Frequency, Spatial Distribution, and Influence of Consecutive Dry Days on Rainfed Agriculture
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Regime
2.2.1. Rainfall
2.2.2. Consecutive Dry Days (CDDs)
2.2.3. Water Scenarios
2.3. Cowpea (Vigna unguiculata) Yield
2.4. Interpolation of the Data
2.5. Statistical Analysis
3. Results and Discussion
3.1. Hydrological Regime
3.1.1. Rainfall
3.1.2. Consecutive Dry Days
3.2. Cowpea (Vigna unguiculata) Productivity
3.3. Correlation Between Variables of the Rainfall Regime
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BSh’ | A type of dry semi-arid climate according to the Köppen classification |
| CDD | Consecutive Dry Days |
| CDD1 | Consecutive Dry Days (5–10 days) |
| CDD2 | Consecutive Dry Days (11–15 days) |
| CDD3 | Consecutive Dry Days (>15 days) |
| CENTEC | Technological Education Center Institute |
| CRS | Coordinate Reference System |
| EMATERCE | Rural Assistance and Extension Company of Ceará |
| HRR | Homogeneous Rainfall Regions |
| IBGE | Brazilian Institute of Geography and Statistics |
| IDAM | Institute for Sustainable Agricultural and Forestry Development of the State of Amazonas |
| IPECE | Ceará Institute of Economic Research and Strategy |
| ITCZ | Intertropical Convergence Zone |
| IUSS | International Union of Soil Sciences |
| QGIS | Quantum Geographic Information System |
| R | Correlation Coefficients |
| R1 | Cariri |
| R2 | Ibiapaba |
| R3 | Jaguaribana |
| R4 | Coastal Region of Fortaleza |
| R5 | Coastal Region of Pecém |
| R6 | Northern Coastal Region |
| R7 | Baturité Massif |
| R8 | Central Sertão and Inhamuns |
| SAB | Brazilian Semi-Arid |
| SIDRA | IBGE Automatic Recovery System |
| SST | Sea Surface Temperature |
| UFC | Federal University of Ceará |
| UFCA | Federal University of Cariri |
| USGS | United States Geological Survey |
| UTM | Universal Transverse Mercator |
| WGS 84 | World Geodetic System 1984 |
Appendix A. Script for Quantifying Consecutive Dry Days
- Note: The square brackets used in the code (e.g., row [4], row [5]) are part of the Python syntax for accessing list elements and are not related to bibliographic references.
| import csv import numpy as np d = [] dia = 0 mes = 0 ano = 0 prec = [] precipitacao = 0 count = 0 V1 = 0 V2 = 0 V3 = 0 lista_postos = [‘60-independencia1’, ‘115-Pentecoste’] for jj in range (0, len (lista_postos)): # print (‘C:\\Users\\josiv\\Documents\\programas_python\\{0}.txt’.format (lista_postos [j])) arquivo = open (‘C:\\Users\\josiv\\Documents\\programas_python\\veranicos\\{0}.txt’.format (lista_postos [jj]), ‘w’) arquivo.write (‘ano; CDD1; CDD2; CDD3\n’) with open (‘C:\\Users\\josiv\\Documents\\programas_python\\{0}.txt’.format (lista_postos [jj])) as f: csv_reader = csv.reader (f, delimiter = ‘;’) cabecalho = next (csv_reader, None) prec = [] for row in csv_reader: ano = int (row [4]) mes = int (row [5]) prec.append (ano) prec.append (mes) prec.append (row [7:]) # print (prec) for z in range (0, len (prec), 3): # print (prec [z]) #printa o ano # print (prec [z + 1]) #printa o mes # print (prec [z + 2]) #printa a precipitacao for j in prec [z + 2]: precipitacao = float (j) if np.isnan (precipitacao) == True or precipitacao == 888.0 or precipitacao == 999.0 or prec [z] < 1990 or prec [z] > 2019: pass else: if prec [z + 1] <= 5 and precipitacao < 2.0: # print (‘mes = ’, prec [z + 1], ‘ano =’, prec [z], precipitacao) count += 1 # print (count) if 5 == count: V1 += 1 # print (‘V1 =’, V1, ‘V2 =’, V2, ‘V3 =’, V3) elif 11 == count: V2 += 1 # print (‘V1 =’, V1, ‘V2 =’, V2, ‘V3 =’, V3) elif 15 == count: V3 += 1 # print (‘V1 =’, V1, ‘V2 =’, V2, ‘V3 =’, V3) else: count = 0 # pass # print (prec [z], prec [z + 1], ‘V1 =’, V1, ‘V2 =’, V2, ‘V3 =’, V3) if prec [z + 1] == 5: if V2 >= 1 and V1 >= V2: V1 = V1 − V2 # print (prec [z], prec [z + 1], ‘V1 =’, V1, ‘V2 =’, V2, ‘V3 =’, V3) if V3 >= 1 and V2 >= V3: V2 = V2 − V3 arquivo.write (‘{0}; {1}; {2}; {3}\n’.format (prec [z], V1, V2, V3)) print (lista_postos [jj], prec [z], prec [z + 1], ‘V1 =’, V1, ‘V2 =’, V2, ‘V3 =’, V3) V1 = 0 V2 = 0 V3 = 0 |
References
- Coppus, R. The Global Distribution of Human-Induced Land Degradation and Areas at Risk: SOLAW21 Technical Background Report; FAO: Rome, Italy, 2023; pp. 23–26. [Google Scholar]
- Rockstrom, J.; Hatibu, N.; Oweis, T.Y.; Wani, S.; Barron, J.; Bruggeman, A.; Farahani, J.; Karlberg, L.; Qiang, Z. Managing water in rainfed agriculture. In Water for Food, Water for Life a Comprehensive Assessment of Water Managament in Agriculture; Molden, D., Ed.; Earthscan: London, UK; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2007; pp. 315–352. [Google Scholar]
