs) in stormwater runoff. Sci. Total Environ. 2023, 883, 163423. [Google Scholar]
- Wang, S.; Jiang, L.; Li, J.; Cheng, X.; Luo, C.; Zhang, G. The uptake and degradation of polychlorinated biphenyls in constructed wetlands planted with Myriophyllum aquaticum. Environ. Sci. Pollut. Res. 2024, 31, 17115–17123. [Google Scholar] [CrossRef]
- Hashmi, M.Z.; Mughal, A.F. Microbial and chemically induced reductive dechlorination of polychlorinated biphenyls in the environment. Environ. Sci. Pollut. Res. 2025, 32, 2167–2181. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Shi, B.; McCarthy, D.; Deletic, A.; Le-Clech, P.; Khan, S.; Zhang, K. Organic micropollutant removal in stormwater: A review of treatment performance. Environ. Sci. Water Res. Technol. 2025, 11, 2274–2294. [Google Scholar] [CrossRef]
- Dowtin, A.L.; Cregg, B.C.; Nowak, D.J.; Levia, D.F. Towards optimized runoff reduction by urban tree cover: A review of key physical tree traits, site conditions, and management strategies. Landsc. Urban Plan. 2023, 239, 104849. [Google Scholar] [CrossRef]
- De Bell, L.E.; Kellner, J.-M.; Veum, K.S.; Mays, D.A. Urban tree canopy and stormwater management: A systematic review of hydrologic and water-quality benefits. J. Hydrol. 2023, 614, 128404. [Google Scholar]
- Selbig, W.R.; Loheide, S.P.; Shuster, W.; Scharenbroch, B.C.; Coville, R.C.; Kruegler, J.; Avery, W.; Haefner, R.; Nowak, D. Quantifying the stormwater runoff volume-reduction benefits of urban street-tree canopy. Sci. Total Environ. 2022, 806, 151296. [Google Scholar] [PubMed]
- Kuehler, E.; Hathaway, J.; Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 2017, 10, e1813. [Google Scholar]
- EPA. NPDES Stormwater Best Management Practice: Bioretention (Rain Gardens). U.S. Environmental Protection Agency. 2021. Available online: https://www.epa.gov/system/files/documents/2021-11/bmp-bioretention-rain-gardens.pdf (accessed on 13 November 2025).
- Bonciarelli, L.; Orlandi, F.; Muscas, D.; Fornaciari, M. Sustainable Stormwater Management and Bioretention: An Overview of Reviews of the Last 10 Years. Land 2025, 14, 736. [Google Scholar] [CrossRef]
- Li, G.; Xiong, J.; Zhu, J.; Liu, Y.; Dzakpasu, M. Design influence and evaluation model of bioretention in rainwater treatment: A review. Sci. Total Environ. 2021, 787, 147592. [Google Scholar] [CrossRef]
- Stang, C.; Mohamed, B.A.; Li, L.Y. Microplastic removal from urban stormwater: Current treatments and research gaps. J. Environ. Manag. 2022, 317, 115510. [Google Scholar] [CrossRef]
- EPA. NPDES Stormwater Best Management Practice: Infiltration Basin. U.S. Environmental Protection Agency. 2021. Available online: https://www.epa.gov/system/files/documents/2021-11/bmp-infiltration-basin.pdf (accessed on 13 November 2025).
- EPA. NPDES Stormwater Best Management Practice: Grassed Swales. U.S. Environmental Protection Agency. 2021. Available online: https://www.epa.gov/system/files/documents/2021-11/bmp-grassed-swales.pdf (accessed on 13 November 2025).
- Anderson, B.S.; Phillips, B.M.; Voorhees, J.P.; Siegler, K.; Tjeerdema, R. Bioswales reduce contaminants associated with toxicity in urban storm water. Environ. Toxicol. Chem. 2016, 35, 3124–3134. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Constructed wetlands for reclamation and reuse of wastewater and urban stormwater: A review. Front. Environ. Sci. 2022, 10, 836289. [Google Scholar] [CrossRef]
- Lu, W.; Zhong, F.; Wu, J.; Ma, H.; Kong, L.; Zhang, L.; Cheng, S. Decoding constructed wetlands: A meta-analysis of performance and key drivers in tail water treatment. Process Saf. Environ. Prot. 2025, 197, 107040. [Google Scholar] [CrossRef]
- EPA. NPDES Stormwater Best Management Practice: Vegetated Filter Strip. U.S. Environmental Protection Agency. 2021. Available online: https://www.epa.gov/system/files/documents/2021-11/bmp-vegetated-filter-strip.pdf (accessed on 13 November 2025).
