Aquatic Ecotoxicology of Antiretrovirals: A Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search for Articles
2.2. Inclusion and Exclusion Criteria
2.3. Study Screening
2.4. Data Retrieval
2.5. Study Quality Assessment
2.6. Environmental Risk Assessment (ERA)
3. Results and Discussion
3.1. Article Search
3.2. Study Quality
3.3. Study Location
3.4. Antiretrovirals
3.5. Aquatic Organisms
3.6. ARV Toxicity in Aquatic Plants
3.7. ARV Toxicity in Microalgae
3.8. ARV Toxicity in Cyanobacteria
3.9. ARV Toxicity in Crustaceans
3.10. ARV Toxicity in Fish
3.11. ARV Toxicity in Mollusks
3.12. ARV Toxicity in Amphibians
3.13. ARV Toxicity in Bacteria
3.14. ARV Ecotoxicity
3.15. Study Limitations
- (1)
- Language restrictions: This review was limited to articles published in English, which may exclude studies published exclusively in other languages;
- (2)
- Time restrictions: The search was limited to a specific period (until March 2025) and may not include studies published between the screening and publication;
- (3)
- Scope restrictions: The search was restricted to the SciELO, Web of Science, Scopus, and PubMed databases;
- (4)
- Publication bias: There is a greater tendency to publish studies with positive and significant results, which may lead to a tendency towards selective publication and, consequently, to observed toxic effects;
- (5)
- Study heterogeneity: The studies included in this review have different species, interventions, exposure time, and matrix classification, which hampers the correlation of the results;
- (6)
- Data exclusion: Data not published in indexed journals, such as theses, dissertations, and abstracts, and data from the National Medical Information System, were not included in this review, since they did not meet the inclusion criteria for this review.
4. Conclusions
5. Prospects
- (1)
- Use of biochemical, histological, and immunological biomarkers to determine ARV toxicity, since some did not cause mortality in the test organisms but rather changes in these biomarkers.
- (2)
- Development of studies aimed at reviewing and standardizing aquatic biological models for toxicity tests of pharmaceutical residues, especially ARVs, since in some cases, acute exposure alone is not enough to determine toxicity, in addition to the recovery capacity of the organisms, which is often not evaluated in the studies.
- (3)
- Expansion of the scope of genotoxicity tests using metabolomic, proteomic, and transcriptomic analyses.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Wood, T.P.; Duvenage, C.S.J.; Rohwer, E. The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environ. Pollut. 2015, 199, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches. Green Chem. 2020, 22, 1458–1516. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, G.; Alcantara, M.D.; Souza, C.R.d.; Moreira, C.P.d.S.; Nunes, K.P.; Pereira, C.A.d.J.; Mol, M.P.G.; Silveira, M.R. Toxicity of the Antiretrovirals Tenofovir Disoproxil Fumarate, Lamivudine, and Dolutegravir on Cyanobacterium Microcystis novacekii. Water 2025, 17, 815. [Google Scholar] [CrossRef]
- Nibamureke, U.M.C.; Wagenaar, G.M. Histopathological changes in Oreochromis mossambicus (Peters, 1852) ovaries after a chronic exposure to a mixture of the HIV drug nevirapine and the antibiotics sulfamethoxazole and trimethoprim. Chemosphere 2021, 274, 129900. [Google Scholar] [CrossRef]
- Robson, L.; Barnhoorn, I.E.J.; Wagenaar, G.M. The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environ. Toxicol. Pharmacol. 2017, 56, 225–232. [Google Scholar] [CrossRef]
- Aremu, O.S.; Katata-Seru, L.; Mkhize, Z.; Botha, T.L.; Wepener, V. Polyethylene glycol (5,000) succinate conjugate of lopinavir and its associated toxicity using Danio rerio as a model organism. Sci. Rep. 2020, 10, 11789. [Google Scholar] [CrossRef]
- Souza-Silva, G.; Souza, C.R.; Pereira, C.A.d.J.; Lima, W.D.S.; Mol, M.P.G.; Silveira, M.R. Toxicological evaluation of antiretroviral Tenofovir Disoproxil Fumarate on the mollusk Biomphalaria glabrata and its hemocytes. Sci. Total Environ. 2023, 891, 164484. [Google Scholar] [CrossRef]
- Cid, R.S.; Roveri, V.; Vidal, D.G.; Dinis, M.A.P.; Cortez, F.S.; Salgueiro, F.R.; Toma, W.; Cesar, A.; Guimarães, L.L. Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone). Resources 2021, 10, 114. [Google Scholar] [CrossRef]
- Nugnes, R.; Orlo, E.; Russo, C.; Lavorgna, M.; Isidori, M. Comprehensive eco-geno-toxicity and environmental risk of common antiviral drugs in aquatic environments post-pandemic. J. Hazard. Mater. 2024, 480, 135947. [Google Scholar] [CrossRef]
- Gomes, M.P.; Kubis, G.C.; Kitamura, R.S.A.; Figueredo, C.C.; Nogueira, K.d.S.; Vieira, F.; Navarro-Silva, M.A.; Juneau, P. Do anti-HIV drugs pose a threat to photosynthetic microorganisms? Chemosphere 2022, 307, 135796. [Google Scholar] [CrossRef]
- Almeida, L.C.; Mattos, A.C.; Dinamarco, C.P.G.; Figueiredo, N.G.; Bila, D.M. Chronic toxicity and environmental risk assessment of antivirals in Ceriodaphnia dubia and Raphidocelis subcapitata. Water Sci. Technol. 2021, 84, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- Escher, M.A.d.S.; Américo-Pinheiro, J.H.P.; Torres, N.H.; Ferreira, L.F.R. A Problemática Ambiental da Contaminação dos Recursos Hídricos Por Fármacos. Rev. Bras. Ciênc. Ambient. 2019, 51, 141–148. [Google Scholar] [CrossRef]
- Mahmood, A.R.; Al-Haideri, H.H.; Hassan, F.M. Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. Adv. Public Health 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Godoy, A.A.; Kummrow, F. What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1453–1496. [Google Scholar] [CrossRef]
- Nannou, C.; Ofrydopoulou, A.; Evgenidou, E.; Heath, D.; Heath, E.; Lambropoulou, D. Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. Sci. Total Environ. 2020, 699, 134322. [Google Scholar] [CrossRef]
- Johnson, N.; Phillips, M. Rayyan for systematic reviews. J. Electron. Resour. Librariansh. 2018, 30, 46–48. [Google Scholar] [CrossRef]
- Moermond, C.T.A.; Kase, R.; Korkaric, M.; Ågerstrand, M. CRED: Criteria for reporting and evaluating ecotoxicity data. Environ. Toxicol. Chem. 2015, 35, 1297–1309. [Google Scholar] [CrossRef]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 2019, 361, 103–110. [Google Scholar] [CrossRef]
- UBA. Database—Pharmaceuticals in the Environment. Umwelt Bundesamt. 2025. Available online: https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0#background (accessed on 15 July 2025).