- Gobin, A.; Vyver, H. Spatio-temporal variability of dry and wet spells and their influence on crop yields. Agric. For. Meteorol. 2021, 308, 108565. [Google Scholar] [CrossRef]
- Oliveira, B.C.C.; Oliveira Júnior, J.F.; Pereira, C.R.; Sobral, B.S.; Gois, G.; Lyra, G.B.; Machado, E.A.; Correia Filho, W.L.F.; Souza, A. Spatiotemporal variation of dry spells in the State of Rio de Janeiro: Geospatialization and multivariate analysis. Atmos. Res. 2021, 257, 105612. [Google Scholar] [CrossRef]
- Baltaci, H.; Arslan, H. Seasonal and regional variability of wet and dry spell characteristics over Turkey. Atmos. Res. 2022, 270, 106083. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Analysis of spatio-temporal rainfall trends across southern African biomes between 1981 and 2016. Phys. Chem. Earth (Pt A B C) 2019, 114, 102808. [Google Scholar] [CrossRef]
- Bal, S.K.; Sandeep, V.M.; Kumar, P.V.; Pramod, V.P.; Manikandan, N.; Rao, C.S.; Singh, N.P.; Bhaskar, S. Assessing impact of dry spells on the principal rainfed crops in major dryland regions of India. Agric. For. Meteorol. 2022, 313, 108768. [Google Scholar] [CrossRef]
- Nogueira, D.B.; Silva, A.O.; Giroldo, A.B.; Silva, A.P.N.; Costa, B.R.S. Dry spells in a semi-arid region of Brazil and their influence on maize productivity. J. Arid Environ. 2023, 209, 104892. [Google Scholar] [CrossRef]
- Silva, F.H.O.; Lopes, F.B.; Bezerra, B.G.M.; Viana, N.S.; Araújo, I.C.S.; Luna, N.R.S.; Pontes, M.C.; Cavalcante, R.R.; Aragão, F.T.A.; Andrade, E.M. Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed. Environments 2025, 12, 220. [Google Scholar] [CrossRef]
- Costa, M.N.; Becker, C.T.; Brito, J.I.B. Análise das séries temporais de precipitação do semiárido paraibano em um período de 100 anos-1911 a 2010. Rev. Bras. Geogr. Fís. 2013, 6, 680–696. [Google Scholar] [CrossRef]
- Andrade, E.M. Caatinga, the tropical dry forest: The certainties and uncertainties of water. TRIM 2017, 12. Available online: https://uvadoc.uva.es/handle/10324/23593 (accessed on 30 October 2025).
- Coutinho, M.D.L.; Gomes, A.C.S.; Morais, M.D.C.; Sakamoto, M.S. Análise comparativa do regime pluviométrico entre anos secos e chuvosos na bacia do Rio Piranhas Açu. Anu. Inst. Geociênc. 2018, 41, 758–765. [Google Scholar] [CrossRef]
- Lima, M.A.S.; Lira, M.A.T. A Variabilidade Climática e os Desastres Naturais no Estado do Ceará (1991–2019). Rev. Bras. Meteorol. 2021, 36, 603–614. [Google Scholar] [CrossRef]
- Rodrigues, B.D.; Coutinho, M.D.L.; Sakamoto, M.S.; Jacinto, L.V. Uma análise sobre as chuvas no Ceará baseada nos eventos de el niño, la niña e no dipolo do servain durante a estação chuvosa. RBClima 2021, 28. Available online: https://revistas.ufpr.br/revistaabclima/article/view/76238/43620 (accessed on 30 October 2025). [CrossRef]
- Food and Agriculture Organization of United Nations, Trees, Forests and Land Use in Drylands the First Global Assessment—Full Report; FAO Forestry: Rome, Italy, 2019; pp. 11–20.
- Superintendência Do Desenvolvimento Do Nordeste. Delimitação do Semiárido. 2021. Available online: https://www.gov.br/sudene/pt-br/centrais-de-conteudo/02semiaridorelatorionv.pdf (accessed on 30 October 2025).
- Instituto Brasileiro De Geografia E Estatística. Censo Agropecuário 2017; IBGE: Rio de Janeiro, Brazil, 2017.
- Rocha, T.B.C.; Vasconcelos Júnior, F.C.; Silveira, C.S.; Martins, E.S.P.R.; Silva, R.F.V. Veranicos no Ceará e Aplicações para Agricultura de Sequeiro. Rev. Bras. Meteorol. 2020, 35, 435–447. [Google Scholar] [CrossRef]
- Martins, M.M.; Martins, S.C.; Borges, W.L. Correção da acidez, adubação e fixação biológica. In Feijão-Caupi do Plantio à Colheita, 1st ed.; Vale, J.C., Bertini, C., Borém, A., Eds.; Ed. UFV: Viçosa, Brasil, 2017; pp. 52–69. [Google Scholar]
- Oliveira, A.B.; Mesquita, R.M.; Guimarães, M.A.; Lemos Neto, H.S.; Silva, T.M. Exigências edafoclimáticas e ecofisiologia. In Feijão-Caupi do Plantio à Colheita, 1st ed.; Vale, J.C., Bertini, C., Borém, A., Eds.; Ed. UFV: Viçosa, Brasil, 2017; pp. 52–69. [Google Scholar]
- Silva, L.D.R.; Cartaxo, P.H.A.; Silva, M.C.; Gonzaga, K.S.; Araújo, D.B.; Sousa, E.S.; Santos, J.P.O. Efeito da variabilidade pluviométrica na produção de Vigna unguiculata (L.) Walp. no Semiárido da Paraíba. Sci. Electron. Arch. 2020, 13, 26–32. [Google Scholar] [CrossRef]
- Fernandes, F.B.P.; Lacerda, C.F.; Andrade, E.M.; Neves, A.L.R.; Sousa, C.H.C. Efeito de manejos do solo no déficit hídrico, trocas gasosas e rendimento do feijão-de-corda no semiárido. Rev. Ciênc. Agron. 2015, 46, 506–515. [Google Scholar] [CrossRef][Green Version]