- Marrazzo, G.; Raimondi, A. The role of urban trees as nature-based solutions for stormwater runoff control. Urban For. Urban Green. 2025, 103, 128598. [Google Scholar] [CrossRef]
- Nimmer, M.; Thompson, A.; Misra, D. Water table mounding beneath stormwater infiltration basins. Environ. Eng. Geosci. 2009, 15, 67–79. [Google Scholar] [CrossRef]
- D’Aniello, A.; Cimorelli, L.; Cozzolino, L.; Pianese, D. The effect of geological heterogeneity and groundwater table depth on the hydraulic performance of stormwater infiltration facilities. Water Resour. Manag. 2019, 33, 1147–1166. [Google Scholar] [CrossRef]
- Zou, Z.; Shu, L.; Min, X.; Chifuniro Mabedi, E. Clogging of infiltration basin and its impact on suspended particles transport in unconfined sand aquifer: Insights from a laboratory study. Water 2019, 11, 1083. [Google Scholar] [CrossRef]
- Nimmer, M.; Thompson, A.; Misra, D. Modeling water table mounding and contaminant transport beneath storm-water infiltration basins. J. Hydrol. Eng. 2010, 15, 963–973. [Google Scholar] [CrossRef]
- Hoard, C.J.; Haefner, R.J.; Shuster, W.D.; Pieschek, R.L.; Beeler, S. Full Water-Cycle Monitoring in an Urban Catchment Reveals Unexpected Water Transfers (Detroit MI, USA). JAWRA J. Am. Water Resour. Assoc. 2020, 56, 82–99. [Google Scholar] [CrossRef]
- Papuga, S.A.; Seifert, E.; Kopeck, S.; Hwang, K. Ecohydrology of green stormwater infrastructure in shrinking cities: A two-year case study of a retrofitted bioswale in Detroit, MI. Water 2022, 14, 3064. [Google Scholar] [CrossRef]
- Steis Thorsby, J.; Miller, C.J.; Treemore-Spears, L. The role of green stormwater infrastructure in flood mitigation (Detroit, MI USA)—Case study. Urban Water J. 2020, 17, 838–846. [Google Scholar] [CrossRef]
- Roseboro, A.; Torres, M.N.; Zhu, Z.; Rabideau, A.J. The impacts of climate change and porous pavements on combined sewer overflows: A case study of the city of Buffalo, New York, USA. Front. Water 2021, 3, 725174. [Google Scholar] [CrossRef]
- Macro, K.; Matott, L.S.; Rabideau, A.; Ghodsi, S.H.; Zhu, Z. OSTRICH-SWMM: A new multi-objective optimization tool for green infrastructure planning with SWMM. Environ. Model. Softw. 2019, 113, 42–47. [Google Scholar] [CrossRef]
- Jean, M.È.; Morin, C.; Duchesne, S.; Pelletier, G.; Pleau, M. Optimization of real-time control with green and gray infrastructure design for a cost-effective mitigation of combined sewer overflows. Water Resour. Res. 2021, 57, e2021WR030282. [Google Scholar] [CrossRef]
- Hall, A. Rain gardens and green streets: The future of municipal stormwater management in the US. In Low Impact Development for Urban Ecosystem and Habitat Protection; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 1–12. [Google Scholar]
- Lieberherr, E.; Green, O.O. Green infrastructure through citizen stormwater management: Policy instruments, participation and engagement. Sustainability 2018, 10, 2099. [Google Scholar] [CrossRef]
- William, R.; Garg, J.; Stillwell, A.S. A game theory analysis of green infrastructure stormwater management policies. Water Resour. Res. 2017, 53, 8003–8019. [Google Scholar] [CrossRef]
- Novaes, C.; Marques, R. Public policy: Urban stormwater in a paradigm shift, is it the end or just the beginning? Water Sci. Technol. 2022, 85, 2652–2662. [Google Scholar] [CrossRef] [PubMed]
- Novaes, C.; Marques, R.C. Policy, institutions and regulation in stormwater management: A hybrid literature review. Water 2024, 16, 186. [Google Scholar] [CrossRef]
- Cooper, R.J.; Hiscock, K.M. Two decades of the EU Water Framework Directive: Evidence of success and failure from a lowland arable catchment (River Wensum, UK). Sci. Total Environ. 2023, 869, 161837. [Google Scholar] [CrossRef]
- EU Brief. Revising the Standards for Surface Water Groundwater Pollutants (Policy Analysis), European Parliament Research Service. 2023. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/740239/EPRS_BRI(2023)740239_EN.pdf (accessed on 13 November 2025).