- Silva, F.S.; Vasconcelos Lima, M.d.; Pereira, D.R.; Albuquerque Melo, A.M.M.d.; Cavalcanti, J.V.F.L.; Garcia, R.R.P.; Lucena, A.L.A.d.; Rodríguez-Díaz, J.M.; Honorato, F.A.; Napoleão, D.C. Photocatalytic efficacy of pyrite in the degradation of antiretroviral drugs: Biomphalaria glabrata as a bioindicator of toxic and genotoxic effects. Emerg. Contam. 2025, 11, 100416. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Marques, R.Z.; Kubis, G.C.; Kochi, L.Y.; Barbato, M.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. The phytoremediation capacity of Lemna minor prevents deleterious effects of anti-HIV drugs to nontarget organisms. Environ. Pollut. 2023, 329, 121672. [Google Scholar] [CrossRef]
- Thoré, E.S.J.; Philippe, C.; Brendonck, L.; Pinceel, T. Towards improved fish tests in ecotoxicology—Efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. Chemosphere 2021, 273, 129697. [Google Scholar] [CrossRef]
- Reddy, K.; Renuka, N.; Kumari, S.; Ratha, S.K.; Moodley, B.; Pillay, K.; Bux, F. Assessing the potential for nevirapine removal and its ecotoxicological effects on Coelastrella tenuitheca and Tetradesmus obliquus in aqueous environment. Environ. Pollut. 2023, 317, 120736. [Google Scholar] [CrossRef] [PubMed]
- Diniz, J.S.; Freitas, L.A.d.P.; Vaz, I.C.D.; Barbosa, F.A.R.; Mol, M.P.G.; Magalhães, S.M.S.; Silveira, M.R. Os efeitos tóxicos do antirretroviral nevirapina e um medicamento à base de nevirapina para organismos aquáticos. RSD 2022, 11, e19211225014. [Google Scholar] [CrossRef]
- Fernández, L.P.; Brasca, R.; Repetti, M.R.; Attademo, A.M.; Peltzer, P.M.; Lajmanovich, R.C.; Culzoni, M.J. Bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles after exposure to environmentally relevant concentrations. Chemosphere 2022, 301, 134631. [Google Scholar] [CrossRef]
- Mahaye, N.; Musee, N. Effects of Two Antiretroviral Drugs on the Crustacean Daphnia magna in River Water. Toxics 2022, 10, 423. [Google Scholar] [CrossRef]
- Omotola, E.O.; Genthe, B.; Ndlela, L.; Olatunji, O.S. Environmental Risk Characterization of an Antiretroviral (ARV) Lamivudine in Ecosystems. Int. J. Environ. Res. Public Health 2021, 18, 8358. [Google Scholar] [CrossRef]
- Fernández, L.P.; Brasca, R.; Attademo, A.M.; Peltzer, P.M.; Lajmanovich, R.C.; Culzoni, M.J. Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after short-term exposure to antiretrovirals. Chemosphere 2020, 246, 125830. [Google Scholar] [CrossRef]
- Nibamureke, U.M.C.; Barnhoorn, I.E.J.; Wagenaar, G.M. Assessing the potential effects of nevirapine in South African surface water on fish growth: A chronic exposure of Oreochromis mossambicus. S. Afr. J. Sci. 2019, 115, 1–6. [Google Scholar] [CrossRef]
- Nibamureke, U.M.C.; Barnhoorn, I.E.J.; Wagenaar, G.M. Hatching success and survival of fish early life stages in a chronic exposure to nevirapine: A case study of the Mozambique tilapia. Int. J. Environ. Health Res. 2018, 29, 441–456. [Google Scholar] [CrossRef]
- Nibamureke, U.; Barnhoorn, I.; Wagenaar, G. Nevirapine in African surface waters induces liver histopathology in Oreochromis mossambicus: A laboratory exposure study. Afr. J. Aquat. Sci. 2019, 44, 77–88. [Google Scholar] [CrossRef]
- Silva, S.R.; Barbosa, F.A.R.; Mol, M.P.G.; Magalhães, S.M.S. Toxicity for Aquatic Organisms of Antiretroviral Tenofovir Disoproxil. J. Environ. Prot. 2019, 10, 1565–1577. [Google Scholar] [CrossRef]
- Russo, D.; Siciliano, A.; Guida, M.; Andreozzi, R.; Reis, N.M.; Li Puma, G.; Marotta, R. Removal of antiretroviral drugs stavudine and zidovudine in water under UV254 and UV254/H2O2 processes: Quantum yields, kinetics and ecotoxicology assessment. J. Hazard. Mater. 2018, 349, 195–204. [Google Scholar] [CrossRef]
- Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.-P. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res. 2014, 23, 4992–5001. [Google Scholar] [CrossRef] [PubMed]
- Omotola, E.O.; Genthe, B.; Ndlela, L.; Olatunji, O.S. Evaluation of the probable synergistic toxicity of selected potentiated antiretroviral and antibiotics on some aquatic biomarker organisms. Environ. Monit. Assess. 2023, 195, 1489. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, S.; Cavallo, A.; Del Rio, L.; Renzi, M. Impact of global change on environmental hazards of different clays: A case study on Aliivibrio fischeri. J. Hazard. Mater. 2023, 457, 131806. [Google Scholar] [CrossRef]
- Pereira da Silva Alves, D.; Borges Teixeira, F.; Teófilo, M.N.G.; Camilo Cotrim, C.F.; Silva, J.A.d.P.; Madureira Almeida, L.; Luiz Cardoso Bailão, E.F. Use of ecotoxicological bioindicators in effluent monitoring—Legal implications in Brazil. Eng. Sanit. Ambient. 2024, 29, e2023005. [Google Scholar] [CrossRef]
- Gona, P.N.; Gona, C.M.; Ballout, S.; Rao, S.R.; Kimokoti, R.; Mapoma, C.C.; Mokdad, A.H. Burden and changes in HIV/AIDS morbidity and mortality in Southern Africa Development Community Countries, 1990–2017. BMC Public Health 2020, 20, 867. [Google Scholar] [CrossRef]