- Mbanyele, V.; Mtambanengwe, F.; Nezomba, H.; Groot, J.C.J.; Mapfumo, P. Combinations of in-field moisture conservation and soil fertility management reduce effect of intra-seasonal dry spells on maize under semi-arid conditions. Field Crops Res. 2021, 270, 108218. [Google Scholar] [CrossRef]
- Rocha, T.B.C.; Vasconcelos Junior, F.C.; Silveira, C.S.; Martins, E.S.P.R.; Gonçalves, S.T.N.; Silva, E.M.; Alves, J.M.B.; Sakamoto, M.S. Indicadores de Veranicos e de Distribuição de Chuva no Ceará e os Impactos na Agricultura de Sequeiro. Rev. Bras. Meteorol. 2021, 36, 579–589. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.; Li, Y. Effects of rainfall regime during the growing season on the annual plant communities in semiarid sandy land, northeast China. Glob. Ecol. Conserv. 2023, 43, 02456. [Google Scholar] [CrossRef]
- Cavalcante, E.S.; Lacerda, C.F.; Mesquita, R.O.; Melo, A.S.; Ferreira, J.F.S.; Teixeira, A.S.; Lima, S.C.R.V.; Sales, J.R.S.; Silva, J.S.; Gheyi, H.R. Supplemental irrigation with brackish water improves carbon assimilation and water use efficiency in maize under tropical dryland conditions. Agriculture 2022, 12, 544. [Google Scholar] [CrossRef]
- Guerreiro, M.J.S.; Andrade, E.M.; Abreu, I.; Lajinha, T. Long-term variation of precipitation indices in Ceará State, Northeast Brazil. Int. J. Climatol. 2013, 33, 2929–2939. [Google Scholar] [CrossRef]
- Huang, J.; Liu, F.; Xue, Y.; Sun, S. The spatial and temporal analysis of precipitation concentration and dry spell in Qinghai, northwest China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1403–1411. [Google Scholar] [CrossRef]
- Waheed, S.Q.; Alobaidy, M.N.; Grigg, N.S. Resilience Appraisal of Water Resources System under Climate Change Influence Using a Probabilistic-Nonstationary Approach. Environments 2023, 10, 87. [Google Scholar] [CrossRef]
- Ferijal, T.; Batelaan, O.; Shanafield, M. Spatial and temporal variation in rainy season droughts in the Indonesian Maritime Continent. J. Hydrol. 2021, 603, 126999. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Lu, J.; Yeh, H. Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan. Environments 2024, 11, 233. [Google Scholar] [CrossRef]
- Andrade, E.M.; Sena, M.G.T.; Silva, A.G.R.; Pereira, F.J.S.; Lopes, F.B. Uncertainties of the rainfall regime in a tropical semi-arid region: The case of the State of Ceará. Agro@mbiente On-Line 2016, 10, 88–95. [Google Scholar] [CrossRef]
- Campos, D.A.; Andrade, E.M. Seasonal trend of climate variables in an area of the Caatinga phytogeographic domain. Revista Agro@mbiente 2021, 15, 1–18. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Hou, E. Spatial and temporal variation of precipitation during 1960–2015 in Northwestern China. Nat. Hazards Obs. 2021, 109, 2173–2196. [Google Scholar] [CrossRef]
- Fernandes, F.B.P. Disponibilidade Hídrica para a Cultura do Feijão-de-Corda em Função do Manejo de Solo no Semiárido Cearense. Ph.D. Thesis, Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, Brazil, 2014. [Google Scholar]
- Souza, M.S.; Campos, K.C.; Braga, F.L.P.; Lopes, F.B. Determinantes do regime pluviométrico no Semiárido Cearense (1990–2019). RBClima 2024, 34, 533–556. [Google Scholar] [CrossRef]
- Instituto Brasileiro De Geografia E Estatística. Censo 2022: População e Domicílios; IBGE: Rio de Janeiro, Brazil, 2023.
- Andrade, E.M.; Aquino, D.N.; Chaves, L.C.G.; Lopes, F.B. Water as Capital and Its Uses in the Caatinga. In Caatinga, 1st ed.; Silva, J.M.C.S., Leal, I.R., Tabarelli, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 281–302. [Google Scholar]
- Caitano, R.F.; Lopes, F.B.; Teixeira, A.S. Estimativa da aridez no Estado do Ceará usando Sistemas de Informação Geográfica. In Proceedings of the XV Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, Brasil, 30 April 2011. [Google Scholar]
- Koeppen, W. Climatologia: Con un Studio de los Climas de la Tierra; Fondo de Cultura Económica: Mexico City, Mexico, 1948. [Google Scholar]
- Xavier, T.M.B.S. Tempo de Chuva: Estudos Climáticos e de Previsão para o Ceará e Nordeste Setentrional; Ed. ABC: Fortaleza, Brazil, 2001. [Google Scholar]
- Rainfall Gauges of the Ceará Foundation for Meteorology and Water Resources. Available online: http://www.funceme.br/?page_id=2694 (accessed on 16 April 2021).
- Jacomine, P.K.T.; Almeida, J.C.; Medeiros, L.A.R. Levantamento Exploratório—Reconhecimento de Solos do Estado do Ceará, 1st ed.; SUDENE: Recife, Brazil, 1973.
- International Union of Soil Sciences, World Reference Base for Soil Resources, 4th ed.; IUSS: Vienna, Austria, 2004.
