Biochar Amendments for Soil Restoration: Impacts on Nutrient Dynamics and Microbial Activity
Abstract
1. Introduction
2. Review Methodology
3. Impacts of Biochar on Nutrient Dynamics
3.1. Phosphorus and Nitrogen Dynamics
3.2. Carbon Dynamics
3.3. Nutrient Dynamics in General
3.4. Nutrient Dynamics in Fertilized Soils
3.5. Effects of Nutrient-Enriched Biochar on Nutrient Dynamics
3.6. Implications
4. Impacts of Biochar on Microbial Activity
4.1. Recent Findings on the Influence of Biochar on Microbial Activity
4.2. Variations in Bacterial and Fungal Communities
4.3. Connections Between Microbial Activity and Nutrient Dynamics
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Ren, T.; Feng, H.; Xu, C.; Xu, Q.; Fu, B.; Azwar, E.; Wei, Y.; Lam, S.S.; Liu, G. Exogenous application and interaction of biochar with environmental factors for improving functional diversity of rhizosphere’s microbial community and health. Chemosphere 2022, 294, 133710. [Google Scholar] [CrossRef]
- Qian, R.; Yu, K.; Chen, N.; Li, R.; Tang, K.H.D. Adsorptive immobilization of cadmium and lead using unmodified and modified biochar: A review of the advances, synthesis, efficiency and mechanisms. Chemosphere 2025, 370, 143988. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Kang, M.W.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef]
- Kuok Ho Daniel, T. Valorization of organic waste as biosorbents for wastewater treatment. Water Emerg. Contam. Nanoplastics 2024, 3, 25. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Wang, J.; Yang, X.; Zhang, W.; Tang, K.H.D.; Wang, H.; Zhang, X.; Gao, R.; Yang, G.; et al. Insight into the humification and carbon balance of biogas residual biochar amended co-composting of hog slurry and wheat straw. Environ. Sci. Pollut. Res. 2025, 32, 21919–21930. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, Z.; Zhang, Q.; Huang, H.; Zhao, X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. Sci. Total Environ. 2024, 911, 168734. [Google Scholar] [CrossRef]
- Tang, K.H.D. Urban Solutions to Climate Change: An Overview of Latest Progress. Acad. Environ. Sci. Sustain. 2024, 1. [Google Scholar] [CrossRef]
- Atilano-Camino, M.M.; Canizales Laborin, A.P.; Ortega Juarez, A.M.; Valenzuela Cantú, A.K.; Pat-Espadas, A.M. Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis. Sustainability 2022, 14, 5648. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, C.; Chen, Z.; Liu, Y.; Zhang, Y.; Gou, P.; Zhao, X.; Ma, D.; Kang, G.; Wang, C.; et al. Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland. Environ. Res. 2021, 194, 110671. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Liu, X.; Huang, Y.; Cai, A.; Xu, H.; Ran, J.; Xiao, J.; Zhang, W. A global dataset of biochar application effects on crop yield, soil properties, and greenhouse gas emissions. Sci. Data 2024, 11, 57. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Mishra, V.K.; Choudhury, B.U.; Dutta, S.K.; Hazarika, S.; Kalita, H.; Roy, A.; Singh, N.U.; Gopi, R.; et al. Utilizing dissimilar feedstocks derived biochar amendments to alter soil biological indicators in acidic soil of Northeast India. Biomass Convers. Biorefinery 2023, 13, 10203–10214. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Hajiboland, R.; Panda, C.K.; Lastochkina, O.; Gavassi, M.A.; Habermann, G.; Pereira, J.F. Aluminum Toxicity in Plants: Present and Future. J. Plant Growth Regul. 2023, 42, 3967–3999. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H.; et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Christel, W.; Bruun, S.; Magid, J.; Kwapinski, W.; Jensen, L.S. Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes. Plant Soil 2016, 401, 93–107. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Salem, T.M.; Refaie, K.M.; Sherif, A.E.-H.E.-G.A.E.-L.; Eid, M.A.M. Biochar application in alkaline soil and its effect on soil and plant. Acta Agric. Slov. 2019, 114, 85–96. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, Z.; Ei-Naggar, A.; Tian, L.; Huang, C.; Zhang, Z.; Palansooriya, K.N.; Li, Y.; Yu, B.; Chang, S.X.; et al. Contrasting effects of rice husk and its biochar on N2O emissions and nitrogen leaching from Lei bamboo soils under subtropical conditions. Biol. Fertil. Soils 2023, 59, 803–817. [Google Scholar] [CrossRef]
