Sex- and Gender-Based Differences in Asthmatic Responses to Chemical Sensitizers, Particularly in Occupational Settings: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Sources and Literature Search
2.2. Inclusion Criteria
2.3. Screening Process
3. Biological Mechanism Underlying Sex Differences in Asthma
3.1. Sex: Biological and Physiological Differences Linked with Possible Different Health Effects
3.1.1. Sex and Anatomic Factor’s Role on Asthma
3.1.2. Sex Hormone’s Role on Asthma
3.1.3. Genetic and Epigenetic Mechanism’s Role on Asthma
4. Results and Discussion
4.1. Sex and Gender Differences: Epidemiological Evidence on General Population
4.2. Sex and Gender Differences: Epidemiological Evidence in Occupational Settings
- The intrinsic sensitizing potential of the agent.
- The conditions of exposure (including the type, frequency, and duration of cleaning tasks, the application method—such as spraying vs. mopping—the volatility of the chemicals, and their concentration).
- Individual susceptibility [91].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CLP | Classification, Labeling and Packaging |
GHS | Globally Harmonized System |
HCS | Hazard Communication Standard |
ECHA | European Chemicals Agency |
GB | Great Britain |
OSHA | Occupational Safety and Health Agency |
WHMIS | Workplace Hazardous Materials Information System |
WHS | Workplace Health and Safety |
MEM | Ministry of Emergency Management |
SAMR | State Administration for Market Regulation |
MHLW | Ministry of Health, Labor and Welfare |
METI | Ministry of Economy, Trade and Industry |
MOE | Ministry of the Environment |
REACH | Registration, Evaluation and Authorization of Chemicals |
SVHCs | Substances of very high concern |
MSC | Member State Committee |
TDI | Toluene diisocyanate |
MDI | Methylene diphenyl diisocyanate |
HDI | Hexamethylene diisocyanate |
MHHPA | Methylhexahydrophthalic anhydride |
HHPA | Hexahydrophthalic anhydride |
HRT | Hormone Replacement Therapy |
Hmws | High molecular weight sensitizers |
Lmws | Low molecular weight sensitizers |
References
- Basketter, D.A.; Kimber, I. Assessing the potency of respiratory allergens: Uncertainties and challenges. Regulat. Toxicol. Pharmacol. 2011, 61, 365–372. [Google Scholar] [CrossRef]
- Kimber, I.; Basketter, D.A. Chemical allergens—What are the issues? Toxicol 2010, 268, 139–142. [Google Scholar] [CrossRef] [PubMed]
- 1272/2008-CLP; Regulation (EC), Annex VI—Table of Harmonised Entries. Publications Office of the European Union: Helsinki, Finland, 2008.
- ECHA. The Member State Committee Identifies the First Respiratory Sensitisers as Substances of very High Concern. Available online: https://echa.europa.eu/it/-/the-member-state-committee-identifies-the-first-respiratory-sensitisers-as-substances-of-very-high-concern (accessed on 31 May 2025).
- Minutes of the 25th Meeting of the Member State Committee (MSC-25) 19–21 September 2012. MSC/M/025/2012 Adopted at MSC-26. Available online: https://echa.europa.eu/documents/10162/17089/meet_minutes_msc_25_en.pdf/ (accessed on 31 May 2025).
- Dotson, G.S.; Maier, A.; Siegel, P.D.; Anderson, S.E.; Green, B.J.; Stefaniak, A.B.; Codispoti, C.D.; Kimber, I. Setting Occupational Exposure Limits for Chemical Allergens—Understanding the Challenges. J. Occup. Environ. Hyg. 2015, 12, S82–S98. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.L.; Baelum, J.; Skadhauge, L.; Thomsen, G.; Omland, O.; Thilsing, T.; Dahl, S.; Sigsgaard, T.; Sherson, D. Consequences of asthma on job absenteeism and job retention. Scand. J. Public Health 2012, 40, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Cullinan, P.; Vandenplas, O.; Bernstein, D. Assessment and Management of Occupational Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3264–3275. [Google Scholar] [CrossRef]
- Cormier, M.; Lemière, C. Occupational asthma. Int. J. Tuberc. Lung Dis. 2020, 24, 8–21. [Google Scholar] [CrossRef]
- Rabatin, J.T.; Cowl, C.T. A guide to the diagnosis and treatment of occupational asthma. Mayo Clin. Proc. 2001, 76, 633–640. [Google Scholar] [CrossRef]
- Rother, D.; Schlüter, U. Occupational Exposure to Diisocyanates in the European Union. Ann. Work. Expo. Health 2021, 65, 893–907. [Google Scholar] [CrossRef]
- Verschoor, L.; Verschoor, A.H. Nonoccupational and occupational exposure to isocyanates. Curr. Opin. Pulm. Med. 2014, 20, 199–204. [Google Scholar] [CrossRef]
- Klusáčková, P.; Dušková, S.; Mráz, J.; Navrátil, T.; Vlčková, S.; Pelclová, D. Health effects of exposure to isocyanates in a car factory. Cent. Eur. J. Public Health 2022, 30, 32–36. [Google Scholar] [CrossRef]