- Wang, W.; Shao, Q.; Peng, S.; Zhang, Z.; Xing, W.; An, G.; Yong, B. Spatial and temporal characteristics of changes in precipitation during 1957–2007 in the Haihe River basin, China. Stoch. Environ. Res. Risk Assess. 2011, 25, 881–895. [Google Scholar] [CrossRef]
- Sakamoto, M.S.; Ferreira, A.G.; Costa, A.C.; Olivas, E.S. Rainy season pattern and impacts on agriculture and water resources in Northeastern Brazil. In Drought: Research and Science-Policy Interfacing, 1st ed.; Andreu, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudom, D., Lanen, H., Eds.; CRC Press/Balkema: Boca Raton, FL, USA, 2015; pp. 49–55. [Google Scholar]
- Cavalcante, E.S.; Lacerda, C.F.; Costa, R.N.T.; Gheyi, H.R.; Pinho, L.L.; Bezerra, F.M.S.; Oliveira, A.C.; Canjá, J.F. Supplemental irrigation using brackish water on maize in tropical semi-arid regions of Brazil: Yield and economic analysis. Sci. Agric. 2021, 78, 1–9. [Google Scholar] [CrossRef]
- Pinkayan, S. Conditional probabilities of ocurrence of Rainy and Dry Years Over a Large Continental Area. Hidrol. Pap. 1966, 12, 3. [Google Scholar]
- Instituto Brasileiro De Geografia E Estatística. Produção Agrícola Municipal; IBGE: Rio de Janeiro, Brazil, 2019.
- Hora de Plantar Program. Available online: https://www.sda.ce.gov.br/2014/08/21/programa-hora-de-plantar-hpnet/ (accessed on 10 October 2025).
- MapBiomas Land Use and Land Cover Platform. Available online: https://brasil.mapbiomas.org/colecoes-mapbiomas/ (accessed on 13 October 2025).
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2018. [Google Scholar]
- Caitano, R.F. Geoprocessamento na Análise de Risco de Salinização dos Solos do Estado do Ceará. Master’s Thesis, Mestrado em Engenharia Agrícola—Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, Brazil, 2012. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in Central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 1st ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in on-criterion variance analyses. J. Am. Stat. Assoc. 1952, 47, 583. [Google Scholar] [CrossRef]
- Stevenson, W.J. Estatística Aplicada à Administração, 1st ed.; Ed. Harbra: São Paulo, Brazil, 1981. [Google Scholar]
- Pires, M.C.; Castro, M.B.; Lieber, Z.V.; Menezes, T.P.; Aoki, R.Y.S. Estatística não Paramétrica Básica no Software R: Uma Abordagem por Resolução de Problemas, 1st ed.; UFMG: Belo Horizonte, Brazil, 2018; pp. 22–23. [Google Scholar]
- Costa, J.A.; Silva, D.F. Distribuição espaço-temporal do Índice de anomalia de chuva para o Estado do Ceará. Rev. Bras. Geogr. Fís. 2017, 10, 1002–1013. [Google Scholar] [CrossRef][Green Version]
- Souza, C.L.O.; Nogueira, V.F.B.; Nogueira, V.S. Variabilidade interanual da precipitação em cidades do semiárido brasileiro entre os anos de 1984 e 2015. Rev. Verde Agroecol. Desenvolv. Sustent. 2017, 12, 740–747. [Google Scholar] [CrossRef]
- Carvalho, A.T.F. Caracterização climática da quadra chuvosa de município do semiárido brasileiro, entre os anos de 2013 a 2017. Geogr. Atos 2020, 2, 4–23. [Google Scholar] [CrossRef]
- Medeiros, J.F.; Cestaro, L.A.; Queiroz, L.S. Caracterização climática da serra de Martins-RN. Rev. Geociênc. Nordeste 2021, 7, 92–100. [Google Scholar] [CrossRef]
- Xavier, A.F.S.; Xavier, T.M.B.S.; Malveira, E.C.H. A Zona De Convergência Intertropical—Zcit E Sua Relação Com A Chuva Nas Principais Bacias Hidrográficas Do Ceará. In Proceedings of the XIII Simpósio Brasileiro de Recursos Hídricos, Belo Horizonte, Brazil, 28 April 1998. [Google Scholar]
- Moura, M.S.B.; Sobrinho, J.E.; Silva, T.G.F. Aspectos meteorológicos do semiárido brasileiro. In Tecnologia de Convivência com o Semiárido Brasileiro; Ximenes, L.F., Silva, M.S.L., Brito, L.T.L., Eds.; Banco do Nordeste: Fortaleza, Brazil, 2019; pp. 85–104. [Google Scholar]
- Ferreira, A.G.; Mello, N.G.M. Principais sistemas atmosféricos atuantes sobre a região Nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. RBClima 2005, 1, 15–28. [Google Scholar] [CrossRef]
- Sistemas Atmosféricos Atuantes Sobre o Nordeste. Available online: http://www.funceme.br/?p=967 (accessed on 16 April 2021).