- Kaur, N.; Kieffer, C.; Ren, W.; Hui, D. How much is soil nitrous oxide emission reduced with biochar application? An evaluation of meta-analyses. GCB Bioenergy 2023, 15, 24–37. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. Effect of steam activated biochar application to industrially contaminated soils on bioavailability of polycyclic aromatic hydrocarbons and ecotoxicity of soils. Sci. Total Environ. 2016, 566–567, 1023–1031. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Berry, C.M.; Strawn, D.G.; Novak, J.M.; Levine, J.; Harley, A. Biochars Reduce Mine Land Soil Bioavailable Metals. J. Environ. Qual. 2017, 46, 411–419. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Kristanti, R.A. Bioremediation of perfluorochemicals: Current state and the way forward. Bioprocess Biosyst. Eng. 2022, 45, 1093–1109. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619–620, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Zama, E.F.; Reid, B.J.; Arp, H.P.H.; Sun, G.-X.; Yuan, H.-Y.; Zhu, Y.-G. Advances in research on the use of biochar in soil for remediation: A review. J. Soils Sediments 2018, 18, 2433–2450. [Google Scholar] [CrossRef]
- Kumpiene, J.; Antelo, J.; Brännvall, E.; Carabante, I.; Ek, K.; Komárek, M.; Söderberg, C.; Wårell, L. In situ chemical stabilization of trace element-contaminated soil—Field demonstrations and barriers to transition from laboratory to the field—A review. Appl. Geochem. 2019, 100, 335–351. [Google Scholar] [CrossRef]
- Dai, Z.; Xiong, X.; Zhu, H.; Xu, H.; Leng, P.; Li, J.; Tang, C.; Xu, J. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 2021, 3, 239–254. [Google Scholar] [CrossRef]
- Tsolis, V.; Barouchas, P. Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review. Land 2023, 12, 1580. [Google Scholar] [CrossRef]
- Anyebe, O.; Sadiq, F.K.; Manono, B.O.; Matsika, T.A. Biochar Characteristics and Application: Effects on Soil Ecosystem Services and Nutrient Dynamics for Enhanced Crop Yields. Nitrogen 2025, 6, 31. [Google Scholar] [CrossRef]
- Singh, S.; Luthra, N.; Mandal, S.; Kushwaha, D.P.; Pathak, S.O.; Datta, D.; Sharma, R.; Pramanick, B. Distinct Behavior of Biochar Modulating Biogeochemistry of Salt-Affected and Acidic Soil: A Review. J. Soil Sci. Plant Nutr. 2023, 23, 2981–2997. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H. Rangeland application of biochar and rotational grazing interact to influence soil and plant nutrient dynamics. Geoderma 2022, 408, 115572. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Setälä, H.; Hagner, M. Nutrient dynamics and development of soil fauna in vegetated roofs with the focus on biochar amendment. Nat.-Based Solut. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Dubrovina, I.A. Changes in the Phosphate Regime of Soils in the Middle Taiga under the Impact of Biochar. Eurasian Soil Sci. 2023, 56, 363–370. [Google Scholar] [CrossRef]
- Gupta, R.K.; Vashisht, M.; Naresh, R.K.; Dhingra, N.; Sidhu, M.S.; Singh, P.K.; Rani, N.; Al-Ansari, N.; Alataway, A.; Dewidar, A.Z.; et al. Biochar influences nitrogen and phosphorus dynamics in two texturally different soils. Sci. Rep. 2024, 14, 6533. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.E.-E.A.Z. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Total Environ. 2020, 726, 138489. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Li, Q.; Chen, H.; Zhao, L.; Wang, F.; Zhang, Y.; Zhang, J.; Müller, C.; Yi, Z. Enhancing Soil Nitrogen Retention Capacity by Biochar Incorporation in the Acidic Soil of Pomelo Orchards: The Crucial Role of pH. Agronomy 2023, 13, 2110. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Wang, B.; Hou, B.; Du, G.; Si, H. Analysis of the adsorption and fixation process of ammonium nitrogen in arable soil by biochar based on molecular dynamics simulation. Sci. Total Environ. 2024, 930, 172815. [Google Scholar] [CrossRef]