- Dwyer-Lindgren, L.; Cork, M.A.; Sligar, A.; Steuben, K.M.; Wilson, K.F.; Provost, N.R.; Mayala, B.K.; VanderHeide, J.D.; Collison, M.L.; Hall, J.B.; et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 2019, 570, 189–193. [Google Scholar] [CrossRef]
- Myers, B.; Parry, C.D.H.; Morojele, N.K.; Nkosi, S.; Shuper, P.A.; Kekwaletswe, C.T.; Sorsdahl, K.R. “Moving Forward with Life”: Acceptability of a Brief Alcohol Reduction Intervention for People Receiving Antiretroviral Therapy in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 5706. [Google Scholar] [CrossRef]
- Adeola, A.O.; Forbes, P.B.C. Antiretroviral Drugs in African Surface Waters: Prevalence, Analysis, and Potential Remediation. Environ. Toxicol. Chem. 2021, 41, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Zitha, A.B.; Ncube, S.; Mketo, N.; Nyoni, H.; Madikizela, L.M. Antiretroviral Drugs in Water: An African Challenge with Kenya and South Africa as Hotspots and Plausible Remediation Strategies. Chem. Afr. 2022, 5, 1237–1253. [Google Scholar] [CrossRef]
- Markovic, M.; Neale, P.A.; Nidumolu, B.; Kumar, A. Combined toxicity of therapeutic pharmaceuticals to duckweed, Lemna minor. Ecotoxicol. Environ. Saf. 2021, 208, 111428. [Google Scholar] [CrossRef]
- Horvat, T.; Vidaković-Cifrek, Ž.; Oreščanin, V.; Tkalec, M.; Pevalek-Kozlina, B. Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci. Total Environ. 2007, 384, 229–238. [Google Scholar] [CrossRef]
- Tagun, R.; Boxall, A.B.A. The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand. Bull. Environ. Contam. Toxicol. 2018, 100, 516–523. [Google Scholar] [CrossRef]
- Ramírez-Morales, D.; Fajardo-Romero, D.; Rodríguez-Rodríguez, C.E.; Cedergreen, N. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. Ecotoxicology 2022, 31, 714–724. [Google Scholar] [CrossRef]
- Jmii, S.; Dewez, D. Toxic Responses of Palladium Accumulation in Duckweed (Lemna minor): Determination of Biomarkers. Environ. Toxicol. Chem. 2021, 40, 1630–1638. [Google Scholar] [CrossRef]
- Danouche, M.; El Ghatchouli, N.; Arroussi, H. Overview of the management of heavy metals toxicity by microalgae. J. Appl. Phycol. 2022, 34, 475–488. [Google Scholar] [CrossRef]
- Luz, D.S.; Guimarães, P.S.; Castro, M.S.; Primel, E.G.; Giroldo, D.; Martins, C.d.M.G. Effects of the Pesticide Carbofuran on Two Species of Chlorophyceae (Desmodesmus communis and Pseudopediastrum boryanum) and Their Pesticide Bioremediation Ability. Environ. Toxicol. Chem. 2023, 43, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Moon, J.-Y.; Lee, Y.-C. Microalgal ecotoxicity of nanoparticles: An updated review. Ecotoxicol. Environ. Saf. 2020, 201, 110781. [Google Scholar] [CrossRef]
- Lee, J.; Hong, S.; An, S.-A.; Khim, J.S. Methodological advances and future directions of microalgal bioassays for evaluation of potential toxicity in environmental samples: A review. Environ. Int. 2023, 173, 107869. [Google Scholar] [CrossRef]
- United-Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 10th ed.; United Nations Publications: New York, NY, USA; Geneva, Switzerland, 2023. [Google Scholar]
- Marić, P.; Ahel, M.; Babić, O.; Simeunović, J.; Smital, T. Ecotoxicological profiling of selected cyanobacterial strains using multi-endpoint effect-directed analysis. Ecotoxicology 2020, 29, 535–550. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Q.; Zhang, Z.; Hu, B.; Chen, J.; Chen, J.; Qian, H. Pollutant toxicology with respect to microalgae and cyanobacteria. J. Environ. Sci. 2021, 99, 175–186. [Google Scholar] [CrossRef]
- Vilar, M.; Ferrão-Filho, A. (Eco)Toxicology of Cyanobacteria and Cyanotoxins: From Environmental Dynamics to Adverse Effects. Toxics 2022, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.P.S.; Dwivedi, V.; Kumar, S.; Kushwaha, A.; Goswami, L.; Reddy, B.S. Cyanobacterial Extracellular Polymeric Substances for Heavy Metal Removal: A Mini Review. J. Compos. Sci. 2020, 5, 1. [Google Scholar] [CrossRef]
- Hassan, A.H.A.; Abdi, I.; Alsherif, E.A.; Aloufi, A.S.; Korany, S.M.; Mohamed, M.Y.A.; Aldilami, M.; Selim, S.; Hamed, S.M. Species-specific ecotoxicity of platinum nanoparticles to two cyanobacteria. Mar. Pollut. Bull. 2024, 209, 117054. [Google Scholar] [CrossRef] [PubMed]
- Kapsi, M.; Tsoutsi, C.; Paschalidou, A.; Albanis, T. Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece). Sci. Total Environ. 2019, 650, 2188–2198. [Google Scholar] [CrossRef]
- Okamoto, A.; Yamamuro, M.; Tatarazako, N. Acute toxicity of 50 metals to Daphnia magna. J. Appl. Toxicol. 2014, 35, 824–830. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Huang, Y.; Zhang, X.; Huang, Y.; Qin, W.C.; Wen, Y.; Zhao, Y.H. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. Ecotoxicol. Environ. Saf. 2020, 203, 111046. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Bownik, A.; Dudka, J.; Kowal, K.; Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Ecotoxicol. Environ. Saf. 2021, 763, 143038. [Google Scholar]
- Liu, Z.; Malinowski, C.R.; Sepúlveda, M.S. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. Chemosphere 2022, 291, 132941. [Google Scholar] [CrossRef]