- Zeiss, C.R. Advances in acid anhydride induced occupational asthma. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 89–92. [Google Scholar] [CrossRef]
- Heederik, D.; van Rooy, F. Update on occupational allergy, including asthma, to soluble platinum salts. Curr. Opin. Allergy Clin. Immunol. 2024, 24, 69–72. [Google Scholar] [CrossRef]
- Ibrahim, B.; Le Moual, N.; Sit, G.; Goldberg, M.; Leynaert, B.; Ribet, C.; Roche, N.; Varraso, R.; Zins, M.; Nadif, R.; et al. Occupational Exposure Patterns to Disinfectants and Cleaning Products and Its Association With Asthma Among French Healthcare Workers. Am. J. Ind. Med. 2025, 68, 516–530. [Google Scholar] [CrossRef]
- Hussein, H.; Mwanga, M.D.; Dumas, O.; Migueres, N.; Le Moual, N.; Jeebhay, M.F. Airway Diseases Related to the Use of Cleaning Agents in Occupational Settings. J. Allergy Clin. Immunol. 2024, 12, 1974–1986. [Google Scholar]
- Muñoz, X.; Clofent, D.; Cruz, M.J. Occupational respiratory allergy to reactive dyes. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.; Roberts, H. Methacrylate perspective in current dental practice. J. Esthet. Restor. Dent. 2020, 32, 673–680. [Google Scholar] [CrossRef]
- Walters, G.I.; Robertson, A.S.; Moore, V.C.; Burge, P.S. Occupational asthma caused by acrylic compounds from SHIELD surveillance (1989-2014). Occup. Med. 2017, 67, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, P. Occupational allergy to pharmaceutical products. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 101–106. [Google Scholar] [CrossRef]
- Baur, X.; Bakehe, P. Allergens causing occupational asthma: An evidence-based evaluation of the literature. Int. Arch. Occup. Environ. Health 2014, 87, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Dalbøge, A.; Kolstad, H.A.; Jahn, A.; Ulrik, C.S.; Sherson, D.L.; Meyer, H.W.; Ebbehøj, N.; Sigsgaard, T.; Baur, X.; Schlünssen, V. A systematic review of the relation between ten potential occupational sensitizing exposures and asthma. Scand. J. Work. Environ. Health 2025, 51, 146–158. [Google Scholar] [CrossRef]
- Hargitai, R.; Parráková, L.; Szatmári, T.; Monfort-Lanzas, P.; Galbiati, V.; Audouze, K.; Jornod, F.; Staal, Y.C.M.; Burla, S.; Chary, A.; et al. Chemical respiratory sensitization—Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. Front. Toxicol. 2024, 29, 1331803. [Google Scholar] [CrossRef]
- Unwin, J.; Coldwell, M.R.; Keen, C.; McAlinden, J.J. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics. Ann. Occup. Hyg. 2013, 57, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Vangronsveld, E.; Berckmans, S.; Verbinnen, K.; Van Leeuw, C.; Bormans, C. Isocyanate and total inhalable particulate air measurements in the European wood panel industry. Int. J. Hyg. Environ. Health 2010, 213, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S. Toxic Elements in Tobacco and in Cigarette Smoke: Inflammation and Sensitization. Metallomics 2011, 3, 1181–1198. [Google Scholar] [CrossRef]
- Lanckacker, E.A.; Tournoy, K.G.; Hammad, H.; Holtappels, G.; Lambrecht, B.N.; Joos, J.F.; Maes, T. Short cigarette smoke exposure facilitates sensitisation and asthma development in mice. Eur. Respir. J. 2013, 41, 1189–1199. [Google Scholar] [CrossRef]
- Shargorodsky, J.; Garcia-Esquinas, E.; Galán, I.; Navas-Acien, A.; Lin, S.Y. Allergic Sensitization, Rhinitis and Tobacco Smoke Exposure in US Adults. PLoS ONE 2015, 14, e0131957. [Google Scholar] [CrossRef]
- Poli, D.; Mozzoni, P.; Pinelli, S.; Cavallo, D.; Papaleo, B.; Caporossi, L. Sex Difference and Benzene Exposure: Does It Matter? Int. J. Environ. Res. Public. Health 2022, 19, 2339. [Google Scholar] [CrossRef]
- Wizemann, T.M.; Pardue, M.L. (Eds.) Exploring the Biological Contributions to Human Health: Does Sex Matter? Institute of Medicine: Washington, DC, USA, 2001. [Google Scholar]
- Ortona, E.; Delunardo, F.; Baggio, G.; Malorni, W. A sex and gender perspective in medicine: A new mandatory challenge for human health. Ann. Ist. Super. Sanita 2016, 52, 146–148. [Google Scholar]
- Messing, K.; Silverstein, B.A. Gender and occupational health. Scand. J. Work. Environ. Health 2009, 35, 81–83. [Google Scholar] [CrossRef]
- Franconi, F.; Brunelleschi, S.; Steardo, L.; Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 2007, 55, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Silveyra, P.; Fuentes, N.; Rodriguez Bauza, D.E. Sex and Gender Differences in Lung Disease. Adv. Exp. Med. Biol. 2021, 1304, 227–258. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Most Recent Asthma Data. 2020. Available online: https://www.cdc.gov/asthma/most_recent_data.htm (accessed on 31 May 2025).