- Hu, T.; Wei, J.; Du, L.; Chen, J.; Zhang, J. The effect of biochar on nitrogen availability and bacterial community in farmland. Ann. Microbiol. 2023, 73, 4. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zhai, Z.; Dai, H.; Yang, M.; Zhang, Y.; Liang, T. Soil organic carbon, carbon fractions, and microbial community under various organic amendments. Sci. Rep. 2024, 14, 25431. [Google Scholar] [CrossRef]
- Abdul-Aziz, A.-L.; Abukari, I.A.; Galadima, M.M.; Haruna, A.; Abubakari, M.; Abdulai, R. Biochar effects on soil properties and yield of maize in Northern region, Ghana. Discov. Agric. 2025, 3, 103. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Li, S.; Liu, W.; Bian, R.; Zhang, X.; Zheng, J.; Drosos, M.; Li, L.; Pan, G. Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice–soil system. New Phytol. 2021, 232, 1250–1258. [Google Scholar] [CrossRef]
- Ge, T.; Liu, C.; Yuan, H.; Zhao, Z.; Wu, X.; Zhu, Z.; Brookes, P.; Wu, J. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant Soil 2015, 392, 17–25. [Google Scholar] [CrossRef]
- Zang, H.; Xiao, M.; Wang, Y.; Ling, N.; Wu, J.; Ge, T.; Kuzyakov, Y. Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: Experiment with 13CO2 labelling and literature synthesis. Plant Soil 2019, 445, 113–123. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, J.; Boorboori, M.R.; Li, D.; Chen, S.; Ma, X.; Cheng, P.; Zhang, H. Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time. Sci. Total Environ. 2023, 855, 158876. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; Figueiredo, C.C.d.; Ramos, M.L.G. Biochar increases soil carbon pools: Evidence from a global meta-analysis. J. Environ. Manag. 2022, 305, 114403. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, Y.; Zhou, H.; Luo, W.; Yi, X.; Zhou, Y.; Wu, Y.; Petticord, D.F.; Song, X. Biochar efficacy in enhancing soil carbon fractions is mediated by parent soil type in grazing karst grassland. Carbon Res. 2025, 4, 52. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resour. Conserv. Recycl. Adv. 2023, 19, 200173. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Orlova, N.; Abakumov, E.; Orlova, E.; Yakkonen, K.; Shahnazarova, V. Soil organic matter alteration under biochar amendment: Study in the incubation experiment on the Podzol soils of the Leningrad region (Russia). J. Soils Sediments 2019, 19, 2708–2716. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Y.; Huang, J.; Hou, B.; Wang, B.; Ogino, K.; Zhao, J.; Si, H. The effect of biochar on the migration theory of nutrient ions. Sci. Total Environ. 2022, 845, 157262. [Google Scholar] [CrossRef]
- Lewoyehu, M.; Kohira, Y.; Fentie, D.; Addisu, S.; Sato, S. Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia. Sustainability 2024, 16, 5537. [Google Scholar] [CrossRef]
- Shi, R.-Y.; Ni, N.; Wang, R.-H.; Nkoh, J.N.; Pan, X.-Y.; Dong, G.; Xu, R.-K.; Cui, X.-M.; Li, J.-Y. Dissolved biochar fractions and solid biochar particles inhibit soil acidification induced by nitrification through different mechanisms. Sci. Total Environ. 2023, 874, 162464. [Google Scholar] [CrossRef]
- Burgeon, V.; Fouché, J.; Garré, S.; Dehkordi, R.H.; Colinet, G.; Cornelis, J.-T. Young and century-old biochars strongly affect nutrient cycling in a temperate agroecosystem. Agric. Ecosyst. Environ. 2022, 328, 107847. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Li, H.; Zhang, A.; Rengel, Z. Long-term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. GCB Bioenergy 2021, 13, 257–268. [Google Scholar] [CrossRef]
- dos Santos, W.M.; Gonzaga, M.I.S.; da Silva, A.J.; de Almeida, A.Q. Improved water and ions dynamics in a clayey soil amended with different types of agro-industrial waste biochar. Soil Tillage Res. 2022, 223, 105482. [Google Scholar] [CrossRef]
- Hadroug, S.; Jellali, S.; Jeguirim, M.; Kwapinska, M.; Hamdi, H.; Leahy, J.J.; Kwapinski, W. Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil. Sustainability 2021, 13, 1212. [Google Scholar] [CrossRef]