- Chikhi, F.; Li, C.; Ji, Q.; Zhou, X. Review of Sponge City implementation in China: Performance and policy. Water Sci. Technol. 2023, 88, 2499–2520. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, M.; Xiao, H.; Lu, Z.; Xie, M.; Chen, K. Keyword Analysis and Systematic Review of China’s Sponge City Policy and Flood Management Research. Atmosphere 2025, 16, 1090. [Google Scholar] [CrossRef]
- Avazpour, B.; Osmond, P.; Corkery, L. The dynamic challenges of mainstreaming water sensitive cities in our built environment: Lessons from Australia. Cities 2023, 143, 104615. [Google Scholar] [CrossRef]
- Ghaderian, M.; Hakimian, P.; Shahab, S. The trajectory of water sensitive urban design: Integrating water management with urban planning and design. Aust. Plan. 2025, 61, 29–42. [Google Scholar] [CrossRef]
- Singh, C.K.; Dey, M.K. A critical review of India’s latest groundwater policy: Impacts on groundwater resource planning and management. J. Landsc. Ecol. 2024, 17, 39–59. [Google Scholar] [CrossRef]
- Sridhar, D.; Parimalarenganayaki, S. Review on Urban Groundwater Pollution an Indian perspective: Sources, Analysis, and Management strategies. Desalination Water Treat. 2025, 324, 101453. [Google Scholar] [CrossRef]
- Nishigaki, M.; Oji, S.; Hara, H. Current Status and Future of Groundwater Management in Japan. In Advances in Geoethics and Groundwater Management: Theory and Practice for a Sustainable Development: Proceedings of the 1st Congress on Geoethics and Groundwater Management (GEOETH&GWM’20), Porto, Portugal 2020; Springer International Publishing: Cham, Switzerland, 2021; pp. 65–68. [Google Scholar]
- Endo, T. Adaptive governance and evolution of a groundwater-based resilient city: A case study of Kure City, Japan. Water Int. 2024, 49, 956–975. [Google Scholar] [CrossRef]
- van Duin, B.; Zhu, D.Z.; Zhang, W.; Muir, R.J.; Johnston, C.; Kipkie, C.; Rivard, G. Toward more resilient urban stormwater management systems—Bridging the gap from theory to implementation. Front. Water 2021, 3, 671059. [Google Scholar] [CrossRef]
- Gao, Y.; Church, S.P.; Peel, S.; Prokopy, L.S. Public perception towards river and water conservation practices: Opportunities for implementing urban stormwater management practices. J. Environ. Manag. 2018, 223, 478–488. [Google Scholar] [CrossRef]
- Darghouth, S.; Ward, C.; Gambarelli, G.; Styger, E.; Roux, J. Watershed Management Approaches, Policies, and Operations: Lessons for Scaling Up; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Simpson, H.; Hodgins, E. Raising groundwater awareness–a rural Ontario case study. In Watershed Conference 2002; Water Environment Federation: Alexandria, VA, USA, 2002; pp. 1787–1802. [Google Scholar]
- Shelton, D.P.; Rodie, S.N.; Feehan, K.A.; Franti, T.G.; Pekarek, K.A.; Holm, B.A. Integrating extension, teaching, and research for stormwater management education. J. Contemp. Water Res. Educ. 2015, 156, 68–77. [Google Scholar] [CrossRef]

| Soil Amendment Type | Dose (% v/v or % w/w) * | Hydraulic Impacts | Primary Contaminants | Removal Efficiency | Removal Mechanisms | References |
|---|---|---|---|---|---|---|
| Iron-enhanced sand (elemental Fe mixed in sand) | Specified by weight: 5–8% iron (w/w) of iron–sand mix | Keep Fe ≤ 8% (w/w) to avoid cementation/clogging; design for ≤48 h drawdown; pretreatment required | Dissolved & total phosphorus | >90% net retention of total P (TP) | Ligand exchange/adsorption of phosphate onto Fe(III) oxyhydroxides; co-precipitation as Fe-P minerals; filtration of particulate P | [66] |
| Zeolite blended into soil mixture | 10–20% v/v replacing a portion of sand | Saturated Ksat similar to or higher than standard BSM in columns | Ammonium, Nitrate | 87% ammonium reduction, increased nitrate due to leaching | Cation exchange in zeolite | [67] |
| Al-based drinking water treatment residuals (WTR) | 5–10% v/v mixed into sand | Mixed layer: no adverse flow; solid layer: restricted flow & bypass. | Phosphorus species (TP, PP, DP) | 97% total phosphorus (TP) mass removal, 98.2% particulate phosphorus (PP) removal | Ligand exchange/inner-sphere complexation on Al/Fe (hydr)oxides; filtration of particulate P | [50] |