- Barre, S.F.; Haberthur, D.; Cremona, T.P.; Stampanoni, M.; Schittny, J.C. The total number of acini remains constant throughout postnatal rat lung development. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L1082–L1089. [Google Scholar] [CrossRef]
- Schwartz, J.; Katz, S.A.; Fegley, R.W.; Tockman, M.S. Sex and race differences in the development of lung function. Am. Rev. Respir. Dis. 1988, 138, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Thurlbeck, W.M. Postnatal human lung growth. Thorax 1982, 37, 564–571. [Google Scholar] [CrossRef]
- Silveyra, P. Chapter 9: Developmental Lung Disease. In Gender, Sex Hormones and Respiratory Disease. A Comprehensive Guide; Hemnes, A.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 243. [Google Scholar] [CrossRef]
- Reddy, K.D.; Oliver, B.G.G. Sexual dimorphism in chronic respiratory diseases. Cell Biosci. 2023, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Padem, N.; Saltoun, C. Classification of asthma. Allergy Asthma Proc. 2019, 40, 385–388. [Google Scholar] [CrossRef]
- Gutierrez-Brito, J.A.; Lomelí-Nieto, J.A.; Muñoz-Valle, J.F.; Oregon-Romero, E.; Corona-Angeles, J.A.; Hernández-Bello, J. Sex hormones and allergies: Exploring the gender differences in immune responses. Front. Allergy 2025, 5, 1483919. [Google Scholar] [CrossRef]
- Borrelli, R.; Brussino, L.; Lo Sardo, L.; Quinternetto, A.; Vitali, I.; Bagnasco, D.; Boem, M.; Corradi, F.; Badiu, I.; Negrini, S.; et al. Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms. Int. J. Mol. Sci. 2025, 26, 5288. [Google Scholar] [CrossRef]
- Yung, J.A.; Fuseini, H.; Newcomb, D.C. Hormones, sex, and asthma. Ann. Allergy Asthma Immunol. 2018, 120, 488–494. [Google Scholar] [CrossRef]
- Radzikowska, U.; Golebski, K. Sex hormones and asthma: The role of estrogen in asthma development and severity. Allergy 2023, 78, 620–622. [Google Scholar] [CrossRef]
- LoMauro, A.; Aliverti, A. Sex and gender in respiratory physiology. Eur. Respir. Rev. 2021, 30, 210038. [Google Scholar] [CrossRef]
- Bulkhi, A.A.; Shepard, K.V.; Casale, T.B.; Cardet, J.C. Elevated Testosterone Is Associated with Decreased Likelihood of Current Asthma Regardless of Sex. J. Allergy Clin. Immunol. Pract. 2020, 8, 3029–3035.e4. [Google Scholar] [CrossRef] [PubMed]
- Cephus, J.Y.; Stier, M.T.; Fuseini, H.; Yung, J.A.; Toki, S.; Bloodworth, M.H.; Zhou, W.; Goleniewska, K.; Zhang, J.; Garon, S.L.; et al. Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation. Cell Rep. 2017, 21, 2487–2499. [Google Scholar] [CrossRef] [PubMed]
- Lauzon-Joset, J.F.; Mincham, K.T.; Abad, A.P.; Short, B.P.; Holt, P.G.; Strickland, D.H.; Leffler, J. Oestrogen amplifies pre-existing atopy-associated Th2 bias in an experimental asthma model. Clin. Exp. Allergy 2020, 50, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Fuseini, H.; Cephus, J.Y.; Wu, P.; Davis, J.B.; Contreras, D.C.; Gandhi, V.D.; Rathmell, J.C.; Newcomb, D.C. ERα Signaling Increased IL-17A Production in Th17 Cells by Upregulating IL-23R Expression, Mitochondrial Respiration, and Proliferation. Front. Immunol. 2019, 10, 2740. [Google Scholar] [CrossRef]