- Dubrovina, I. Biochar has Different Effects on Soil Fertility and Spring Barley Productivity in Two Boreal Soils with Contrasting Textures. Agric. Res. 2025. [Google Scholar] [CrossRef]
- Zhang, K.; Khan, Z.; Khan, M.N.; Luo, T.; Luo, L.; Bi, J.; Hu, L. The application of biochar improves the nutrient supply efficiency of organic fertilizer, sustains soil quality and promotes sustainable crop production. Food Energy Secur. 2024, 13, e520. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Lu, Y.; Silveira, M.L.; O’Connor, G.A.; Vendramini, J.M.B.; Li, Y.C. Biochar type and application methods affected nitrogen and phosphorus leaching from a sandy soil amended with inorganic fertilizers and biosolids. Agrosyst. Geosci. Environ. 2022, 5, e20236. [Google Scholar] [CrossRef]
- Lian, F.; Xing, B. Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk. Environ. Sci. Technol. 2017, 51, 13517–13532. [Google Scholar] [CrossRef]
- Llovet, A.; Vidal-Durà, A.; Alcañiz, J.M.; Ribas, A.; Domene, X. Biochar addition to organo-mineral fertilisers delays nutrient leaching and enhances barley nutrient content. Arch. Agron. Soil Sci. 2023, 69, 2537–2551. [Google Scholar] [CrossRef]
- Sarfraz, R.; Nadeem, F.; Yang, W.; Tayyab, M.; Khan, M.I.; Mahmood, R.; Guo, X.; Xing, S.; Kim, G.W. Evaluation of Biochar and Inorganic Fertilizer on Soil Available Phosphorus and Bacterial Community Dynamics in Acidic Paddy Soils for Different Incubation Temperatures. Agronomy 2024, 14, 26. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; Souza, L.R.d.; Fachini, J.; Leão, T.P.; Sandri, D.; Figueiredo, C.C.d. Dynamics of potassium released from sewage sludge biochar fertilizers in soil. J. Environ. Manag. 2023, 346, 119057. [Google Scholar] [CrossRef]
- Yin, X.; Peñuelas, J.; Sardans, J.; Xu, X.; Chen, Y.; Fang, Y.; Wu, L.; Singh, B.P.; Tavakkoli, E.; Wang, W. Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation. Environ. Pollut. 2021, 287, 117565. [Google Scholar] [CrossRef]
- Suksabye, P.; Pimthong, A.; Dhurakit, P.; Mekvichitsaeng, P.; Thiravetyan, P. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 962–973. [Google Scholar] [CrossRef]
- Wang, M.; Lan, X.; Xu, X.; Fang, Y.; Singh, B.P.; Sardans, J.; Romero, E.; Peñuelas, J.; Wang, W. Steel slag and biochar amendments decreased CO2 emissions by altering soil chemical properties and bacterial community structure over two-year in a subtropical paddy field. Sci. Total Environ. 2020, 740, 140403. [Google Scholar] [CrossRef]
- Joseph, S.; Husson, O.; Graber, E.R.; Van Zwieten, L.; Taherymoosavi, S.; Thomas, T.; Nielsen, S.; Ye, J.; Pan, G.; Chia, C.; et al. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes. Agronomy 2015, 5, 322–340. [Google Scholar] [CrossRef]
- Javeed, H.M.; Ali, M.; Ahmed, I.; Wang, X.; Al-Ashkar, I.; Qamar, R.; Ibrahim, A.; Habib-Ur-Rahman, M.; Ditta, A.; El Sabagh, A. Biochar Enriched with Buffalo Slurry Improved Soil Nitrogen and Carbon Dynamics, Nutrient Uptake and Growth Attributes of Wheat by Reducing Leaching Losses of Nutrients. Land 2021, 10, 1392. [Google Scholar] [CrossRef]
- Roy, A.; Chaturvedi, S.; Singh, S.V.; Kasivelu, G.; Dhyani, V.C.; Pyne, S. Preparation and evaluation of two enriched biochar-based fertilizers for nutrient release kinetics and agronomic effectiveness in direct-seeded rice. Biomass Convers. Biorefinery 2024, 14, 2007–2018. [Google Scholar] [CrossRef]
- Lan, Y.; Chu, Q.; Liu, X.; Xu, S.; Li, D.; Zhang, C.; He, P.; Feng, X.; Zhang, H.; Sha, Z. Oxygen-nanobubble-loaded biochar increases soil carbon sequestration in rice paddies. Soil Environ. Health 2025, 3, 100174. [Google Scholar] [CrossRef]
- Deng, L.; Tu, P.; Ahmed, N.; Zhang, G.; Cen, Y.; Huang, B.; Deng, L.; Yuan, H. Biochar-based phosphate fertilizer improve phosphorus bioavailability, microbial functioning, and citrus seedling growth. Sci. Hortic. 2024, 338, 113699. [Google Scholar] [CrossRef]