- Seigerman, C.K.; Leite, N.S.; Martins, E.S.P.R.; Nelson, D.R. At the extremes: Assessing interrelations among the impacts of and responses to extreme hydroclimatic events in Ceará, Northeast Brazil. J. Hydrol. 2024, 632, 130850. [Google Scholar] [CrossRef]
- Dantas, M.E.; Shinzato, E.; Brandão, R.L.; Freitas, R.L.; Freitas, L.C.B.; Teixeira, W.G. Origem Das Paisagens. In Geodiversidade do Estado do Ceará, 1st ed.; Brandão, R.L., Freitas, L.C.B., Eds.; CPRM: Fortaleza, Brazil, 2014; pp. 37–60. [Google Scholar]
- Souza, J.O.P.; Almeida, J.D.M.; Correa, A.C.B. Caracterização e espacialização da precipitação em bacia hidrográfica com relevo complexo: Central Sertão Pernambucano–Bacia do Riacho do Saco. Rev. Geogr. 2015, 32, 2105. [Google Scholar]
- Marengo, J.A.; Alves, L.M.; Beserra, E.A.; Lacerda, F.F. Variabilidade e mudanças climáticas no semiárido brasileiro. In Recursos Hídricos em Regiões Áridas e Semiáridas, 1st ed.; Medeiros, S.S., Gheyi, H.R., Galvão, C.O., Paz, V.P.S., Eds.; Instituto Nacional do Semiárido: Campina Grande, Brazil, 2011; pp. 383–422. [Google Scholar]
- Silva, D.F.; Sousa, A.B.; Maia, L.M.; Rufino, L.L. Efeitos da associação de eventos de ENOS e ODP sobre o Estado do Ceará. Rev. Geogr. 2012, 29, 14–135. [Google Scholar]
- Ferreira, P.S.; Souza, W.M.; Silva, J.F.; Gomes, V.P. Variabilidade espaço-temporal das tendências de precipitação na mesorregião sul Cearense e sua relação com as anomalias de TSM. Rev. Bras. Meteorol. 2018, 33, 141–152. [Google Scholar] [CrossRef]
- Santos, F.A.; Mendes, L.M.S.; Cruz, M.L.B. Análise estatística dos anos secos e chuvosos da Sub-bacia Hidrográfica do rio Piracuruca, divisa entre os estados do Ceará e do Piauí, Brasil. Rev. Geogr. 2020, 28, 43–61. [Google Scholar]
- Lopes, J.R.F.; Dantas, M.P.; Ferreira, F.E.P. Variabilidade da precipitação pluvial e produtividade do milho no semiárido brasileiro através da análise multivariada. Nativa 2019, 7, 77–83. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Andrade, E.M.; Chaves, L.C.G.; Fernandes, F.B.P. Frequência e distribuição espacial de veranicos no estado do Ceará. In Proceedings of the II Simpósio Brasileiro de Recursos Naturais do Semiárido, Quixadá, Brazil, 27 May 2015. [Google Scholar]
- Soares, D.B.; Nóbrega, R.S. Análise espacial e climatológica da ocorrência de veranicos no Sertão de Pernambuco. Rev. Geogr. 2010, 27, 94–106. [Google Scholar]
- Silva, D.F. Influência da variabilidade interdecadal do clima associada ao ENOS sobre o Estado do Ceará. Rev. Ibero-Am. Ciênc. Ambient. 2013, 4, 86–98. [Google Scholar] [CrossRef]
- Villela, H.A.S.M.; Matos, A. Hidrologia Aplicada, 1st ed.; Editora McGraw-Hil: São Paulo, Brazil, 1975. [Google Scholar]
- Ramires, J.; Armond, N.B.; Salgado, C.M. A variabilidade pluviométrica no Cariri cearense e a influência das teleconexões ENOS e ODP. In Proceedings of the XVII Simpósio Brasileiro de Geografia Física Aplicada, Campinas, Brazil, 29 June 2017. [Google Scholar]
- Moro, M.F.; Macedo, M.B.; Moura-Fé, M.M.; Castro, A.S.F.; Costa, R.C. Vegetation, phytoecological regions and landscape diversity in Ceará state, northeastern Brazil. Rodriguésia 2015, 66, 717–743. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Shevkani, K.; Shivani, B.; Dhaka, S.S.; Patil, C. Cowpeas for sustainable agriculture and nutrition security: An overview of their nutritional quality and agroeconomic advantages. Discov. Food 2025, 1, 109. [Google Scholar] [CrossRef]
- Vasconcelos, T.S.; Moraes, J.G.L.; Alves, J.M.B.; Jacinto Júnior, S.G.; Oliveira, L.L.B.; Silva, E.M.; Sousa, G.G. Variabilidade Pluviométrica no Ceará e suas Relações com o Cultivo de Milho, Feijão-Caupi e Mandioca (1987–2016). Rev. Bras. Meteorol. 2019, 34, 431–438. [Google Scholar] [CrossRef]
- Companhia Nacional De Abastecimento. Acompanhamento da Safra Brasileira de Grãos, 6th ed.; CONAB: Brasília, Brazil, 2018. [Google Scholar]
- Menezes, H.E.A.; Brito, J.I.B.; Lima, R.A.F.A. Veranico e a produção agrícola no Estado da Paraíba, Brasil. Rev. Bras. Eng. Agríc. Ambient. 2010, 14, 181–186. [Google Scholar] [CrossRef][Green Version]