- Dong, W.; Peng, Q.; Liu, Z.; Xie, Z.; Guo, X.; Li, Y.; Chen, C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed. Pharmacother. 2023, 167, 115554. [Google Scholar] [CrossRef]
- Trivedi, S.; Deering-Rice, C.E.; Aamodt, S.E.; Huecksteadt, T.P.; Myers, E.J.; Sanders, K.A.; Paine, R.; Warren, K.J. Progesterone amplifies allergic inflammation and airway pathology in association with higher lung ILC2 responses. Am. J. Physiol. Lung Cell Mol. Physiol. 2024, 327, L65–L78. [Google Scholar] [CrossRef]
- Fuseini, H.; Newcomb, D.C. Mechanisms driving gender differences in asthma. Curr. Allergy Asthma 2017, 17, 19. [Google Scholar] [CrossRef]
- Jenkins, C.R.; Boulet, L.P.; Lavoie, K.L.; Raherison-Semjen, C.; Singh, D. Personalized treatment of asthma: The importance of sex and gender differences. J. Allergy Clin. Immunol. Pract. 2022, 4, 963–971. [Google Scholar] [CrossRef]
- Sanchez-Ramos, J.L.; Pereira-Vega, A.R.; Alvarado-Gomez, F.; Maldonado-Perez, J.A.; Svanes, C.; Gomez-Real, F. Risk factors for premenstrual asthma: A systematic review and metanalysis. Expert. Rev. Respir. Med. 2017, 11, 57–72. [Google Scholar] [CrossRef]
- Murray, L.M.; Yerkovich, S.T.; Ferreira, M.A.; Upham, J.W. Risks for cold frequency vary by sex: Role of asthma, age, TLR7 and leukocyte subsets. Eur. Respir. J. 2020, 56, 1902453. [Google Scholar] [CrossRef] [PubMed]
- James, B.; Milstien, S.; Spiegel, S. ORMDL3 and allergic asthma: From physiology to pathology. J. Allergy Clin. Immunol. 2019, 144, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Sleziak, J.; Gawor, A.; Błazejewska, M.; Antosz, K.; Gomułka, K. ADAM33′ s Role in Asthma Pathogenesis: An Overview. Int. J. Mol. Sci. 2024, 25, 2318. [Google Scholar] [CrossRef]
- Malmhäll, C.; Calvén, J.; Weidner, J.; Johansson, K.; Ramos-Ramirez, P.; Boberg, E.; Ekerljung, L.; Mincheva, R.; Nwaru, B.; Kankaanranta, H.; et al. Potential role of Let-7 family microRNAs in sex disparity in asthma. Eur. Respir. J. 2024, 64 (Suppl. S68), OA2004. [Google Scholar] [CrossRef]
- Boulet, L.P.; Lavoie, K.L.; Raherison-Semjen, C.; Kaplan, A.; Singh, D.; Jenkins, C.R. Addressing sex and gender to improve asthma management. Prim. Care Respir. Med. 2022, 32, 56. [Google Scholar] [CrossRef]
- Raghavan, D.; Jain, R. Increasing awareness of sex differences in airway disease. Respirology 2016, 21, 449–459. [Google Scholar] [CrossRef]
- Raherison, C.; Janson, C.; Jarvis, D.; Burney, P.; Cazzoletti, L.; De Marco, R.; Neukirch, F.; Leynaert, B. Evolution of asthma severity in a cohort of young adults: Is there any gender difference? PLoS ONE 2009, 4, e7146. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Levra, S.; Sprio, A.E.; Bertolini, F.; Carriero, V.; Gallo, F.; Ciprandi, G. Asthma in the real world: The relevance of gender. Int. Arch. Allergy Immunol. 2020, 181, 462–466. [Google Scholar] [CrossRef]
- Global Initiative for Asthma 2021. GINA Report, Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/gina-reports/ (accessed on 18 February 2022).