- Mandal, S.; Donner, E.; Smith, E.; Sarkar, B.; Lombi, E. Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: A closed chamber experiment. Sci. Total Environ. 2019, 697, 134114. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, L.; Chang, J.; Wang, E.; Wang, C.; Zhang, H.; Pang, Y.; Tian, C. Straw Soil Conditioner Modulates Key Soil Microbes and Nutrient Dynamics across Different Maize Developmental Stages. Microorganisms 2024, 12, 295. [Google Scholar] [CrossRef]
- Khan, Z.; Zhang, K.; Khan, M.N.; Bi, J.; Zhu, K.; Luo, L.; Hu, L. How Biochar Affects Nitrogen Assimilation and Dynamics by Interacting Soil and Plant Enzymatic Activities: Quantitative Assessment of 2 Years Potted Study in a Rapeseed-Soil System. Front. Plant Sci. 2022, 13, 853449. [Google Scholar] [CrossRef]
- Gong, X.; Cai, L.; Li, S.; Chang, S.X.; Sun, X.; An, Z. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotoxicol. Environ. Saf. 2018, 156, 197–204. [Google Scholar] [CrossRef]
- Elzobair, K.A.; Stromberger, M.E.; Ippolito, J.A.; Lentz, R.D. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 2016, 142, 145–152. [Google Scholar] [CrossRef]
- Yan, H.; Cong, M.; Hu, Y.; Qiu, C.; Yang, Z.; Tang, G.; Xu, W.; Zhu, X.; Sun, X.; Jia, H. Biochar-mediated changes in the microbial communities of rhizosphere soil alter the architecture of maize roots. Front. Microbiol. 2022, 13, 1023444. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Li, X.; Wu, M.; Xue, Y. Nickel-loaded shrimp shell biochar enhances batch anaerobic digestion of food waste. Bioresour. Technol. 2022, 352, 127092. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Shen, F.; Tian, D.; Zeng, Y.; Yang, G.; Zhang, Y.; Deng, S. Partitioning biochar properties to elucidate their contributions to bacterial and fungal community composition of purple soil. Sci. Total Environ. 2019, 648, 1333–1341. [Google Scholar] [CrossRef]
- Cao, H.; Jia, M.; Xun, M.; Wang, X.; Chen, K.; Yang, H. Nitrogen transformation and microbial community structure varied in apple rhizosphere and rhizoplane soils under biochar amendment. J. Soils Sediments 2021, 21, 853–868. [Google Scholar] [CrossRef]
- Shang, W.; Razavi, B.S.; Yao, S.; Hao, C.; Kuzyakov, Y.; Blagodatskaya, E.; Tian, J. Contrasting mechanisms of nutrient mobilization in rhizosphere hotspots driven by straw and biochar amendment. Soil Biol. Biochem. 2023, 187, 109212. [Google Scholar] [CrossRef]
- Akumuntu, A.; Hong, J.-K.; Jho, E.H.; Omidoyin, K.C.; Park, S.-J.; Zhang, Q.; Zhao, X. Biochar derived from rice husk: Impact on soil enzyme and microbial dynamics, lettuce growth, and toxicity. Chemosphere 2024, 349, 140868. [Google Scholar] [CrossRef]
- Liu, X.; Zhiming, Q.I.; Wang, Q.; Zhiwen, M.A.; Lanhai, L.I. Effects of biochar addition on CO2 and CH4 emissions from a cultivated sandy loam soil during freeze-thaw cycles. Plant Soil Environ. 2017, 63, 243–249. [Google Scholar] [CrossRef]
- Di, W.; Lan, Y.; Chen, W.; Liu, Z.; Gao, J.; Cao, D.; Wang, Q.; Mazhang, C.; An, X. Response of bacterial communities, enzyme activities and dynamic changes of soil organic nitrogen fractions to six-year different application levels of biochar retention in Northeast China. Soil Tillage Res. 2024, 240, 106097. [Google Scholar] [CrossRef]
- Yin, D.; Li, H.; Wang, H.; Guo, X.; Wang, Z.; Lv, Y.; Ding, G.; Jin, L.; Lan, Y. Impact of Different Biochars on Microbial Community Structure in the Rhizospheric Soil of Rice Grown in Albic Soil. Molecules 2021, 26, 4783. [Google Scholar] [CrossRef]
- Liao, J.; Hao, G.; Guo, H.; Chen, H. Effects of biochar on plant and microbial communities in landfill soil. Appl. Soil Ecol. 2024, 204, 105749. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, J.-L. Effects of biochar on soil microbial diversity and community structure in clay soil. Ann. Microbiol. 2022, 72, 35. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Riaz, M.; Xia, H.; Jiang, C. Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production. J. Clean. Prod. 2021, 292, 126062. [Google Scholar] [CrossRef]
- Yang, X.; Ran, Z.; Li, R.; Fang, L.; Zhou, J.; Guo, L. Effects of Biochar on the Growth, Ginsenoside Content, and Soil Microbial Community Composition of Panax quinquefolium L. J. Soil Sci. Plant Nutr. 2022, 22, 2670–2686. [Google Scholar] [CrossRef]