- Lopes, F.B.; Andrade, E.M.; Aquino, D.N.; Lopes, B.; Frédson, J. Proposta de um índice de sustentabilidade do Perímetro Irrigado Baixo Acaraú, Ceará, Brasil. Rev. Ciênc. Agron. 2009, 40, 185–193. [Google Scholar][Green Version]
- Lopes, F.B.; Andrade, E.M.; Oliveira, L.J.; Canafístula, F.J.F.; Soares, R.B. Indicadores de sustentabilidade da bacia hidrográfica do riacho Faé, Ceará, a partir de análise multivariada. Rev. Caatinga 2010, 23, 84–92. [Google Scholar][Green Version]
- Perímetros Públicos Irrigados do Ceará. 2011. Available online: https://www.adece.ce.gov.br/wp-content/uploads/sites/98/2012/10/perimetros_publicos_do_ceara_sb-7.pdf (accessed on 28 July 2022).[Green Version]
- Francisco, P.R.M.; Santos, D.; Lima, E.R.V.; Oliveira, F.P. Aptidão Climática e Pedológica da Cultura do Feijão Caupi para as Regiões do Agreste e Brejo Paraibano. Rev. Bras. Agric. Irrig. 2017, 11, 1557. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Guan, K.; Schnitkey, G.D.; Lucia, E.; Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 2019, 25, 2325–2337. [Google Scholar] [CrossRef]










| Region | No-Tillage | Conventional Tillage | ||
|---|---|---|---|---|
| Number of Farms | % | Number of Farms | % | |
| R1—Cariri | 20,607 | 2 | 15,294 | 3 |
| R2—Ibiapaba | 31,491 | 7 | 8287 | 4 |
| R3—Jaguaribana | 14,097 | 8 | 15,561 | 5 |
| R4—Coastal Region of Fortaleza | 12,704 | 5 | 4576 | 9 |
| R5—Coastal Region of Pecém | 18,824 | 3 | 3227 | 7 |
| R6—Northern Coastal Region | 28,000 | 3 | 6381 | 3 |
| R7—Baturité Massif | 10,035 | 5 | 7847 | 2 |
| R8—Central Sertão and Inhamuns | 39,751 | 10 | 47,964 | 21 |
| Ceará | 175,509 | 44 | 109,137 | 27 |
| Region | Minimum Tillage | No-Tillage System | ||
| Number of Farms | % | Number of Farms | % | |
| R1—Cariri | 18,649 | 2 | 1560 | 0.1 |
| R2—Ibiapaba | 8153 | 2 | 3297 | 0.8 |
| R3—Jaguaribana | 13,960 | 2 | 770 | 0.8 |
| R4—Coastal Region of Fortaleza | 5208 | 4 | 1059 | 0.4 |
| R5—Coastal Region of Pecém | 4654 | 4 | 1235 | 0.2 |
| R6—Northern Coastal Region | 6476 | 1 | 3149 | 0.3 |
| R7—Baturité Massif | 6677 | 1 | 250 | 0.3 |
| R8—Central Sertão and Inhamuns | 41,272 | 12 | 1811 | 0.4 |
| Ceará | 105,049 | 26 | 13,131 | 3 |
| Homogeneous Rainfall Region | Rainfall (mm/yr) | ||||
|---|---|---|---|---|---|
| Very Dry | Dry | Normal | Rainy | Very Rainy | |
| R1—Cariri | 423 a | 544 a | 728 ab | 898 ab | 1155 ab |
| R2—Ibiapaba | 388 a | 565 a | 783 ac | 1002 ac | 1226 ac |
| R3—Jaguaribana | 264 b | 387 bc | 570 bd | 744 bd | 939 bd |
| R4—Coastal Region of Fortaleza | 491 a | 706 a | 985 c | 1268 c | 1562 c |
| R5—Coastal Region of Pecém | 325 ab | 505 ab | 703 abc | 971 abc | 1188 abc |
| R6—Northern Coastal Region | 388 a | 579 a | 782 ac | 1040 ac | 1326 ac |
| R7—Baturité Massif | 430 a | 608 a | 790 ac | 998 ac | 1232 ac |
| R8—Central Sertão and Inhamuns | 263 b | 377 c | 533 d | 693 d | 886 d |
| Homogeneous Rainfall Region | CDD Class 1 | Total | Mean CDD (Municipality Year−1) | ||
|---|---|---|---|---|---|
| CDD1 | CDD2 | CDD3 | |||
| Cariri | 4496 | 1216 | 1022 | 6734 | 8.0 |
| Ibiapaba | 3541 | 762 | 783 | 5086 | 6.5 |
| Jaguaribana | 3540 | 899 | 1136 | 5575 | 7.7 |
| Coastal Region of Fortaleza | 1862 | 389 | 345 | 2596 | 6.2 |
| Coastal Region of Pecém | 2112 | 447 | 536 | 3095 | 6.3 |
| Northern Coastal Region | 3006 | 574 | 659 | 4239 | 6.4 |
| Baturité Massif | 1841 | 331 | 323 | 2495 | 6.0 |
| Central Sertão and Inhamuns | 5988 | 1601 | 1973 | 9562 | 8.0 |
| Total | 26,386 | 6219 | 6777 | 39,382 | |
| Homogeneous Rainfall Region | CDD Return Period (Years) | Rainfall (mm year−1) | |||
| CDD1 | CDD2 | CDD3 | |||
| Cariri | 1 | 1 | 1 | 843 | |
| Ibiapaba | 1 | 2 | 2 | 916 | |
| Jaguaribana | 1 | 1 | 1 | 695 | |
| Coastal Region of Fortaleza | 1 | 2 | 2 | 1173 | |
| Coastal Region of Pecém | 1 | 2 | 2 | 861 | |
| Northern Coastal Region | 1 | 2 | 1 | 925 | |
| Baturité Massif | 1 | 2 | 2 | 1025 | |
| Central Sertão and Inhamuns | 1 | 1 | 1 | 628 | |
| Homogeneous Rainfall Region | CDD1 | |||||
|---|---|---|---|---|---|---|
| Very Dry | Dry | |||||
