Strategic Tillage in the Mediterranean: No Universal Gains, Only Contextual Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Measurements
2.4. Statistical Analysis of Data
3. Results
4. Discussion
4.1. Soil Water Content (SWC) Response to Strategic Tillage
4.2. Crop Performance
4.3. Reconciling Strategic Tillage with Conservation Agriculture Principles in Mediterranean Systems
4.4. Policy and Research Implications
- Shift from prescriptive to diagnostic CA policy. Mandating strict NT may limit adoption where farmers face episodic weed pressure, crusting, or compaction. Adoption studies recommend flexible guidelines that allow documented ST interventions triggered by measurable thresholds (e.g., penetration resistance, weed seedbank density, failed emergence risk), coupled with incentives to restore residue cover [15].
- Integrate ST with weed and nutrient management packages. Strategic disturbance is most effective when embedded in integrated weed management (IWM) and soil fertility programs; global syntheses show that ST combined with diversified rotations can reduce herbicide-resistant weeds and redistribute stratified nutrients with minimal lasting soil penalties when used sparingly [4,36,37,44,47].
- Target water-limited and compacted soils. Meta-analyses and regional vertisol studies suggest the greatest agronomic benefit from occasional disturbance occurs in soils prone to surface sealing, subsurface compaction, or nutrient stratification—conditions common across Mediterranean drylands [4,6,29,47].
- Monitor long-term soil function after ST. Even when short-term SWC, biomass, and yield effects are small (as in our study), repeated ST without monitoring could erode CA benefits. Tracking SOC distribution, infiltration stability, nutrient stratification, and biological indicators after ST events is recommended [31,47,48].
4.5. Limitations and Future Research Needs
- Heterogeneous sampling protocols. SWC sampling frequency and depth varied by country (e.g., single sampling in Türkiye vs. multiple spring samplings elsewhere), constraining cross-site effect size comparisons. Harmonized protocols would strengthen inference.
- Socio-economic drivers. Adoption decisions hinge on labor, fuel, herbicide cost, and cultural practice. Embedding bio-physical experiments within socio-economic surveys (as advocated in Mediterranean CA adoption analyses) will improve out-scaling relevance [15].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CA | Conservation agriculture |
| CT | Conventional tillage |
| DT | Deep tillage |
| FiBL | Forschungsinstitut für biologischen Landbau |
| NT | No-till |
| PRIMA | Partnership for Research and Innovation in the Mediterranean Area |
| UB | Universitat de Barcelona |
| ST | Strategic tillage |
| SWC | Soil water content |
| SOC | Soil organic carbon |
| RBCD | Randomized Complete Block Design |
| GLMM | Generalized Linear Mixed Model |
| BDIARI | Bahri Dağdaş International Agricultural Research Institute |
References
- Li, J.; Yan, K.; Duan, Q.; Li, J.; Chen, Z. Effects of Tillage Practices on Water Storage and Soil Conservation in Red Soil Slope Farmland in Southern China. Sci. Rep. 2024, 14, 28781. [Google Scholar] [CrossRef]
- Strudley, M.W.; Green, T.R.; Ascough, J.C. Tillage Effects on Soil Hydraulic Properties in Space and Time: State of the Science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When Does No-till Yield More? A Global Meta-Analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Liu, H.; Crawford, M.; Carvalhais, L.C.; Dang, Y.P.; Dennis, P.G.; Schenk, P.M. Strategic Tillage on a Grey Vertosol after Fifteen Years of No-till Management Had No Short-Term Impact on Soil Properties and Agronomic Productivity. Geoderma 2016, 267, 146–155. [Google Scholar] [CrossRef]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why Do We Need to Standardize No-Tillage Research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-Tillage and Soil Physical Environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- El Harche, S.; Chikhaoui, M.; Naimi, M.; Seif-Ennasr, M.; Whalen, J.; Chaaou, A. No-Tillage and Agroforestry Decrease Sediment Loss from a Hilly Landscape in Northern Morocco. Catena 2023, 223, 106951. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Plaza-Bonilla, D.; Arrúe, J.L.; Lampurlanés, J.; Cantero-Martínez, C. Soil Organic Carbon Storage in a No-Tillage Chronosequence under Mediterranean Conditions. Plant Soil 2014, 376, 31–41. [Google Scholar] [CrossRef]
- Ruisi, P.; Giambalvo, D.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Amato, G. Conservation Tillage in a Semiarid Mediterranean Environment: Results of 20 Years of Research. Ital. J. Agron. 2014, 9, 560. [Google Scholar] [CrossRef]
- Rouabhi, A.; Laouar, A.; Mekhlouk, A.; Dhehibi, B. Socioeconomic Assessment of No-till in Wheat Cropping System: A Case Study in Algeria. New Medit 2019, 18, 52–64. [Google Scholar] [CrossRef]
- Liang, X.; Rehman, S.U.; Zhiqi, W.; Raza, M.A.; Haider, I.; Khalid, M.H.B.; Saeed, A.; Iqbal, Z.; Fatima, S.; Siddiqa, A.; et al. Impacts of Conservation Tillage on Agricultural Land Development: A Review. J. Soil Sci. Plant Nutr. 2025, 25, 428–449. [Google Scholar] [CrossRef]
- Topp, E.; El Azhari, M.; Cicek, H.; Cheikh M’Hamed, H.; Dhraief, M.Z.; El Gharras, O.; Puig Roca, J.; Quintas-Soriano, C.; Rueda Iáñez, L.; Sakouili, A.; et al. Perceptions and Sociocultural Factors Underlying Adoption of Conservation Agriculture in the Mediterranean. Agric. Hum. Values 2024, 41, 491–508. [Google Scholar] [CrossRef]
- Prager, K.; Curfs, M. Using Mental Models to Understand Soil Management. Soil Use Manag. 2016, 32, 36–44. [Google Scholar] [CrossRef]
- Topp, E.; Stephan, A.; Varela, E.; Cicek, H.; Plieninger, T. Mediterranean Farmers’ Understandings of ‘Good Soil Management’ and ‘Good Farmer’ Identity in the Context of Conservation Agriculture. Int. J. Agric. Sustain. 2024, 22, 2335083. [Google Scholar] [CrossRef]
- Cicek, H.; Topp, E.; Plieninger, T.; Blanco-Moreno, J.M.; Gultekin, I.; Mohamed, H.C.; El Gharras, O. A Critical Assessment of Conservation Agriculture among Smallholders in the Mediterranean Region: Adoption Pathways Inspired by Agroecological Principles. Agron. Sustain. Dev. 2023, 43, 72. [Google Scholar] [CrossRef]
- Rincon-Florez, V.A.; Carvalhais, L.C.; Dang, Y.P.; Crawford, M.H.; Schenk, P.M.; Dennis, P.G. Significant Effects on Soil Microbial Communities Were Not Detected after Strategic Tillage Following 44 Years of Conventional or No-Tillage Management. Pedobiologia 2020, 80, 150640. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G.J. Sense and Nonsense in Conservation Agriculture: Principles, Pragmatism and Productivity in Australian Mixed Farming Systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Dang, Y.P.; Balzer, A.; Crawford, M.; Rincon-Florez, V.; Liu, H.; Melland, A.R.; Antille, D.; Kodur, S.; Bell, M.J.; Whish, J.P.M.; et al. Strategic Tillage in Conservation Agricultural Systems of North-Eastern Australia: Why, Where, When and How? Environ. Sci. Pollut. Res. 2018, 25, 1000–1015. [Google Scholar] [CrossRef]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; da Veiga, M.; Reinert, D.J. Is Chiseling or Inverting Tillage Required to Improve Mechanical and Hydraulic Properties of Sandy Clay Loam Soil under Long-Term No-Tillage? Geoderma 2017, 301, 72–79. [Google Scholar] [CrossRef]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow Non-Inversion Tillage in Organic Farming Maintains Crop Yields and Increases Soil C Stocks: A Meta-Analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef]
- Kribaa, M.; Hallaire, V.; Curmi, P.; Lahmar, R. Effect of Various Cultivation Methods on the Structure and Hydraulic Properties of a Soil in a Semi-Arid Climate. Soil Tillage Res. 2001, 60, 43–53. [Google Scholar] [CrossRef]