- Yin, J.; Long, Y.; Xiao, W.; Liu, D.; Tian, Q.; Li, Y.; Liu, C.; Chen, L.; Pan, Y. Ecotoxicology of microplastics in Daphnia: A review focusing on microplastic properties and multiscale attributes of Daphnia. Ecotoxicol. Environ. Saf. 2023, 249, 114433. [Google Scholar] [CrossRef]
- Ames, J.; Miragem, A.A.; Cordeiro, M.F.; Cerezer, F.O.; Loro, V.L. Effects of glyphosate on zebrafish: A systematic review and meta-analysis. Ecotoxicology 2022, 31, 1189–1204. [Google Scholar] [CrossRef]
- Badadyan, L. Ecotoxicology and water pollution—Fish disease. BIO Web Conf. 2024, 93, 04008. [Google Scholar] [CrossRef]
- Henke, A.N.; Chilukuri, S.; Langan, L.M.; Brooks, B.W. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology. Sci. Total Environ. 2024, 912, 168455. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, G.; Souza, C.R.d.; Pereira, C.A.d.J.; Santos Lima, W.d.; Mol, M.P.G.; Silveira, M.R. Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: A systematic review. Environ. Sci. Pollut. Res. 2023, 30, 28506–28524. [Google Scholar] [CrossRef]
- Amaral, D.F.d.; Guerra, V.; Motta, A.G.C.; Melo e Silva, D.d.; Rocha, T.L. Ecotoxicity of nanomaterials in amphibians: A critical review. Sci. Total Environ. 2019, 686, 332–344. [Google Scholar] [CrossRef]
- Johnson, M.S.; Aubee, C.; Salice, C.J.; Leigh, K.B.; Liu, E.; Pott, U.; Pillard, D. A review of ecological risk assessment methods for amphibians: Comparative assessment of testing methodologies and available data. Integr. Environ. Assess. 2016, 13, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Tsukada, E.; Rodrigues, C.C.; Jacintho, J.C.; Franco-Belussi, L.; Jones-Costa, M.; Abdalla, F.C.; Rocha, T.L.; Salla, R.F. The amphibian’s spleen as a source of biomarkers for ecotoxicity assessment: Historical review and trends. Sci. Total Environ. 2023, 901, 165915. [Google Scholar] [CrossRef]
- Peluso, J.; Aronzon, C.M.; Martínez Chehda, A.; Cuzziol Boccioni, A.P.; Peltzer, P.M.; De Geronimo, E.; Aparicio, V.; Gonzalez, F.; Valenzuela, L.; Lajmanovich, R.C. Environmental quality and ecotoxicity of sediments from the lower Salado River basin (Santa Fe, Argentina) on amphibian larvae. Aquat. Toxicol. 2022, 253, 106342. [Google Scholar] [CrossRef]
- Jayawardena, U.A.; Wickramasinghe, D.D.; Udagama, P.V. Cytogenotoxicity evaluation of a heavy metal mixture, detected in a polluted urban wetland: Micronucleus and comet induction in the Indian green frog (Euphlyctis hexadactylus) erythrocytes and the Allium cepa bioassay. Chemosphere 2021, 277, 130278. [Google Scholar] [CrossRef]
- Boualit, L.; Cayuela, H.; Cattin, L.; Chèvre, N. The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature—Assessment of Biochemical, Morphological, and Life-History Traits. Environ. Toxicol. Chem. 2022, 41, 2688–2699. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, P.M.; Cuzziol Boccioni, A.P.; Martinuzzi, C.; Bassó, A.; Attademo, A.M.; Culzoni, M.J.; Paradina-Fernandez, L.; Lajmanovich, R.C. Ecotoxicity and Risk Assessment Characterization of Veterinary Pharmaceuticals on Anuran Amphibian Larvae. In Amphibian Species in Environmental Risk Assessment Strategies; Royal Society of Chemistry: London, UK, 2023; Volume 46, pp. 81–101. [Google Scholar]
- Rosado, D.; Usero, J.; Morillo, J. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary. Chemosphere 2016, 153, 10–17. [Google Scholar] [CrossRef]
- Vurm, R.; Tajnaiová, L.; Kofroňová, J. The Influence of Herbicides to Marine Organisms Aliivibrio fischeri and Artemia salina. Toxics 2021, 9, 275. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Mora, J.R.; Méndez-Rivera, M.; Ramírez-Morales, D.; Cambronero-Heinrichs, J.C.; Rodríguez-Rodríguez, C.E. Toxicity of selected pharmaceuticals and their mixtures to the aquatic indicators Daphnia magna and Aliivibrio fischeri. Ecotoxicology 2024, 33, 1047–1061. [Google Scholar] [CrossRef]
- Giner, B.; Lafuente, C.; Lapeña, D.; Errazquin, D.; Lomba, L. QSAR study for predicting the ecotoxicity of NADES towards Aliivibrio fischeri. Exploring the use of mixing rules. Ecotoxicol. Environ. Saf. 2020, 191, 110004. [Google Scholar] [CrossRef] [PubMed]
- Prasse, C.; Schlüsener, M.P.; Schulz, R.; Ternes, T.A. Antiviral Drugs in Wastewater and Surface Waters: A New Pharmaceutical Class of Environmental Relevance? Environ. Sci. Technol. 2010, 44, 1728–1735. [Google Scholar] [CrossRef]
- Carpenter, C.M.G.; Helbling, D.E. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources. Environ. Sci. Technol. 2018, 52, 6187–6196. [Google Scholar] [CrossRef]
- Abafe, O.A.; Späth, J.; Fick, J.; Jansson, S.; Buckley, C.; Stark, A.; Pietruschka, B.; Martincigh, B.S. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa. Chemosphere 2018, 200, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Mlunguza, N.Y.; Ncube, S.; Mahlambi, P.N.; Chimuka, L.; Madikizela, L.M. Determination of selected antiretroviral drugs in wastewater, surface water and aquatic plants using hollow fibre liquid phase microextraction and liquid chromatography—Tandem mass spectrometry. J. Hazard. Mater. 2020, 382, 121067. [Google Scholar] [CrossRef]