| Minimum | Maximum | Median | Minimum | Maximum | Median | |
| R1—Cariri | 2 | 7 | 5 a | 4 | 7 | 5 a |
| R2—Ibiapaba | 2 | 7 | 4 ab | 3 | 6 | 4 b |
| R3—Jaguaribana | 2 | 5 | 4 b | 4 | 6 | 5 ab |
| R4—Coastal Region of Fortaleza | 3 | 7 | 5 a | 3 | 6 | 5 ab |
| R5—Coastal Region of Pecém | 2 | 6 | 4 ab | 3 | 6 | 4 b |
| R6—Northern Coastal Region | 1 | 7 | 4 ab | 3 | 7 | 5 ab |
| R7—Baturité Massif | 2 | 7 | 4 ab | 3 | 7 | 4 ab |
| R8—Central Sertão and Inhamuns | 2 | 6 | 4 ab | 3 | 6 | 5 ab |
| Homogeneous Rainfall Region | Normal | Rainy | ||||
| Minimum | Maximum | Median | Minimum | Maximum | Median | |
| R1—Cariri | 4 | 7 | 6 a | 4 | 8 | 6 a |
| R2—Ibiapaba | 3 | 7 | 4 b | 2 | 7 | 5 abc |
| R3—Jaguaribana | 3 | 6 | 5 abc | 4 | 8 | 5 ab |
| R4—Coastal Region of Fortaleza | 3 | 6 | 5 bc | 2 | 6 | 4 bc |
| R5—Coastal Region of Pecém | 4 | 6 | 5 abc | 3 | 6 | 5 abc |
| R6—Northern Coastal Region | 4 | 7 | 5 abc | 3 | 6 | 5 abc |
| R7—Baturité Massif | 4 | 6 | 5 abc | 3 | 5 | 4 c |
| R8—Central Sertão and Inhamuns | 4 | 7 | 5 ac | 4 | 7 | 6 a |
| Homogeneous Rainfall Region | Very Rainy | |||||
| Minimum | Maximum | Median | ||||
| R1—Cariri | 4 | 9 | 5 ac | |||
| R2—Ibiapaba | 2 | 6 | 4 ab | |||
| R3—Jaguaribana | 4 | 7 | 5 c | |||
| R4—Coastal Region of Fortaleza | 2 | 5 | 3 b | |||
| R5—Coastal Region of Pecém | 2 | 6 | 4 ab | |||
| R6—Northern Coastal Region | 2 | 7 | 3 b | |||
| R7—Baturité Massif | 2 | 5 | 3 b | |||
| R8—Central Sertão and Inhamuns | 1 | 9 | 5 c | |||
| Homogeneous Rainfall Region | CDD2 | |||||
|---|---|---|---|---|---|---|
| Very Dry | Dry | |||||
| Minimum | Maximum | Median | Minimum | Maximum | Median | |
| R1—Cariri | 0 | 3 | 2 a | 1 | 3 | 2 a |
| R2—Ibiapaba | 0 | 2 | 2 ab | 1 | 2 | 1 a |
| R3—Jaguaribana | 0 | 3 | 1 ab | 1 | 3 | 2 a |
| R4—Coastal Region of Fortaleza | 1 | 2 | 2 ab | 1 | 2 | 1 a |
| R5—Coastal Region of Pecém | 0 | 2 | 1 ab | 0 | 2 | 1 a |
| R6—Northern Coastal Region | 0 | 3 | 1 ab | 0 | 2 | 1 a |
| R7—Baturité Massif | 0 | 2 | 1 b | 0 | 3 | 1 a |
| R8—Central Sertão and Inhamuns | 0 | 3 | 1 b | 0 | 3 | 1 a |
| Homogeneous Rainfall Region | Normal | Rainy | ||||
| Minimum | Maximum | Median | Minimum | Maximum | Median | |
| R1—Cariri | 1 | 3 | 1 a | 1 | 3 | 1 a |
| R2—Ibiapaba | 0 | 2 | 1 b | 0 | 2 | 1 bc |
| R3—Jaguaribana | 0 | 2 | 1 ab | 1 | 2 | 1 ab |
| R4—Coastal Region of Fortaleza | 1 | 1 | 1 b | 1 | 1 | 1 bc |
| R5—Coastal Region of Pecém | 0 | 2 | 1 ab | 0 | 2 | 1 bc |
| R6—Northern Coastal Region | 0 | 1 | 1 b | 0 | 2 | 1 bc |
| R7—Baturité Massif | 0 | 1 | 1 b | 0 | 2 | 1 c |
| R8—Central Sertão and Inhamuns | 1 | 2 | 1 a | 0 | 3 | 1 a |
| Homogeneous Rainfall Region | Very Rainy | |||||
| Minimum | Maximum | Median | ||||
| R1—Cariri | 0 | 3 | 1 a | |||
| R2—Ibiapaba | 0 | 2 | 1 b | |||
| R3—Jaguaribana | 0 | 2 | 1 a | |||
| R4—Coastal Region of Fortaleza | 0 | 1 | 0 b | |||
| R5—Coastal Region of Pecém | 0 | 1 | 1 b | |||
| R6—Northern Coastal Region | 0 | 1 | 0 b | |||
| R7—Baturité Massif | 0 | 1 | 0 b | |||
| R8—Central Sertão and Inhamuns | 1 | 2 | 1 a | |||
| Homogeneous Rainfall Region | CDD3 | |||||
|---|---|---|---|---|---|---|
| Very Dry | Dry | |||||
| Minimum | Maximum | Median | Minimum | Maximum | Median | |
| R1—Cariri | 1 | 3 | 2 b | 1 | 3 | 2 ab |
| R2—Ibiapaba | 0 | 4 | 2 b | 1 | 3 | 2 b |
| R3—Jaguaribana | 2 | 4 | 3 a | 2 | 3 | 2 a |
| R4—Coastal Region of Fortaleza | 1 | 3 | 2 b | 1 | 2 | 1 b |
| R5—Coastal Region of Pecém | 1 | 4 | 2 ab | 1 | 2 | 2 ab |
| R6—Northern Coastal Region | 1 | 3 | 2 b | 0 | 2 | 2 b |
| R7—Baturité Massif | 1 | 3 | 2 b | 0 | 2 | 1 b |
| R8—Central Sertão and Inhamuns | 1 | 5 | 3 a | 1 | 3 | 2 a |
| Homogeneous Rainfall Region | Normal | Rainy | ||||
| Minimum | Maximum | Median | Minimum | Maximum | Median | |
| R1—Cariri | 0 | 2 | 1 bc | 0 | 2 | 1 ac |
| R2—Ibiapaba | 0 | 3 | 1 c | 0 | 1 | 0 b |
| R3—Jaguaribana | 1 | 2 | 1 ab | 0 | 2 | 1 ac |
| R4—Coastal Region of Fortaleza | 0 | 2 | 1 c | 0 | 1 | 0 b |
| R5—Coastal Region of Pecém | 0 | 2 | 1 abc | 0 | 1 | 1 bc |
| R6—Northern Coastal Region | 0 | 1 | 1 c | 0 | 1 | 1 b |