- Fellahi, Z.; Hannachi, A.; Chennafi, H.; Makhlouf, M.; Bouzerzour, H. Effets Des Résidus et Du Travail Du Sol Sur La Production de La Biomasse et Le Rendement Du Blé Dur (Triticum Durum Desf., Variété MBB) En Lien Avec l’utilisation de l’eau Dans Les Conditions Semi-Arides Des Hautes Plaines Sétifiennes. Rev. Agric. 2013, 6, 3–11. [Google Scholar]
- Garcia-Franco, N.; Albaladejo, J.; Almagro, M.; Martínez-Mena, M. Beneficial Effects of Reduced Tillage and Green Manure on Soil Aggregation and Stabilization of Organic Carbon in a Mediterranean Agroecosystem. Soil Tillage Res. 2015, 153, 66–75. [Google Scholar] [CrossRef]
- López-Garrido, R.; Madejón, E.; León-Camacho, M.; Girón, I.; Moreno, F.; Murillo, J.M. Reduced Tillage as an Alternative to No-Tillage under Mediterranean Conditions: A Case Study. Soil Tillage Res. 2014, 140, 40–47. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. Long Term Effects of Tillage Practices and N Fertilization in Rainfed Mediterranean Cropping Systems: Durum Wheat, Sunflower and Maize Grain Yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Peixoto, D.S.; da Silva, L.C.M.; de Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; de Carvalho, T.S.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional Tillage in No-Tillage Systems: A Global Meta-Analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond Conservation Agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed]
- Frøslev, T.G.; Nielsen, I.B.; Santos, S.S.; Barnes, C.J.; Bruun, H.H.; Ejrnæs, R. The Biodiversity Effect of Reduced Tillage on Soil Microbiota. Ambio 2022, 51, 1022–1033. [Google Scholar] [CrossRef]
- Çelik, İ.; Günal, H.; Acar, M.; Acir, N.; Bereket Barut, Z.; Budak, M. Strategic Tillage May Sustain the Benefits of Long-Term No-till in a Vertisol under Mediterranean Climate. Soil Tillage Res. 2019, 185, 17–28. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-Tillage Improvement of Soil Physical Quality in Calcareous, Degradation-Prone, Semiarid Soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation Agriculture and Ecosystem Services: An Overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. No-till Is Challenged: Complementary Management Is Crucial to Improve Its Environmental Benefits under a Changing Climate. Geogr. Sustain. 2020, 1, 229–232. [Google Scholar] [CrossRef]
- Raclot, D.; Le Bissonnais, Y.; Louchart, X.; Andrieux, P.; Moussa, R.; Voltz, M. Soil Tillage and Scale Effects on Erosion from Fields to Catchment in a Mediterranean Vineyard Area. Agric. Ecosyst. Environ. 2009, 134, 201–210. [Google Scholar] [CrossRef]
- Kettler, T.A.; Lyon, D.J.; Doran, J.W.; Powers, W.L.; Stroup, W.W. Soil Quality Assessment after Weed-Control Tillage in a No-Till Wheat–Fallow Cropping System. Soil Sci. Soc. Am. J. 2000, 64, 339–346. [Google Scholar] [CrossRef]
- McPheeters, D.; Bruns, M.A.; Karsten, H.D.; Dell, C.J. Integrated Weed Management with Strategic Tillage Can Maintain Soil Quality in Continuous Living Cover Systems. Front. Sustain. Food Syst. 2022, 6, 907590. [Google Scholar] [CrossRef]
- Obour, A.K.; Holman, J.D.; Simon, L.M.; Schlegel, A.J. Strategic Tillage Effects on Crop Yields, Soil Properties, and Weeds in Dryland No-Tillage Systems. Agronomy 2021, 11, 662. [Google Scholar] [CrossRef]
- Canali, S.; Campanelli, G.; Ciaccia, C.; Leteo, F.; Testani, E.; Montemurro, F. Conservation Tillage Strategy Based on the Roller Crimper Technology for Weed Control in Mediterranean Vegetable Organic Cropping Systems. Eur. J. Agron. 2013, 50, 11–18. [Google Scholar] [CrossRef]
- Köppen, W. Das Geographische System Der Klimate. 1-44, Berlin (Germany) Gebrüder Borntraeger Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. 1936. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3511591 (accessed on 6 November 2025).