- Kairigo, P.; Ngumba, E.; Sundberg, L.-R.; Gachanja, A.; Tuhkanen, T. Contamination of Surface Water and River Sediments by Antibiotic and Antiretroviral Drug Cocktails in Low and Middle-Income Countries: Occurrence, Risk and Mitigation Strategies. Water 2020, 12, 1376. [Google Scholar] [CrossRef]
- Ngumba, E.; Gachanja, A.; Nyirenda, J.; Maldonado, J.; Tuhkanen, T. Occurrence of antibiotics and antiretroviral drugs in source-separated urine, groundwater, surface water and wastewater in the peri-urban area of Chunga in Lusaka, Zambia. Water 2020, 46, 278–284. [Google Scholar]
Biological Model | Endpoint | ARV | N | R | Tested Concentration Range (mg/L) | Time | EC50 (mg/L) | Reference |
---|---|---|---|---|---|---|---|---|
Biomphalaria glabrata | Embryonic malformation | 3TC | 100 | 3 | NI | 8 d | NA | [22] |
ZDV | 100 | 3 | NI | 8 d | NA | |||
Mortality | 3TC | 5 | 3 | NI | 48 h | NA | ||
ZDV | 5 | 3 | NI | 48 h | NA | |||
Microcystis novacekii | Inhibition of cell growth | TDF | 106 | 3 | 1.0–256.0 | 96 h | 130.7 | [5] |
TDF (1) | 106 | 3 | 1.0–256.0 | 96 h | >256.0 | |||
3TC | 106 | 3 | 1.0–300.0 | 96 h | 184.8 | |||
3TC (1) | 106 | 3 | 1.0–300.0 | 96 h | 60.3 | |||
DTG | 106 | 3 | 0.1–45.0 | 96 h | 1.7 | |||
DTG (1) | 106 | 3 | 0.1–45.0 | 96 h | 27.6 | |||
Brachionus calyciflorus | Mortality | RTV | 5 | 6 | 0.3–100 | 24 h | 11.35 | [11] |
TDF | 5 | 6 | 9 × 10−3–10 | 24 h | 2.83 | |||
Thamnocephalus platyurus | RTV | 10 | 3 | 7.1 × 10−3–0.75 | 24 h | >0.75 | ||
TDF | 10 | 3 | 0.95–100 | 24 h | >100 | |||
Ceriodaphnia dubia | TDF | 10 | 3 | 6.25–100 | 24 h | >100 | ||
RTV | 10 | 3 | 0.156–2.0 | 24 h | >2 | |||
Raphidocelis subcapitata | Inhibition of cell growth | RTV | 103 | 6 | 10−8–0.02441 | 72 h | 22.93 | |
TDF | 103 | 6 | 10−8–0.02441 | 72 h | 48.12 | |||
Brachionus calyciflorus | Population growth inhibition | RTV | 1 | 10 | 7.8 × 10−8–0.03 | 48 h | 0.00020 | |
TDF | 1 | 10 | 3 × 10−4–0.03 | 48 h | 0.00108 | |||
Ceriodaphnia dubia | Reproduction inhibition | RTN | 1 | 10 | 8.67 × 10−9–0.01 | 7 d | 14.32 × 10−6 | |
TDF | 1 | 10 | 2.71 × 10−7–3.2 | 7 d | 0.00574 | |||
DNA damage | RTN | 30 | 2 | 10−7–0.01 | 24 h | NA | ||
TNF | 30 | 2 | 0.001–1.0 | 24 h | NA | |||
Lemna minor | Inhibition of growth | TDF | 15 g | 4 | 4 × 10−5 | 7 d | NA | [23] |
3TC | 15 g | 4 | 5.4 × 10−4 | 7 d | NA | |||
EFZ | 15 g | 4 | 4 × 10−4 | 7 d | NA | |||
Daphnia magna | Immobilization | 3TC | 20 | 3 | 0.01–0.1 | 24/48 h | 0.0341/0.0123 | [24] |
Coelastrella tenuitheca | Inhibition of cell growth | NVP | NI | 3 | 5–100 | 96 h | 23.45 | [25] |
Tetradesmus obliquus | NI | 3 | 5–100 | 96 h | 18.20 | |||
Biomphalaria glabrata | Metabolic activity (in vivo) | TNF | 5 | 3 | 3 × 10−4–300 | 72 h | >300 | [9] |
TNF | 5 | 3 | 21 d | 1.62 | ||||
Phagocytic activity (in vitro) | TNF | 5 | 3 | 3 × 10−4–300 | 72 h | >300 | ||
TNF | 5 | 3 | 21 d | >300 | ||||
Nitric oxide production (in vivo) | TNF | 5 | 3 | 3 × 10−4–300 | 72 h | >300 | ||
TNF | 5 | 3 | 21 d | >300 | ||||
Hemocyte feasibility (in vivo) | TNF | 5 | 3 | 3 × 10−4–300 | 72 h | >300 | ||
TNF | 5 | 3 | 21 d | 2.65 | ||||
Mortality | TNF | 5 | 3 | 3 × 10−4–300 | 72 h | >300 | ||
TNF | 5 | 3 | 21 d | >300 | ||||
Behavior | TNF | 5 | 3 | 3 × 10−4–300 | 72 h | NA | ||
TNF | 5 | 3 | 21 d | NA | ||||
Metabolic activity (in vitro) | TNF | 105 | 3 | 3 x 10−4–300 | 1 h | 0.028 | ||
Hemocyte feasibility (in vitro) | TNF | 105 | 3 | 3 x 10−4–300 | 1 h | 0.300 | ||
Phagocytic activity (in vitro) | TNF | 105 | 3 | 3 × 10−4–300 | 1 h | >300 | ||
Ehinometra lucunter | Inhibition of fertilization | ATV | 100 | 4 | 3.12–100 | 1 h | 73.04 | [10] |
EFZ | 100 | 4 | 3.12–100 | 1 h | 11.46 | |||
NVP | 100 | 4 | 3.12–100 | 1 h | 84.61 | |||
Embryo larval development | AZT | 100 | 4 | 0.195–3.12 | 36–42 h | 0.63 | ||
EFZ | 100 | 4 | 0.195–3.12 | 36–42 h | 0.52 | |||
NVP | 100 | 4 | 0.195–3.12 | 36–42 h | 0.97 | |||
Chlorella vulgaris | Inhibition of cell growth | NVP | 107 | 3 | 5.00–35.00 | 72 h | 24.90 | [26] |
NVP (1) | 107 | 3 | 5.00–35.00 | 72 h | 19.52 | |||
Artemia salina | Immobilization | NVP | 10 | 3 | 12.67–40.83 | 72 h | 27.77 | |
NVP (1) | 10 | 3 | 12.67–40.83 | 72 h | >40.83 | |||
Aliivibrio fischeri | Inhibition of bioluminescence | NVP | NI | NI | 2.5–35.0 | 72h | 22.18 | |
NVP (1) | NI | NI | 2.5–35.0 | 72h | 12.40 | |||
Rhinella arenarum | Bioaccumulation | ABC | 5 | 3 | 5 × 10−4–0.001 | 96 h | NA | [27] |
EFZ | 5 | 3 | 5 × 10−4–0.001 | 96 h | NA | |||
Synechococcus elongatus | Inhibition of cell growth | TNF | 106 | 3 | 10−4–0.1 | 96 h | 594.35 | [12] |
3TC | 106 | 3 | 10−4–0.1 | 96 h | 570.26 | |||
EFZ | 106 | 3 | 10−4–0.1 | 96 h | 0.040 | |||
Chlorococcum infusionum | TNF | 106 | 3 | 10−4–0.1 | 96 h | 671.13 | ||
3TC | 106 | 3 | 10−4–0.1 | 96 h | 571.13 | |||
EFZ | 106 | 3 | 10−4–0.1 | 96 h | 0.011 | |||
Daphnia magna | Immobilization | EFZ | 5 | 4 | 0.0625–1.0 | 48 h | >1.0 | [28] |
TNF | 5 | 4 | 0.0625–1.0 | 48 h | >1.0 | |||
Catalase Activity | EFZ | 5 | 4 | 0.0625–1.0 | 48 h | NA | ||
TNF | 15 | 1 | 0.0625–1.0 | 48 h | NA | |||