- Nwaru, B.I.; Sheikh, A. Hormonal contraceptives and asthma in women of reproductive age: Analysis of data from serial national Scottish Health Surveys. J. R. Soc. Med. 2015, 108, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Nwaru, B.I.; Ekström, M.; Hasvold, P.; Wiklund, F.; Telg, G.; Janson, C. Overuse of short-acting β2-agonists in asthma is associated with increased risk of exacerbation and mortality: A nationwide cohort study of the global SABINA programme. Eur. Respir. J. 2020, 55, 1901872. [Google Scholar] [CrossRef] [PubMed]
- Triebner, K.; Johannensenn, A.; Puggini, L.; Benediktsdottir, B.; Bertelsen, R.J.; Bifulco, E.; Dharmage, S.C.; Dratva, J.; Franklin, K.A.; Gíslason, T.; et al. Menopause as a predictor of new onset asthma: A longitudinal northern European population study. J. Allergy Clin. Immunol. 2016, 137, 50–57.e6. [Google Scholar] [CrossRef]
- Hansen, E.S.H.; Aasbjerg, K.; Moeller, A.L.; Gade, E.J.; Torp-Pedersen, C.; Backer, V. Hormone replacement therapy and development of new asthma. Chest 2021, 160, 45–52. [Google Scholar] [CrossRef]
- Shah, S.A.; Tibble, H.; Pillinger, R.; McLean, S.; Ryan, D.; Critchley, H.; Price, D.; Hawrylowicz, C.M.; Simpson, C.R.; Soyiri, I.N.; et al. Hormone replacement therapy and asthma onset in menopausal women: National cohort study. J. Allerg. Clin. Immunol. 2021, 147, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Morales-Estrella, J.L.; Boyle, M.; Zein, J.G. Transgender status is associated with higher risk of lifetime asthma. In A34 Asthma Clinical Studies I. American Thoracic society, 2018. In Proceedings of the A1371- Thematic Poster Session Presentation at the American Thoracic Society International Conference, San Diego, CA, USA, 18–23 May 2018. [Google Scholar]
- Mattiuzzi, C.; Lippi, G. Worldwide asthma epidemiology: Insights from the Global Health Data Exchange database. Int. Forum Allergy Rhinol. 2020, 10, 75–80. [Google Scholar] [CrossRef]
- Senna, G.; Latorre, M.; Bugiani, M.; Caminati, M.; Heffler, E.; Morrone, D.; Paoletti, G.; Parronchi, P.; Puggioni, F.; Blasi, F.; et al. Sex differences in severe asthma: Results from severe asthma network in Italy-SANI. Allergy Asthma Immunol. Res. 2021, 13, 219–228. [Google Scholar] [CrossRef]
- Colombo, D.; Zagni, E.; Ferri, F.; Canonina, G.W. Gender differences in asthma perception and its impact on quality of life: A post hoc analysis of the PROXIMA (Patient Reported Outcomes and Xolair in the Management of Asthma) study. Allergy Asthma Clin. Immunol. 2019, 15, 65. [Google Scholar] [CrossRef]
- White, G.E.; Seaman, C.; Filios, M.S.; Mazurek, J.M.; Flattery, J.; Harrison, R.J.; Reilly, M.J.; Rosenman, K.D.; Lumia, M.E.; Stephens, A.C.; et al. Gender differences in work related asthma surveillance data from California, Massachusetts, Michigan and New Jearsey, 1993–2008. J. Asthma 2014, 51, 691–702. [Google Scholar] [CrossRef]
- Borges, R.C.; Alith, M.B.; Nascimento, O.A.; Jardim, J.R. Gender differences in the perception of asthma respiratory symptoms in five Latin American countries. J. Asthma 2022, 59, 1030–1040. [Google Scholar] [CrossRef]
- Vitulano, L.A. Psychosocial issues for children and adolescents with chronic illness: Self-esteem, school functioning and sports participation. Child. Adolesc. Psychiatr. Clin. N. Am. 2003, 12, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Probst-Hensch, N.; Keidel, D.; Dratva, J.; Bettschart, R.; Pons, M.; Burdet, L.; Bridevaux, P.O.; Schikowski, T.; Schindler, C.; et al. Gender differences in adult-onset asthma: Results from the Swiss SAPALDIA cohort study. Eur. Respir. J. 2015, 46, 1011–1020. [Google Scholar] [CrossRef]
- Eagan, T.M.; Brøgger, J.C.; Eide, G.E.; Bakke, P.S. The incidence of adult asthma: A review. Int. J. Tuberc. Lung Dis. 2005, 9, 603–612. [Google Scholar]