- IUSS Working Group. WRB World Reference Base for Soil Resources 2022: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- Mrabet, R.; Moussadek, R.; Fadlaoui, A.; van Ranst, E. Conservation Agriculture in Dry Areas of Morocco. Field Crops Res. 2012, 132, 84–94. [Google Scholar] [CrossRef]
- Moussadek, R.; Laghrour, M.; Kadiri, K.; Mrabet, R. Conservation Agriculture in Morocco: Review of Direct Seeding Effects on Soil Quality and Productivity to Enhance the Resilience in 1 Million Hectares of Cereal Based System by 2030. Afr. Mediterr. Agric. J.—Al Awamia 2024, 143, 263–279. [Google Scholar]
- Mrabet, R. Wheat Yield and Water Use Efficiency under Contrasting Residue and Tillage Management Systems in a Semiarid Area of Morocco. Exp. Agric. 2002, 38, 237–248. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Yakupoğlu, T.; Dindaroğlu, T.; Terol, E. Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 2020, 12, 1539. [Google Scholar] [CrossRef]
- Dang, Y.P.; Seymour, N.P.; Walker, S.R.; Bell, M.J.; Freebairn, D.M. Strategic Tillage in No-till Farming Systems in Australia’s Northern Grains-Growing Regions: I. Drivers and Implementation. Soil Tillage Res. 2015, 152, 104–114. [Google Scholar] [CrossRef]
- Cheikh M’hamed, H.; Ferchichi, N.; Toukabri, W.; Barbouchi, M.; Moujahed, N.; Rezgui, M.; Bahri, H.; Sassi, K.; Frija, A.; Annabi, M. Conservation Agriculture Boosts Soil Health, Wheat Yield, and Nitrogen Use Efficiency After Two Decades of Practice in Semi-Arid Tunisia. Agronomy 2024, 14, 2782. [Google Scholar] [CrossRef]
- Bahri, H.; Annabi, M.; Cheikh M’Hamed, H.; Frija, A. Assessing the Long-Term Impact of Conservation Agriculture on Wheat-Based Systems in Tunisia Using APSIM Simulations under a Climate Change Context. Sci. Total Environ. 2019, 692, 1223–1233. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does Occasional Tillage Undo the Ecosystem Services Gained with No-till? A Review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Kassam, A. Advances in Conservation Agriculture: Volume 3: Adoption and Spread; Burleigh Dodds Science Publishing: London, UK, 2022; ISBN 978-1-003-18067-8. [Google Scholar]




| Depth (cm) | % Clay | % Silt | % Sand | SOM (%) | pH (H2O) | Total N (%) | |
|---|---|---|---|---|---|---|---|
| Morocco | 0–20 | 50 | 24 | 26 | 2.84 | 7.0 | 0.14 |
| 20–40 | 54 | 18 | 28 | 2.04 | 7.2 | 0.03 | |
| Spain | 0–20 | 24.0 | 48.0 | 28.0 | 2.95 | 7.8 | 0.34 |
| 20–40 | 29.1 | 45.2 | 25.7 | 2.32 | 7.9 | 0.01 | |
| Türkiye | 0–20 | 49.7 | 32.5 | 17.8 | 2.27 | 8.2 | 0.12 |
| 20–40 | 50.4 | 23.5 | 26.1 | 1.95 | 8.4 | 0.11 | |
| Tunisia | 0–30 | 55.3 | 29.9 | 12.4 | 0.95 | 7.1 | 0.20 |
| 30–60 | 48.4 | 33.1 | 15.5 | 1.0 | 7.3 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicek, H.; Kim, I.; Blanco-Moreno, J.M.; Urrutia Larrachea, I.; Cheikh M’hamed, H.; Gultekin, I.; Ouabbou, H.; El Abidine, A.Z.; Schoeber, M.; El Gharras, O.; et al. Strategic Tillage in the Mediterranean: No Universal Gains, Only Contextual Outcomes. Environments 2025, 12, 422. https://doi.org/10.3390/environments12110422
Cicek H, Kim I, Blanco-Moreno JM, Urrutia Larrachea I, Cheikh M’hamed H, Gultekin I, Ouabbou H, El Abidine AZ, Schoeber M, El Gharras O, et al. Strategic Tillage in the Mediterranean: No Universal Gains, Only Contextual Outcomes. Environments. 2025; 12(11):422. https://doi.org/10.3390/environments12110422
Chicago/Turabian StyleCicek, Harun, Ilin Kim, José M. Blanco-Moreno, Idoia Urrutia Larrachea, Hatem Cheikh M’hamed, Irfan Gultekin, Hassan Ouabbou, Aziz Zine El Abidine, Mia Schoeber, Oussama El Gharras, and et al. 2025. "Strategic Tillage in the Mediterranean: No Universal Gains, Only Contextual Outcomes" Environments 12, no. 11: 422. https://doi.org/10.3390/environments12110422
APA StyleCicek, H., Kim, I., Blanco-Moreno, J. M., Urrutia Larrachea, I., Cheikh M’hamed, H., Gultekin, I., Ouabbou, H., El Abidine, A. Z., Schoeber, M., El Gharras, O., Gültekin, S., Kaya, Y., Gür, K., & Özdemir, F. (2025). Strategic Tillage in the Mediterranean: No Universal Gains, Only Contextual Outcomes. Environments, 12(11), 422. https://doi.org/10.3390/environments12110422