- Ren, H.; Guo, H.; Shafiqul Islam, M.; Zaki, H.E.M.; Wang, Z.; Wang, H.; Qi, X.; Guo, J.; Sun, L.; Wang, Q.; et al. Improvement effect of biochar on soil microbial community structure and metabolites of decline disease bayberry. Front. Microbiol. 2023, 14, 1154886. [Google Scholar] [CrossRef]
- Wang, X.; Riaz, M.; Babar, S.; Eldesouki, Z.; Liu, B.; Xia, H.; Li, Y.; Wang, J.; Xia, X.; Jiang, C. Alterations in the composition and metabolite profiles of the saline-alkali soil microbial community through biochar application. J. Environ. Manag. 2024, 352, 120033. [Google Scholar] [CrossRef]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Lorenz, N.; Rahman, M.A.; Nziguheba, G.; Islam, K.R. Biochar amendment impacts on microbial community structures and biological and enzyme activities in a weathered tropical sandy loam. Appl. Soil Ecol. 2022, 172, 104364. [Google Scholar] [CrossRef]
- Arthur, E.; Ahmed, F. Rice straw biochar affects water retention and air movement in a sand-textured tropical soil. Arch. Agron. Soil Sci. 2017, 63, 2035–2047. [Google Scholar] [CrossRef]
- Rodriguez-Ramos, J.C.; Cale, J.A.; Cahill, J.F., Jr.; Simard, S.W.; Karst, J.; Erbilgin, N. Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytol. 2021, 229, 1105–1117. [Google Scholar] [CrossRef]
- Wang, C.; Chen, D.; Shen, J.; Yuan, Q.; Fan, F.; Wei, W.; Li, Y.; Wu, J. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric. Ecosyst. Environ. 2021, 311, 107291. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Yang, Z.; Xiao, L. Synergetic effects of biochars and denitrifier on nitrate removal. Bioresour. Technol. 2021, 335, 125245. [Google Scholar] [CrossRef] [PubMed]
- Solans, M.; Messuti, M.I.; Reiner, G.; Boenel, M.; Vobis, G.; Wall, L.G.; Scervino, J.M. Exploring the response of Actinobacteria to the presence of phosphorus salts sources: Metabolic and co-metabolic processes. J. Basic Microbiol. 2019, 59, 487–495. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Front. Microbiol. 2017, 8, 187. [Google Scholar] [CrossRef]


| Reference | Location/System | Biochar Treatment | Main Findings | Implications |
|---|---|---|---|---|
| Effects on P and N dynamics | ||||
| [38] | Field study on grassland, Montana | Wood biochar (0, 20, 40 t ha−1) with/without trampling |
| Biochar offsets negative trampling effects, enhances P availability in plants, and stabilizes nutrients through deeper incorporation |
| [39] | Long-term (7 yr) green roof trial, Finland (plantings & mats) | Biochar in substrates |
| Biochar enhances long-term P retention, but effectiveness depends on fertilization and substrate properties |
| [40] | Karelia, Russia–Sandy Umbric Podzol & heavy loamy Umbric Retisol | Wood biochar (≤2 mm and 3–5 mm) applied at 2% and 5% (w/w); with and without NPK fertilizer |
| Fine biochar at higher application rates improves P availability and soil enzymatic activity in low-P sandy soils but is less effective in clayey soils |
| [41] | Incubation in clay loam & loamy sand | Rice straw (RSB) & acacia wood biochar (ACB), 0–1% |
| Feedstock and soil type strongly affect N cycling; biochar improves NH4+ retention and reduces volatilization |
| [43] | Subtropical pomelo orchards with acidic soil | 0–1% biochar at different pH (4.0–7.2) |
| Biochar improves N retention mainly at pH 4.5–6.4, enhancing N use efficiency and lowering NO3− losses |
| [44] | Farmland soil | 10% amendment with Gracilaria lemaneiformis biochar |
| Strong potential to reduce N losses and stabilize ammonium in soils |
| [45] | Farmland soil (pot experiment) | Corn straw biochar (0–4% peat) |
| Biochar enhanced soil nitrogen availability and crop uptake by increasing ammonium and nitrate levels. Low doses suppressed ammonia oxidation, while higher application rates improved N use efficiency by stimulating nitrification and denitrification |
| Effects on C dynamics | ||||
| [47] | Peanut shell biochar (treatment vs. no-amendment control) | 70-day incubation experiment |