- Rönmark, E.; Lundbäck, B.; Jönsson, E.; Jonsson, A.C.; Lindström, M.; Sandström, T. Incidence of asthma in adults: Report from the Obstructive Lung Disease in Norther Swedish study. Allergy 1997, 52, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Lundbäck, B.; Rönmark, E.; Jönsson, E.; Larsson, K.; Sandström, T. Incidence of physician diagnosed asthma in adults—A real incidence or a result of increased awareness? Report from the Obstructive Lung Disease in Norther Swedish studies. Respir. Med. 2001, 95, 685–692. [Google Scholar] [CrossRef]
- Dong, G.H.; Chen, T.; Liu, M.M.; Wang, D.; Ma, Y.N.; Ren, W.H.; Lee, Y.L.; Zhao, Y.D.; He, Q.C. Gender differences and effect of air pollution on asthma in children with and without allergic predisposition: Northeast Chinese children health study. PLoS ONE 2011, 6, e22470. [Google Scholar] [CrossRef]
- Sit, G.; Varraso, R.; Fezeu, L.K.; Galan, P.; Orsi, F.; Da Silva, E.P.; Touvier, M.; Hercberg, S.; Paris, C.; Le Moual, N.; et al. Occupational exposure to Irritants and sensitizers, Asthma and Asthma control in the Nutrinet-Santé Cohort. J. Allergy Clin. Immunol. Pract. 2022, 10, 3220–3227.e7. [Google Scholar] [CrossRef] [PubMed]
- Howse, D.; Gautrin, D.; Neis, B.; Cartier, A. Gender and snow crab occupational asthma in Newfoundland and Labrador. Canada. Environ. Res. 2006, 101, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Doyen, V.; Gautrin, D.; Vandenplas, O.; Malo, J.L. Comparison of high and low molecular weight sensitizing agents causing occupational asthma: An evidence-based insight. Expert. Rev. Clin. Immunol. 2024, 20, 635–653. [Google Scholar] [CrossRef] [PubMed]
- Elliott, L.; Heederik, D.; Marshall, S.; Peden, D.; Loomis, D. Progression of self-reported symptoms in laboratory animal allergy. J. Allergy Clin. Immunol. 2005, 116, 127–132. [Google Scholar] [CrossRef]
- Arif, A.A.; Delclos, G.L. Association between cleaning-related chemicals and work-related asthma and asthma symptoms among healthcare professionals. Occup. Environ. Med. 2012, 69, 35–40. [Google Scholar] [CrossRef]
- Ederle, C.; Donnay, C.; Khayath, N.; Mielcarek, M.; de Blay, F. Asthma and cleaning: What’s new? Curr. Treat. Options Allergy 2018, 5, 29–40. [Google Scholar] [CrossRef]
- Quirce, S.; Barranco, P. Cleaning agents and asthma. J. Investig. Allergol. Clin. Immunol. 2010, 20, 542–550. [Google Scholar]
- Le Moual, N.; Varraso, R.; Siroux, V.; Dumas, O.; Nadif, R.; Pin, I.; Zock, J.P.; Kauffmann, F. Domestic use of cleaning sprays and asthma activity in females. Eur. Repir. J. 2012, 40, 1381–1389. [Google Scholar] [CrossRef]
- Melchior Gerster, F.; Brenna Hopf, N.; Pierre Wild, P.; Vernez, D. Airborne exposures to monoethanolamine, glycol ethers, and benzyl alcohol during professional cleaning: A pilot study. Ann. Occup. Hyg. 2014, 58, 846–859. [Google Scholar] [CrossRef]
- Dumas, O.; Siroux, V.; Luu, F.; Nadif, R.; Zock, J.P.; Kauffmann, F.; Le Moual, N. Cleaning and asthma characteristics in women. Am. J. Ind. Med. 2014, 57, 303–311. [Google Scholar] [CrossRef]
- Zock, J.P.; Plana, E.; Jarvis, D.; Antó, J.M.; Kromhout, H.; Kennedy, S.M.; Künzli, N.; Villani, S.; Olivieri, M.; Torén, K.; et al. The use of household cleaning sprays and adult asthma. Am. J. Respir. Crit. Care Med. 2007, 176, 735–741. [Google Scholar] [CrossRef]
- Vizcaya, D.; Mirabelli, M.C.; Gimeno, D.; Antó, J.M.; Delclos, G.I.; Rivera, M.; Orriols, R.; Arjona, L.; Burgos, F.; Zock, J.P. Cleaning products and short term respiratory effects among female cleaners with asthma. Occup. Enviorn. Med. 2015, 72, 757–763. [Google Scholar] [CrossRef]
- Brun, E. The Occupational Safety and Health of Cleaning Workers; EU-OSHA, Luxembourg/Office for Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Dumas, O.; Laurent, E.; Bousquet, J.; Metspalu, A.; Milani, L.; Kauffmann, F.; Le Moual, N. Occupational irritants and asthma: An Estonian cross-sectional study of 34 000 adults. Eur. Respir. J. 2014, 44, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Dumas, O.; Wiley, A.S.; Quinot, C.; Varraso, R.; Zock, J.P.; Henneberger, P.K.; Speizer, F.E.; Moual, N.; Camargo, C.A.J. Occupational exposure to disinfectants and asthma control in US nurses. Eur. Respir. J. 2017, 50, 1700237. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.; Ibrahim, D.A.; Hassan, T.H.; Abd-El-Azem, W.G. Prevalence and predictors of occupational asthma among workers in detergent and cleaning products industry and its impact on quality of life in El Asher Men Ramadan, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 33901–33908. [Google Scholar] [CrossRef] [PubMed]