| Biochar (red pine woodchip) blended with sand | Research range 2–10% v/v | Often increases porosity and storage; Ksat impact varies by feedstock/size | Zinc (Zn), total inorganic nitrogen (TIN), TP, E. coli | Improved Zn and TIN retention, >90% TP achieved, no clear E. coli improvement. | Surface adsorption (oxygenated functional groups) for metals; ammonium sorption and nitrification suppression; particulate filtration | [66] |
| Granular Activated Carbon (GAC) and biochar | N/A | Headloss rises with loading; maintenance on breakthrough; pretreatment critical | PAHs & PCBs | 99.8% PAHs reduction, 97.7% PCBs reduction | Hydrophobic adsorption on high surface area carbon | [68] |
| BMP Type | Primary Function | Target Pollutants | Typical Removal Efficiency (%) | Potential for Groundwater Contamination | Pretreatment Requirements | Lining or Separation Measures | Recommended Siting Constraints | Suitability for Sensitive Aquifers | References |
|---|---|---|---|---|---|---|---|---|---|
| Rain garden (bioretention basin) | Filtration + infiltration; volume reduction; evapotranspiration | TSS, nutrients (TN, TP), dissolved metals (Cu, Zn), hydrocarbons, microplastics | TSS 70–95; TP 40–70; TN 30–60; metals 40–80; microplastics 84–96 | Low–Moderate (higher for dissolved N/metals if unlined and shallow water tables) | Forebay, filter strip, grass channel, gravel diaphragm for larger drainage areas | Optional liner or underdrain; ≥0.9–1.0 m separation to groundwater recommended | Small drainage areas (<2 ha); slopes ≤ 5%; avoid industrial ‘hot spots’ unless lined | Conditionally suitable (lined/underdrained preferred in vulnerable aquifers) | [84,85,86,87] |
| Infiltration basin | Infiltration; groundwater recharge; peak flow reduction | TSS, particulate nutrients & metals; some dissolved species | TSS > 60–90; nutrients/metals variable; Zn reduction ~65% | Moderate–High (depends on pretreatment and soil attenuation) | Sediment forebay, vegetated strip, hydrodynamic separator | Maintain vertical separation from groundwater; liners where vulnerability is high | Permeable soils; avoid contaminated source areas; maintain setbacks from wells | Conditionally suitable (requires pretreatment, separation, and soil capacity) | [55,88] |
| Bioswale (vegetated/grassed swale) | Conveyance, filtration, and infiltration; velocity control | TSS, TP, TN, metals, hydrocarbons | Dry swales: TP 65, TN 50, metals 80–90, TSS 80–90; Wet swales: TP 20, TN 40, metals 40–70 | Low–Moderate (higher in permeable soils with shallow groundwater) | Upstream sediment forebay or filter strip; check dams to increase residence time | Underdrain or soil amendment for low-permeability sites; liners where infiltration discouraged | Long, shallow slopes (1–2%); avoid sustained baseflow unless designed as wet swale | Often suitable with pretreatment; conditionally suitable in vulnerable aquifers | [89,90] |
| Urban wetland (constructed/stormwater wetland) | Settling, filtration, plant uptake, denitrification; flow regulation | TSS, TP, TN, metals, hydrocarbons, organics, CECs | TSS 60–90; TP 40–70; TN 30–60; metals > 50 | Low–Moderate (lined or low seepage; risk if unlined over permeable soils) | Forebay/sedimentation cell; inlet energy dissipation | Liners or low-permeability subgrade common; seepage control recommended | Adequate area; avoid high seepage foundations; provide bypass for extreme storms | Generally suitable (lined or low-seepage design preferred) | [91,92] |
| Urban forestry & vegetative buffer | Interception, evapotranspiration, shallow infiltration, shading, filtration | Runoff volume, TSS, TP, TN, temperature, metals, hydrocarbons | Vegetated filter strips: TN 56, TP 66, TSS 86; runoff reduction ~51% | Low (primarily surface and canopy processes) | Stable vegetated strip; level spreaders to diffuse concentrated flow | Not typically lined; maintain buffer width and channel separation | Gentle to moderate slopes; avoid concentrated inflow without dispersion | Suitable (recommended for aquifer protection and receiving waters) | [82,93,94] |
| Region/Country | Policy Goals | Groundwater Protection Emphasis | Pollutant Control Priorities | Stormwater Quality Standards | References |
|---|---|---|---|---|---|