| R7—Baturité Massif | 0 | 2 | 1 c | 0 | 1 | 1 b |
| R8—Central Sertão and Inhamuns | 1 | 3 | 2 a | 0 | 2 | 1 a |
| Homogeneous Rainfall Region | Very Rainy | |||||
| Minimum | Maximum | Median | ||||
| R1—Cariri | 0 | 2 | 1 ab | |||
| R2—Ibiapaba | 0 | 1 | 1 b | |||
| R3—Jaguaribana | 0 | 2 | 1 ab | |||
| R4—Coastal Region of Fortaleza | 0 | 1 | 0 b | |||
| R5—Coastal Region of Pecém | 0 | 2 | 1 ab | |||
| R6—Northern Coastal Region | 0 | 1 | 0 b | |||
| R7—Baturité Massif | 0 | 1 | 0 b | |||
| R8—Central Sertão and Inhamuns | 0 | 2 | 1 a | |||
| Homogeneous Rainfall Region | Cowpea Productivity (kg ha−1) | ||||
|---|---|---|---|---|---|
| Very Dry | Dry | Normal | Rainy | Very Rainy | |
| R1—Cariri | 169 ab | 223 ab | 313 ab | 411 a | 398 a |
| R2—Ibiapaba | 176 a | 207 ab | 278 b | 286 c | 272 bc |
| R3—Jaguaribana | 304 a | 271 a | 389 a | 433 a | 411 a |
| R4—Coastal Region of Fortaleza | 274 a | 235 a | 298 ab | 308 abc | 324 abc |
| R5—Coastal Region of Pecém | 140 ab | 177 ab | 259 b | 301 bc | 256 bc |
| R6—Northern Coastal Region | 146 ab | 181 ab | 258 b | 250 c | 191 c |
| R7—Baturité Massif | 241 a | 307 a | 355 a | 379 ab | 335 b |
| R8—Central Sertão and Inhamuns | 112 b | 168 b | 270 b | 331 b | 288 bc |
| Very Dry | |||||
|---|---|---|---|---|---|
| CDD1 | CDD2 | CDD3 | Productivity | Rainfall | |
| CDD1 | 1.00 | ||||
| CDD2 | 0.01 | 1.00 | |||
| CDD3 | −0.53 * | −0.39 * | 1.00 | ||
| Productivity | 0.11 * | 0.01 | −0.18 * | 1.00 | |
| Rainfall | 0.32 * | 0.16 * | −0.55 * | 0.20 * | 1.00 |
| Dry | |||||
| CDD1 | CDD2 | CDD3 | Productivity | Rainfall | |
| CDD1 | 1.00 | ||||
| CDD2 | −0.14 * | 1.00 | |||
| CDD3 | −0.39 * | −0.22 * | 1.00 | ||
| Productivity | 0.10 * | 0.01 | −0.19 * | 1.00 | |
| Rainfall | 0.05 | −0.10 * | −0.52 * | 0.18 * | 1.00 |
| Normal | |||||
| CDD1 | CDD2 | CDD3 | Productivity | Rainfall | |
| CDD1 | 1.00 | ||||
| CDD2 | −0.07 * | 1.00 | |||
| CDD3 | −0.40 * | −0.09 * | 1.00 | ||
| Productivity | 0.09 * | −0.03 | −0.20 * | 1.00 | |
| Rainfall | −0.06 | −0.21 * | −0.49 * | 0.09 * | 1.00 |
| Rainy | |||||
| CDD1 | CDD2 | CDD3 | Productivity | Rainfall | |
| CDD1 | 1.00 | ||||
| CDD2 | −0.05 | 1.00 | |||
| CDD3 | −0.21 * | −0.03 | 1.00 | ||
| Productivity | 0.06 | 0.09 * | 0.01 | 1.00 | |
| Rainfall | −0.23 * | −0.23 * | −0.43 * | −0.18 * | 1.00 |
| Very Rainy | |||||
| CDD1 | CDD2 | CDD3 | Productivity | Rainfall | |
| CDD1 | 1.00 | ||||
| CDD2 | 0.12 * | 1.00 | |||
| CDD3 | −0.21 * | −0.01 | 1.00 | ||
| Productivity | 0.27 * | 0.13 * | −0.07 | 1.00 | |
| Rainfall | −0.36 * | −0.37 * | −0.37 * | −0.20 * | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.d.S.d.; Lopes, F.B.; Lima, F.J.d.O.; Neto, F.T.F.; Silva, F.H.O.d.; Meireles, A.C.M.; Luna, N.R.d.S.; Pontes, M.C.; Paulino, L.C.; Castro, E.T.; et al. Frequency, Spatial Distribution, and Influence of Consecutive Dry Days on Rainfed Agriculture. Environments 2025, 12, 423. https://doi.org/10.3390/environments12110423
Souza MdSd, Lopes FB, Lima FJdO, Neto FTF, Silva FHOd, Meireles ACM, Luna NRdS, Pontes MC, Paulino LC, Castro ET, et al. Frequency, Spatial Distribution, and Influence of Consecutive Dry Days on Rainfed Agriculture. Environments. 2025; 12(11):423. https://doi.org/10.3390/environments12110423
Chicago/Turabian StyleSouza, Melina da Silva de, Fernando Bezerra Lopes, Francisco Josivan de Oliveira Lima, Francisco Tavares Forte Neto, Fernanda Helena Oliveira da Silva, Ana Célia Maia Meireles, Nayara Rochelli de Sousa Luna, Michele Cunha Pontes, Lindenberg Costa Paulino, Emanuell Teixeira Castro, and et al. 2025. "Frequency, Spatial Distribution, and Influence of Consecutive Dry Days on Rainfed Agriculture" Environments 12, no. 11: 423. https://doi.org/10.3390/environments12110423
APA StyleSouza, M. d. S. d., Lopes, F. B., Lima, F. J. d. O., Neto, F. T. F., Silva, F. H. O. d., Meireles, A. C. M., Luna, N. R. d. S., Pontes, M. C., Paulino, L. C., Castro, E. T., & Andrade, E. M. d. (2025). Frequency, Spatial Distribution, and Influence of Consecutive Dry Days on Rainfed Agriculture. Environments, 12(11), 423. https://doi.org/10.3390/environments12110423