| Biochar enriched soil carbon fractions, stimulated beneficial microbes, and improved soil fertility |
| [48] | Field maize trials, two seasons (2022–2023) | Biochar from different feedstocks (rice husk, groundnut husk, sawdust) at rates up to 8 t/ha |
| Biochar can significantly enhance soil C pools and fertility in real field settings; feedstock matters for maximizing effect |
| [49] | Rice plant–soil systems; 13CO2 pulse labeling | 1.0% biochar with/without N fertilization |
| Biochar + N fertilization can increase carbon retention from recent photosynthesis, boosting both plant growth and soil C storage |
| [52] | Field winter wheat trial, topsoil amendment | Biochar at control, low (LB-~1%), medium (MB-~2%), high (HB-~4%) rates (dry weight basis) |
| Higher rates of biochar build more stable carbon pools; labile C dynamics shift over time (initial flush then decline) |
| [54] | Mesocosm experiments with Festuca arundinacea planted on red soils and calcareous soils; simulated grazing | Cornstalk biochar at 100 g biochar per kg soil |
| Biochar is especially effective in acidic soils for stabilizing carbon; mineral interactions are key (Fe/Al/Ca binding) |
| [57] | Northwestern Russia–Three Podzol Antric soils with varying organic C | Birch and aspen biochar (fast pyrolysis, 550 °C) at 0.1% and 1.0% (w/w); 90-day incubation |
| Moderate biochar addition stimulates organic matter turnover and humic substance formation, enhancing soil carbon dynamics |
| Nutrient dynamics in general | ||||
| [59] | Acidified soils (experiments + simulations) | Peanut shell biochar (0–10%) |
| Improves nutrient efficiency and reduces leaching in acid soils |
| [60] | Ethiopia, acidic Nitisol (incubation study) | WHB (1–2%), with lime/fertilizer comparisons |
| WHB is more effective than lime in resisting acidification, enhancing soil buffering and nutrient availability |
| [62] | Historical kiln sites, various land covers | Century-old charcoal (CoBC), fresh oak biochar (YBC, 80 t/ha), no biochar |
| Biochar age shapes nutrient dynamics: YBC affects short-term processes, CoBC sustains long-term soil fertility |
| [63] | 7-year rice field | Annual biochar (9 t/ha/yr) with/without N fertilizer |
| Enhances soil fertility, crop growth, and long-term soil quality |
| [64] | Clay soil (Brazil), with gypsum control | Biochar from sugarcane bagasse (SB), orange bagasse (OB), corncobs (CB) |
| Effective for salt-affected soil remediation and improving soil–water distribution; performance varies by biochar type |
| [65] | Alkaline sandy soil | Poultry manure biochar (RPM-B, 600 °C, 5–8% w/w) |
| Sustainable alternative to synthetic fertilizers for nutrient-poor semi-arid soils |
| [66] | Karelia, Russia–Boreal soils (Sandy loam Umbric Podzol; clay loam Umbric Retisol) | Wood biochar (≤2 mm and 3–5 mm) at 5% (w/w); 6-week pot study with spring barley |
| Biochar improves fertility and crop performance in acidic sandy soils but may hinder N dynamics in dense, clayey systems. |
| Ref. | Biochar Treatment | Crop/System | Duration | Key Findings | Microbial & Enzymatic Effects |
|---|---|---|---|---|---|
| [83] | Straw-based carbon substrate (100 kg) | Maize/Field | 5 months | Enhanced soil fertility & yield; stage-specific nutrient effects (N early, C & P later) | ↑ Rhizobiales, Saccharimonadales, Eurotiales; improved N, C, P cycling |
| [84] | Wood biochar (0–60 t/ha) + N (0–450 kg/ha) | Rapeseed | 2 years | ↑ Soil enzymes, plant height, pods, yield; alleviated N stress | ↑ Urease, catalase, phosphatase, nitrate reductase, etc.; excess biochar (60 t/ha) inhibited urease/invertase |
| [81] | Enriched rice straw biochar (4.24 g/treatment) | General soils | 60 days | Altered microbial structure; ↑ nutrient solubilization | ↑ Proteobacteria, Actinobacteria; ↓ Methylomirabilota, Desulfobacterota; ↑ rhizosphere diversity |
| [87] | Biochar (0–126 Mg/ha) | Maize/Field | 7 years | ↑ Root traits, bacterial diversity (5–9%); minor fungal response | ↑ Firmicutes; ↓ Actinobacteria, Acidobacteria; bacterial communities linked to root traits |