| United States | Reduce pollutant loads to receiving waters; control MS4, construction & industrial stormwater; encourage GI/LID; support TMDLs & climate resilience | Moderate (protect via siting/design of infiltration BMPs; prevent hot-spot infiltration; Underground Injection Control programs where applicable) | TSS/sediment, nutrients (N, P), metals (Cu, Zn), hydrocarbons, bacteria; growing focus on PFAS & microplastics | Primarily narrative standards in permits (BMP-based) with state-specific numeric criteria/TMDLs; monitoring & adaptive management for MS4s | [108,109] |
| European Union | Achieve good ecological & chemical status; prevent/limit groundwater pollution; implement river-basin planning; update watch lists for emerging pollutants | High (threshold values, trend reversal, prevention/limitation of hazardous substances) | Priority substances (e.g., PAHs, metals), nutrients, pesticides, pharmaceuticals/PFAS via watch lists (i.e., regulatory tools used to identify and monitor emerging pollutants) | Environmental Quality Standards (EQS) for surface waters; Groundwater Directive (GWD) threshold values; member states set additional standards & source controls for urban runoff | [110,111] |
| China | Urban flood mitigation; stormwater retention/infiltration; water quality improvement; multi-benefit GI/LID uptake | Moderate (infiltration with attention to soil/aquifer sensitivity; integration with urban water quality goals | TSS, nutrients, heavy metals, hydrocarbons; urban diffuse sources | Sponge City technical guides set performance targets (e.g., rainfall capture/retention) and water quality design criteria; city-specific standards | [112,113] |
| Australia | Integrate WSUD; reduce pollutant loads; increase infiltration/reuse; climate resilience & liveability co-benefits | Moderate (guidelines address infiltration siting/soil constraints; protection near groundwater-dependent ecosystems) | Nutrients, sediments, gross pollutants; metals & hydrocarbons where relevant | State/municipal performance objectives for stormwater quality (e.g., percent load reductions) and Water Sensitive Urban Design (WSUD) guidelines; monitoring & maintenance requirements | [114,115] |
| India | Protect groundwater quality; manage urban stormwater; promote recharge; strengthen legal/institutional frameworks | High (policy emphasis on recharge & pollution control; ongoing reforms) | Nitrates, fluoride, arsenic; urban diffuse pollution (nutrients, metals, pathogens); emerging contaminants | National/state rules for water quality; city-level stormwater bylaws; expanding use of recharge structures with quality pretreatment | [116,117] |
| Japan | Control groundwater extraction & pollution; manage urban flooding; integrate water cycle in planning | High (extraction/pollution control; quality protection via national acts and local ordinances) | Nitrates, VOCs/solvents, metals; coastal salinization | National standards through Water Pollution Prevention Act; local ordinances guide stormwater quality & infiltration siting | [118,119] |
| Canada | Flood risk reduction; water quality protection; asset management; GI adoption; climate resilience | Moderate (province/municipal policies integrate source control & infiltration with groundwater safeguards) | Sediment, nutrients, metals; road runoff contaminants; emphasis on cold-climate performance | Province/municipal objectives (BMP-based) with monitoring; asset management and integrated watershed plans | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motlagh, A. Urban Stormwater and Groundwater Quality: Pathways, Risks, and Green Infrastructure Solutions. Environments 2025, 12, 446. https://doi.org/10.3390/environments12110446
Motlagh A. Urban Stormwater and Groundwater Quality: Pathways, Risks, and Green Infrastructure Solutions. Environments. 2025; 12(11):446. https://doi.org/10.3390/environments12110446
Chicago/Turabian StyleMotlagh, Amir. 2025. "Urban Stormwater and Groundwater Quality: Pathways, Risks, and Green Infrastructure Solutions" Environments 12, no. 11: 446. https://doi.org/10.3390/environments12110446
APA StyleMotlagh, A. (2025). Urban Stormwater and Groundwater Quality: Pathways, Risks, and Green Infrastructure Solutions. Environments, 12(11), 446. https://doi.org/10.3390/environments12110446