- Fix, J.; Annesi-Maesano, I.; Baldi, I.; Boulanger, M.; Cheng, S.; Cortes, S.; Dalphin, J.C.; Dalvie, M.A.; Degano, B.; Douwes, J.; et al. Gender differences in respiratory health outcomes among farming cohorts around the globe: Findings from AGRICOH consortium. J. Agromed. 2021, 26, 97–108. [Google Scholar] [CrossRef]
- Okello, G.; Devereux, G.; Semple, S. Women and girls in resource poor countries experience much greater exposure to household air pollutants than men: Results from Uganda and Ethiopia. Environ. Int. 2018, 119, 429–437. [Google Scholar] [CrossRef]
- Svanes, O.; Bertelsen, R.J.; Lygre, S.H.L.; Carsin, A.E.; Antó, J.M.; Forsberg, B.; García-García, J.M.; Gullón, A.G.; Heinrich, J.; Holm, M.; et al. Cleaning at home and at work in relation to lung function decline and airway obstruction. Am. J. Respir. Crit. Care Med. 2018, 197, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, A.; Johnsen, R.; Holmen, J.; Gulsvik, A.; Bjermer, L. Cigarette smoking gives more respiratory symptoms among women than among men. The Nord-Trondelag Health Study (HUNT). J. Epidemiol. Community Health 2000, 54, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Aloui, A.; El Maalel, O.; Maoua, M.; Kacem, I.; Hani, Z.; Aroui, H.; El Guedri, S.; Brahem, A.; Kalboussi, H.; Chatti, S.; et al. Spéecificités de l’asthme professionnel chez les femmes et son interaction avec le statut hormonal. Rev. Pneumol. Clin. 2018, 74, 483–491. [Google Scholar] [CrossRef]
- Schwaiberger, D.; Karcz, M.; Menk, M.; Papadakos, P.J.; Dantoni, S.E. Respiratory Failure and Mechanical Ventilation in the Pregnant Patient. Crit. Care Clin. 2016, 32, 85–95. [Google Scholar] [CrossRef]
- Hsinet, J.; Dallagi, A.; Lâaroussi, R.; Ismail, S.; Khouja, N.; Baraketi, E.; Bousselmi, S.; Chemingui, S.; Aissa, I.; Benzarti Mezni, A.; et al. L’asthme professionnel et l’asthme aggravé par le travail. Quelles differences en termes de facteurs de risque et d’aptitude au travail? Rev. Française d’Allergologie 2022, 62, 462–469. [Google Scholar] [CrossRef]
- Robin, C.; Vongmany, N.; Dewitte, J.D.; Lodde, B.; Larabi, L.; Lucas, D. Asthmes en relation avec le travail chez la femme: Comparison aux données, asculines. Étude retrospective des données issues du Réseau National de Vigilance et de Prévention des Pathologies Professionnelles (RNV3P). Arch. Mal. Prof. L’Environ. 2022, 83, 181–192. [Google Scholar] [CrossRef]
Country/Region | Implementing Authority | Country’s Regulations | GHS Alignment Status |
---|---|---|---|
European Union | ECHA 1/European Commission | CLP 2 | GHS 3 aligned via CLP (EC No 1272/2008) |
United Kingdom | Health and Safety Executive | GB 4 CLP | GHS aligned (post-Brexit version of EU CLP) |
United States | OSHA 5 | HCS 6 | GHS aligned via HSC |
Canada | Health Canada | WHMIS 7 | GHS aligned via Hazardous Products Regulations |
Australia | Safe Work Australia | WHS 8 | GHS aligned |
China | MEM 9, SAMR 10 | Decree 591—Regulations on the Control over Safety of Hazardous Chemicals | Partially aligned—based on GHS principles with national adaptations |
Japan | MHLW 11; METI 12; MOE 13 | National GHS 3 Implementation Guidance | GHS 3 aligned |
Substances | Occupational Settings | Reference |
---|---|---|
Isocyanates (e.g., TDI 1, MDI 2, HDI 3) | Painting, construction, polyurethane foam production, automotive | [11,12,13] |
Acid anhydrides (e.g., phthalic anhydride, MHHPA 4, HHPA 5) | Plastics industry, epoxy resins, electronics | [14] |
Platinum salts | Metal refining, catalyst production, chemical laboratories | [15] |
Amine compounds (e.g., monoethanolamine, benzalkonium chloride), terpenes (e.g., pinene or d-limonene, eugenol) | Cleaning products | [16,17] |
Reactive dyes | Textile Industry | [18] |