| [90] | Corn-straw biochar fractions (AE, OE, EBC) | Purple soil | 30 days | ↑ Available P, K, organic C; ↓ pH & N | AE affected bacteria via nutrients; EBC affected fungi via structure; ↑ fungal diversity |
| [91] | Apple wood biochar (1% w/w) | Apple orchard | 1 year | ↓ N2O emissions (−35%); altered rhizosphere diversity | ↑ N-fixing microbes; altered bacterial/fungal/archaeal structure |
| [92] | Straw vs. straw-biochar | Maize rhizosphere | 21 days | Straw ↑ microbial biomass; biochar ↑ root biomass & stability | Straw favored Firmicutes (r-strategists, ↑ enzyme genes); biochar favored Actinobacteria (K-strategists) |
| [93] | Rice husk biochar (0–1.5%) | Lettuce | 28 days | ↑ Enzyme activity, root & leaf growth | ↑ Massilia, Bacillus, Trichocladium; biochar stabilized microbial networks |
| [95] | Biochar (0–47.25 t/ha) + fertilizer | Field | 6 years | ↑ Soil organic matter, pH, C/N; altered N fractions | N fractions correlated with Verrucomicrobia, Acidobacteria, Proteobacteria; ↑ N-cycling enzymes |
| [96] | Rice & corn straw biochar | Rice (albic soil)/Pot | Till rice maturity | ↑ Nutrients, diversity, ACE & Chao indices (2–3% for bacteria; 7–14% for fungi) | ↑ Proteobacteria, Verrucomicrobia, Bacteroidetes; stronger bacteria–fungi interactions |
| [97] | Peanut shell biochar (0–10%) | Landfill soil | 3 months | ↑ pH, nutrients, organic matter; ↑ plant growth, ↓ plant diversity | ↑ Bacterial richness; 5% biochar ↑ fungal diversity; enriched amino acid metabolism genes |
| [98] | Biochar (0, 10, 20 t/m3) | Field soil | Not specified | ↑ α-diversity (20 t/m3); improved soil properties | ↑ Proteobacteria, Cyanobacteria, Actinobacteria; shaped by porosity & moisture |
| [99] | Wheat straw biochar (0–15 kg/plant) | Citrus | 7 months | ↑ Soil fertility & fruit quality | ↑ Bacterial richness & diversity; ↑ Basidiomycota; ↓ fungal evenness |
| [100] | Rice straw biochar (0–2.4%) | Panax quinquefolium/Pot | 7 months | ↑ Growth, photosynthesis, ginsenosides (23–101%); ↓ catalase | ↑ Proteobacteria, Chalara, Sistotrema; altered rhizosphere fungi strongly |
| [101] | Biochar (20 kg/plant) | Bayberry | 11 months | ↑ Growth (27–57% for various parameters), fruit quality, soil nutrients (14–58% for organic matter, alkali hydrolyzed N, exchangeable Ca, and Mg) | ↑ Mycobacterium, Crossiella, Geminibasidium, Fusarium; ↓ Acidothermus, Mycena; fungi > bacteria |
| [102] | Rice straw biochar (0–2%) | Cotton, saline–alkaline soil/Pot | 6 months | ↓ pH (1%), electrical conductivity (19%), salts (25–28%); ↑ nutrients, enzyme activity | ↑ Proteobacteria, Bacteroidota, Actinobacteriota; ↑ N, P cycling enzymes (32–34%) |
| [103] | Corn cob biochar (15–30 t/ha) ± P | Tropical soil/Field | 2015 to Jan 2017 | ↑ Microbial biomass C (4.5–8.2 times), N (1.4–2.7 times), and enzymes; ↓ stress respiration | ↑ Gram+ (1.7–1.9 times) & Gram– (1.5–1.6 times) bacteria; ↑ fungi & arbuscular mycorrhizal fungi; improved porosity, O2 diffusion |
| [106] | Wheat straw biochar (0–48 t/ha) | Double rice system | 3–4 yrs post-application | ↑ Bacteria (+102%), fungi (+178%); ↑ total organic carbon & N | ↑ Acidobacteria, Mortierella, Westerdykella; ↓ Athelia, Penicillium (pathogens) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.H.D. Biochar Amendments for Soil Restoration: Impacts on Nutrient Dynamics and Microbial Activity. Environments 2025, 12, 425. https://doi.org/10.3390/environments12110425
Tang KHD. Biochar Amendments for Soil Restoration: Impacts on Nutrient Dynamics and Microbial Activity. Environments. 2025; 12(11):425. https://doi.org/10.3390/environments12110425
Chicago/Turabian StyleTang, Kuok Ho Daniel. 2025. "Biochar Amendments for Soil Restoration: Impacts on Nutrient Dynamics and Microbial Activity" Environments 12, no. 11: 425. https://doi.org/10.3390/environments12110425
APA StyleTang, K. H. D. (2025). Biochar Amendments for Soil Restoration: Impacts on Nutrient Dynamics and Microbial Activity. Environments, 12(11), 425. https://doi.org/10.3390/environments12110425