Raphidocelis subcapitata | Inhibition of cell growth | EFZ | 105 | 3 | 8 × 10−3–0.25 | 96 h | 0.034 | [13] |
3TC | 105 | 3 | 1.25–20 | 96 h | 3.013 | |||
AZT | 105 | 3 | 1.25–20 | 96 h | 5.442 | |||
Ceriodaphnia dubia | Immobilization | EFZ | 1 | 10 | 0.5–0.031 | 8 d | 0.026 | |
3TC | 1 | 10 | 0.625–10 | 8 d | 1.345 | |||
AZT | 1 | 10 | 1.25–20 | 8 d | 5.671 | |||
Oreochromis mossambicus | Histopathological changes | NVP | 6 | 1 | 1.48 × 10−3 | 30 d | NA | [6] |
NVP | 6 | 1 | 3.74 × 10−3 | 30 d | NA | |||
Daphnia magna | Immobilization | 3TC | 5 | 4 | 0.01–0.1 | 24 h | 0.0341 | [29] |
3TC | 5 | 4 | 0.01–0.1 | 48 h | 0.0123 | |||
Danio rerio | Mortality | LPV | 21 | 3 | 0.1–40.0 | 96 h | 6.417 | [8] |
Rhinella arenarum | Bioaccumulation | 3TC | 5 | 3 | 0.5–4.0 | 48 h | NA | [30] |
d4T | 5 | 3 | 0.05–0.225 | 48 h | NA | |||
AZT | 5 | 3 | 0.05–0.225 | 48 h | NA | |||
NVP | 5 | 3 | 0.1–0.7 | 48 h | NA | |||
Oreochromis mossambicus | Development of organisms (growth) | NVP | 10 | 4 | 1.48 × 10−3 | 1 d | ND | [31] |
NVP | 10 | 4 | 1.48 × 10−3 | 5 d | ND | |||
NVP | 10 | 4 | 1.48 × 10−3 | 30 d | ND | |||
NVP | 10 | 4 | 1.48 × 10−3 | 60 d | ND | |||
Oreochromis mossambicus | Hatching success | NVP | 60 | 4 | 1.48 × 10−3 | 30 d | ND | [32] |
Survival | NVP | 10 | 4 | 1.48 × 10−3 | 30 d | >1.48 × 10−3 | ||
Oreochromis mossambicus | Histopathological changes | NVP | 6 | 2 | 1.48 × 10−3 | 30 d | ND | [33] |
NVP | 6 | 2 | 3.74 × 10−3 | 30 d | ND | |||
Artemia salina | Immobilization | TNF | 5 | NI | 30–180 | 24 h | 111.82 | [34] |
Aliivibrio fischeri | Inhibition of bioluminescence | TNF | NI | 2 | 4.38–70.40 | 15 min | 14.83 | |
Microcystis novacekii | Inhibition of cell growth | TNF | 106 | 3 | 40–300 | 96 h | 161.01 | |
Daphnia magna | Immobilization | dT4 | NI | 4 | 4.35 | 48 h | ND | [35] |
AZT | NI | 4 | 4.50 | 48 h | ND | |||
Aliivibrio fischeri | Inhibition of bioluminescence | dT4 | NI | 2 | 4.35 | 30 min | ND | |
AZT | NI | 2 | 4.50 | 30 min | ND | |||
Raphidocelis subcapitata | Inhibition of cell growth | dT4 | 104 | 6 | 4.35 | 72 h | ND | |
AZT | 104 | 6 | 4.50 | 72 h | ND | |||
Oreochromis mossambicus | Histopathological changes | EFZ | 21 | 3 | 10−5–2 × 10−5 | 96 h | ND | [7] |
Daphnia magna | Immobilization | ABC | 5 | 5 | NI | 24 h | >100 | [36] |
ABC | 5 | 5 | NI | 48 h | >100 | |||
Reproduction | ABC | 10 | NI | NI | 21 d | ND | ||
Raphidocelis subcapitata | Inhibition of cell growth | ABC | 104 | 3 | NI | 72 h | 57.32 | |
Artemia salina | Immobilization | ABC | 5 | 5 | NI | 24/48 h | >100/>100 | |
Skeletonema marinoi | Inhibition of cell growth | ABC | 104 | 3 | NI | 72 h | ND |
Reference | Reliability Score | Relevance Score | Total Score | Classification |
---|---|---|---|---|
[22] | 19 | 10 | 29 | Reliable with restrictions |
[5] | 19 | 12 | 31 | Reliable without restrictions |
[11] | 18 | 12 | 30 | Reliable without restrictions |
[23] | 18 | 11 | 29 | Reliable with restrictions |
[37] | 19 | 12 | 31 | Reliable without restrictions |
[25] | 19 | 12 | 31 | Reliable without restrictions |
[9] | 19 | 12 | 31 | Reliable without restrictions |
[10] | 18 | 13 | 31 | Reliable without restrictions |
[26] | 19 | 11 | 30 | Reliable without restrictions |
[27] | 19 | 13 | 32 | Reliable without restrictions |
[12] | 17 | 12 | 29 | Reliable with restrictions |
[28] | 17 | 13 | 30 | Reliable without restrictions |
[13] | 19 | 13 | 32 | Reliable without restrictions |
[6] | 18 | 11 | 29 | Reliable with restrictions |
[37] | 19 | 12 | 31 | Reliable without restrictions |
[8] | 20 | 11 | 31 | Reliable without restrictions |
[38] | 18 | 13 | 31 | Reliable without restrictions |
[31] | 18 | 10 | 28 | Reliable with restrictions |
[32] | 18 | 11 | 29 | Reliable with restrictions |
[33] | 18 | 11 | 29 | Reliable with restrictions |
[39] | 18 | 12 | 30 | Reliable without restrictions |
[35] | 17 | 11 | 28 | Reliable with restrictions |
[7] | 18 | 11 | 29 | Reliable with restrictions |
[36] | 16 | 11 | 27 | Reliable with restrictions |
Name (CAS#) | Acronym | pKa (Acid/Base) * | LogKOw * | Water Solubility (mg/mL) * |
---|---|---|---|---|
Abacavir (136470-78-5) | ABC | 15.41/5.77 | 1.20 | 77.0 |
Atazanavir (198904-31-3) | ATV | 3.36/4.88 | 2.90 | 5.0 |
Dolutegravir (1051375-19-9) | DTG | −0.5/10.1 | 1.6 | 0.269 |
Efavirenz (154598-52-4) | EFZ | 12.52/−1.5 | 4.69 | Insoluble |
Stavudine (3056-17-5) | d4T | 9.95/−3.00 | −0.72 | 100.0 |
Lamivudine (134678-17-4) | 3TC | 14.29/−0.16 | 9.54 | 70.0 |
Lopinavir (192725-17-0) | LPV | 13.39/−1.5 | 5.94 | Insoluble |
Nevirapine (129618-40-2) | NVP | 10.37/5.06 | 3.89 | 0.04 |
Ritonavir (155213-67-5) | RTV | 13.68/2.84 | 6.27 | Insoluble |
Tenofovir (147127-20-6) | TNF | 1.35/5.12 | −1.57 | 13.4 |
Zidovudine (30516-87-1) | AZT | 9.96/−3.00 | 0.05 | 50.0 |
ARV | Class | Species | EC50 (mg/L) | Reference |
---|---|---|---|---|
TDF | NRTI | Chlorococcum infusionum | 671.1 | [12] |
TDF | NRTI | Raphidocelis subcapitata | 48.1 | [11] |
3TC | NRTI | Chlorococcum infusionum | 571.1 | [12] |
3TC | NRTI | Raphidocelis subcapitata | 3.0 | [13] |
AZT | NRTI | Raphidocelis subcapitata | 5.4 | [13] |