Acrylates and methacrylates | Dentistry, 3D printing, prosthetics, artificial nails | [19,20] |
Active pharmaceutical ingredients (e.g., cephalosporins, penicillins) | Pharmaceutical production, healthcare | [21] |
Enzymes (e.g., subtilisin, amylase) | Food industry, detergents, pharmaceuticals | [22,23] |
Ref. | N of Workers | Gender/Sex Difference | Chemicals | Results | Notes |
---|---|---|---|---|---|
[84] | 4,468,677 with asthma | 75.9% of subjects with asthma were females | HmwS 1 and LmwS 2 | HmwS: OR = 1.53 (95% CI 1.18–2.00) LmwS: OR = 1.42 (95% CI 1.09–1.87) | Both type of sensitizers exposure led to higher onset of asthma, particularly in women |
[93] | 34,000 | 70% of subjects with asthma were females | Different chemicals in different workplaces | Health related occupation OR = 1.77 (95% CI 1.24–2.52) Cleaning activity OR = 2.07 (95% CI 1.25–3.42) | |
[98] | 4102 female nurses with asthma | 100% females (study on women) | Disinfectants (formaldehyde, glutaraldehyde…) | OR = 1.37 (95% CI 1.05–1.79) | The study was a retrospective survey on women with asthma and their occupational exposure |
[99] | 780 workers (186 women), 276 with asthma | Being female was calculated as a risk factor | Detergent and cleaning products | Female gender OR = 1.40 (95% CI 1.08–1.96) Manual working OR = 3.07 (95% CI 1.72–5.46) History of atopy OR = 1.59 (95% CI 1.09–2.33) | The female gender was considered as a specific risk factor for the onset of asthma in case of occupational exposure to sensitizers |
[76] | 8239 workers with asthma | 60% of sample were women | Cleaning agents (15.3%) Indoor pollutants (14.8%) Chemical mixture (20.3%) | Most severe forms of asthma 24.4% women vs. 13.5% men | Working activity identified: Social and medical care (28.7% women vs. 5.2% men) Clinical and technical positions (13.4% women vs. 1.6% men) Office based occupations (20.0% women vs. 4% men) |
[104] | 222 workers with asthma | 60.8% of samples were women (61.5% in case of textile sector) | Different chemicals in different workplaces | women with asthma had irregular menstrual cycles (46.2%). A worsening of asthma was noted in 58% of women during their perimenstrual period, 75% during pregnancy and 14% of women when taking hormonal contraceptives. | |
[106] | 232 workers with asthma | 50.9% of subjects were women | HmwS | Healthcare sector and textile industry are the most problematic | |
[107] | 8385 workers with asthma | 45% of subjects were women | Different chemicals in different workplaces (from detergents and disinfectants to isocyanates) | Women are more represented in healthcare sector, hospital and service to the person. Men are more represented in food industry and construction activity | Also, asthma from irritant chemicals were considered. Data from only sensitizer show a similar percentage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caporossi, L.; Di Renzi, S.; Partenzi, E.; Cavallo, D.; Tomao, P.; Poli, D. Sex- and Gender-Based Differences in Asthmatic Responses to Chemical Sensitizers, Particularly in Occupational Settings: A Scoping Review. Environments 2025, 12, 382. https://doi.org/10.3390/environments12100382
Caporossi L, Di Renzi S, Partenzi E, Cavallo D, Tomao P, Poli D. Sex- and Gender-Based Differences in Asthmatic Responses to Chemical Sensitizers, Particularly in Occupational Settings: A Scoping Review. Environments. 2025; 12(10):382. https://doi.org/10.3390/environments12100382
Chicago/Turabian StyleCaporossi, Lidia, Simona Di Renzi, Elisa Partenzi, Delia Cavallo, Paola Tomao, and Diana Poli. 2025. "Sex- and Gender-Based Differences in Asthmatic Responses to Chemical Sensitizers, Particularly in Occupational Settings: A Scoping Review" Environments 12, no. 10: 382. https://doi.org/10.3390/environments12100382
APA StyleCaporossi, L., Di Renzi, S., Partenzi, E., Cavallo, D., Tomao, P., & Poli, D. (2025). Sex- and Gender-Based Differences in Asthmatic Responses to Chemical Sensitizers, Particularly in Occupational Settings: A Scoping Review. Environments, 12(10), 382. https://doi.org/10.3390/environments12100382