AZT | NRTI | Raphidocelis subcapitata | 4.5 | [35] |
ABC | NRTI | Raphidocelis subcapitata | 57.3 | [36] |
d4T | NRTI | Raphidocelis subcapitata | 4.4 | [35] |
EFZ | NNRTI | Chlorococcum infusionum | 0.011 | [12] |
EFZ | NNRTI | Raphidocelis subcapitata | 0.034 | [13] |
NVP | NNRTI | Tetradesmus obliquus | 18.2 | [25] |
NVP | NNRTI | Coelastrella tenuitheca | 23.5 | [25] |
NVP | NNRTI | Chlorella vulgaris | 24.9 | [26] |
RTV | PI | Raphidocelis subcapitata | 22.9 | [11] |
ARV | Class | Species | EC50 (mg/L) | Reference |
---|---|---|---|---|
TDF | NRTI | Synechococcus elongatus | 594.4 | [12] |
TDF | NRTI | Microcystis novacekii | 161.0 | [34] |
TDF (API) | NRTI | Microcystis novacekii | 130.7 | [5] |
TDF (Med.) | NRTI | Microcystis novacekii | >256 | [5] |
3TC | NRTI | Synechococcus elongatus | 570.3 | [12] |
3TC (API) | NRTI | Microcystis novacekii | 184.8 | [5] |
3TC (Med.) | NRTI | Microcystis novacekii | 60.3 | [5] |
EFZ | NNRTI | Synechococcus elongatus | 0.04 | [12] |
DTG (API) | INI | Microcystis novacekii | 1.7 | [5] |
DTG (Med.) | INI | Microcystis novacekii | 27.6 | [5] |
ARV | Class | Species | EC50 (mg/L) | Reference |
---|---|---|---|---|
TDF | NRTI | Ceriodaphnia dubia | 29.98 | [11] |
TDF | NRTI | Brachionus calyciflorus | >100 | [11] |
TDF | NRTI | Thamnocephalus platyurus | >100 | [11] |
TDF | NRTI | Ceriodaphnia dubia | 5.7 × 10−3 * | [11] |
TDF | NRTI | Brachionus calyciflorus | 1.1 × 10−3 * | [11] |
TDF | NRTI | Thamnocephalus platyurus | >100 * | [11] |
TDF (API) | NRTI | Artemia salina | 111.82 | [34] |
TDF (Med.) | NRTI | Artemia salina | 61.83 | [34] |
ABC | NRTI | Artemia salina | >100 | [36] |
ABC | NRTI | Daphnia magna | >100 | [36] |
3TC | NRTI | Daphnia magna | 3.4 × 10−2 (24 h) | [24,29] |
3TC | NRTI | Daphnia magna | 1.2 × 10−2 (48 h) | [24,29] |
3TC | NRTI | Ceriodaphnia dubia | 1.345 | [13] |
AZT | NRTI | Ceriodaphnia dubia | 5.671 | [13] |
RTV | IP | Thamnocephalus platyurus | 11.35 | [11] |
RTV | IP | Ceriodaphnia dubia | 1.4 × 10−6 * | [11] |
RTV | IP | Brachionus calyciflorus | 2 × 10−3 * | [11] |
EFZ | NNRTI | Ceriodaphnia dubia | 2.6 × 10−2 | [13] |
NVP | NNRTI | Artemia salina | 27.77 | [26] |
ARV/Class | OEC | Species | Effects | Reference |
---|---|---|---|---|
NVP/NNRTI | 3.74 µg/L | Oreochromis mossambicus | Tissue damage | [33] |
Increased HSI | ||||
Increased SSI | ||||
Hepatocyte necrosis | ||||
Vacuolization | ||||
Moderate fibrosis | ||||
NVP/NNRTI | 3.74 µg/L | Oreochromis mossambicus | Change in ovarian index | [6] |
Increased oocyte atresia | ||||
Tissue vacuolization | ||||
EFZ/NNRTI | 20.6 µg/L | Oreochromis mossambicus | Increased liver indices | [7] |
Sinus congestion | ||||
Changes in liver color | ||||
Liver damage | ||||
Steatosis and necrosis | ||||
LPV/IP | 6.42 mg/L | Danio rerio | 50% organism lethality | [8] |
ARV | Class | Species | EC50 (mg/L) | Reference |
---|---|---|---|---|
TDF | NRTI | Biomphalaria glabrata | 1.62 | [9] |
ATV | IP | Echinometra lucunter | 73.04 | [10] |
EFZ | NNRTI | Echinometra lucunter | 11.46 | [10] |
NVP | NNRTI | Echinometra lucunter | 84.61 | [10] |
ATV | PI | Echinometra lucunter | 0.63 | [10] |
EFZ | NNRTI | Echinometra lucunter | 0.52 | [10] |
NVP | NNRTI | Echinometra lucunter | 0.97 | [10] |
ARV | Class | Species | Bioconcentration Factor | Reference |
---|---|---|---|---|
3TC | NRTI | Rhinella arenarum | 0.16 L/Kg | [9] |
d4T | NRTI | Rhinella arenarum | 0.50 L/Kg | [10] |
AZT | NRTI | Rhinella arenarum | 0.18 L/Kg | [10] |
NVP | NNRTI | Rhinella arenarum | 1.20 L/Kg | [10] |
ABC | NRTI | Rhinella arenarum | 0.08 L/Kg | [10] |
EFZ | NNRTI | Rhinella arenarum | 4.10 L/Kg | [10] |
ARV | Class | Species | EC50 (mg/L) | Reference |
---|---|---|---|---|
NVP (API) | NNRTI | Aliivibrio fischeri | 22.18 | [26] |
NVP (Med.) | NNRTI | Aliivibrio fischeri | 12.40 | [26] |
TDF (API) | NRTI | Aliivibrio fischeri | 14.83 | [26] |
TDF (Med.) | NRTI | Aliivibrio fischeri | 8.20 | [26] |
Matrix | ARV | n | MEC (mean) | MEC (min) | MEC (max) |
---|---|---|---|---|---|
Groundwater | ABC | 1 | 0.010 | 0.010 | 0.010 |
FTC | 25 | 0.090 | 0.010 | 0.370 | |
3TC | 3 | 0.010 | 0.008 | 0.011 | |
NVP | 2 | 0.280 | 0.150 | 0.410 | |
Leachate | ABC | 3 | 0.060 | 0.008 | 0.164 |
NVP | 3 | 0.188 | 0.020 | 0.400 | |
Sewage hospital (treated) | RTV | 1 | 0.024 | 0.024 | 0.024 |
Sewage hospital (untreated) | RTV | 1 | 0.108 | 0.108 | 0.108 |
Surface water—estuary | 3TC | 1 | 0.040 | 0.040 | 0.040 |
Surface water—lake | EFZ | 1 | 0.380 | 0.380 | 0.380 |
FTC | 1 | 0.030 | 0.030 | 0.030 | |
TDF | 1 | 0.110 | 0.110 | 0.110 | |
Surface water—river/stream | ABC | 32 | 0.017 | 0.001 | 0.203 |
ddl | 2 | 0.054 | 0.054 | 0.054 | |
EFZ | 3 | 0.353 | 0.110 | 0.560 | |
FTC | 39 | 0.059 | 0.005 | 0.200 | |
3TC | 33 | 31.361 | 0.016 | 228.300 | |
LPV | 3 | 0.239 | 0.130 | 0.305 | |
NVP | 31 | 0.950 | 0.005 | 5620.0 | |
RTV | 7 | 0.004 | 0.003 | 0.010 | |
D4T | 6 | 0.217 | 0.002 | 0.778 | |
TDF | 3 | 0.192 | 0.145 | 0.243 | |
ddC | 2 | 0.050 | 0.028 | 0.071 | |
AZT | 51 | 1.581 | 0.001 | 17.410 | |
Surface water—unspecific | 3TC | 8 | 7.840 | 2.470 | 13.650 |
AZT | 12 | 0.032 | 0.013 | 0.079 | |
Suspended particulate matter—river/stream * | ABC | 1 | 0.001 | 0.001 | 0.001 |
FTC | 1 | 0.001 | 0.001 | 0.001 | |
3TC | 3 | 0.200 | 0.001 | 0.491 | |
NVP | 2 | 0.098 | 0.095 | 0.101 | |
AZT | 2 | 0.314 | 0.118 | 0.510 | |
Suspended particulate matter—WWTP effluent * | 3TC | 1 | 69.681 | 69.681 | 69.681 |
NVP | 1 | 3.214 | 3.214 | 3.214 | |
AZT | 1 | 3.336 | 3.336 | 3.336 | |
Tap water | ddC | 1 | 0.008 | 0.008 | 0.008 |
AZT | 1 | 0.073 | 0.073 | 0.073 | |
Well water (untreated) | ABC | 1 | 0.010 | 0.010 | 0.010 |
FTC | 1 | 0.010 | 0.010 | 0.010 | |
NVP | 3 | 0.940 | 0.020 | 1.600 | |
AZT | 3 | 0.023 | 0.020 | 0.030 | |
WWTP effluent (treated) | ABC | 21 | 0.041 | 0.008 | 0.170 |
EFZ | 10 | 13.516 | 0.100 | 37.300 | |
FTC | 24 | 0.250 | 0.060 | 1.000 | |
3TC | 22 | 45.003 | 0.020 | 847.1 | |
LPV | 8 | 1.189 | 0.001 | 3.800 | |
MVC | 1 | 0.039 | 0.039 | 0.039 | |
NVP | 12 | 1.918 | 0.032 | 9.500 | |
RAL | 2 | 1.793 | 0.086 | 3.500 | |
RTV | 7 | 0.426 | 0.003 | 1.500 | |
TDF | 5 | 0.060 | 0.001 | 0.100 | |
AZT | 11 | 3.911 | 0.087 | 37.140 | |
WWTP inflow (untreated) | ABC | 7 | 2.536 | 0.030 | 14.000 |
EFZ | 13 | 11.051 | 0.460 | 34.000 | |
FTC | 6 | 34.750 | 0.300 | 172.000 | |
3TC | 15 | 18.245 | 0.020 | 118.970 | |
LPV | 3 | 1.667 | 1.200 | 2.500 | |
MVC | 3 | 0.162 | 0.082 | 0.320 | |
NVP | 8 | 1.645 | 0.670 | 3.300 | |
RAL | 3 | 5.957 | 0.061 | 17.000 | |
RTV | 8 | 0.863 | 0.085 | 3.200 | |
SQV | 1 | 0.180 | 0.180 | 0.180 | |
TDF | 5 | 0.144 | 0.100 | 0.250 | |
AZT | 7 | 26.141 | 6.900 | 66.590 |
Species | ARV | PNEC (µg/L) | Risk * | Reference |
---|---|---|---|---|
Aliivibrio fischeri | TNF | 14.83 | Low | [34] |
Aliivibrio fischeri | NVP | 22.18 | Low | [26] |
Artemia salina | ABC | >100 | No risk | [36] |
Artemia salina | TNF | 111.82 | No risk | [34] |
Artemia salina | NVP | 27.77 | Low | [26] |
Brachionus calyciflorus | RTV | 11.35 | Low | [11] |
Brachionus calyciflorus | TNF | 2.83 | Moderate | [11] |
Biomphalaria glabrata | TNF | 2.65 | Moderate | [9] |
Ceriodaphnia dubia | EFZ | 0.03 | High | [13] |
Ceriodaphnia dubia | 3TC | 1.35 | Moderate | [13] |
Ceriodaphnia dubia | AZT | 5.67 | Moderate | [13] |
Ceriodaphnia dubia | RTV | >100 | No risk | [11] |
Chlorococcum infusionum | TNF | 671.13 | No risk | [12] |
Chlorococcum infusionum | 3TC | 571.13 | No risk | [12] |
Chlorococcum infusionum | EFZ | 0.01 | High | [12] |
Coelastrella tenuitheca | NVP | 23.45 | Low | [25] |
Chlorella vulgaris | NVP | 24.90 | Low | [26] |
Daphnia magna | ABC | >100 | No risk | [36] |
Daphnia magna | 3TC | 0.03 | High | [29] |
Daphnia magna | 3TC | 0.01 | High | [37] |
Danio rerio | LPV | 6.42 | Moderate | [8] |
Ehinometra lucunter | ATV | 0.63 | High | [10] |
Ehinometra lucunter | EFZ | 0.52 | High | [10] |
Ehinometra lucunter | NVP | 0.97 | High | [10] |
Microcystis novacekii | TNF | 161.01 | No risk | [34] |
Microcystis novacekii | TDF | 130.7 | No risk | [5] |
Microcystis novacekii | 3TC | 184.8 | No risk | [5] |
Microcystis novacekii | DTG | 1.7 | Moderate | [5] |
Raphidocelis subcapitata | ABC | 57.32 | Low | [36] |
Raphidocelis subcapitata | EFZ | 0.03 | High | [13] |
Raphidocelis subcapitata | 3TC | 3.01 | Moderate | [13] |
Raphidocelis subcapitata | AZT | 5.44 | Moderate | [13] |
Raphidocelis subcapitata | RTN | 22.93 | Low | [11] |
Raphidocelis subcapitata | TNF | 48.12 | Low | [11] |
Synechococcus elongatus | TNF | 594.35 | No risk | [12] |
Synechococcus elongatus | 3TC | 570.26 | No risk | [12] |
Synechococcus elongatus | EFZ | 0.04 | High | [12] |
Tetradesmus obliquus | NVP | 18.20 | Low | [25] |
Thamnocephalus platyurus | TNF | >100 | No risk | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza-Silva, G.; Bispo, V.A.; Alcantara, M.D.; Vieira Martins Starling, M.C.; de Souza, C.R.; Jardim, L.T.R.; Miranda, M.; Nunes, K.P.; de Jesus Pereira, C.A.; Mol, M.P.G.; et al. Aquatic Ecotoxicology of Antiretrovirals: A Review. Environments 2025, 12, 384. https://doi.org/10.3390/environments12100384
Souza-Silva G, Bispo VA, Alcantara MD, Vieira Martins Starling MC, de Souza CR, Jardim LTR, Miranda M, Nunes KP, de Jesus Pereira CA, Mol MPG, et al. Aquatic Ecotoxicology of Antiretrovirals: A Review. Environments. 2025; 12(10):384. https://doi.org/10.3390/environments12100384
Chicago/Turabian StyleSouza-Silva, Gabriel, Valéria Aparecida Bispo, Mariângela Domingos Alcantara, Maria Clara Vieira Martins Starling, Cléssius Ribeiro de Souza, Laíse Taciane Rodrigues Jardim, Matheus Miranda, Kenia Pedrosa Nunes, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, and et al. 2025. "Aquatic Ecotoxicology of Antiretrovirals: A Review" Environments 12, no. 10: 384. https://doi.org/10.3390/environments12100384
APA StyleSouza-Silva, G., Bispo, V. A., Alcantara, M. D., Vieira Martins Starling, M. C., de Souza, C. R., Jardim, L. T. R., Miranda, M., Nunes, K. P., de Jesus Pereira, C. A., Mol, M. P. G., & Silveira, M. R. (2025). Aquatic Ecotoxicology of Antiretrovirals: A Review. Environments, 12(10), 384. https://doi.org/10.3390/environments12100384