Modeling and Measurements of Traffic-Related PM10, PM2.5, and NO2 Emissions Around the Roundabout and Three-Arm Intersection in the Urban Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements of Pollutants
2.3. Air Pollution Modeling
2.4. Traffic Microscopic Model
3. Results
3.1. Air Pollution Model for PM10 and NOx
3.2. Microscopic Model—Vehicle Speed and Travel Time
4. Discussion
5. Conclusions
- Converting the three-arm intersection to a roundabout significantly altered local air quality: increase in NO2 and decrease in PM10, PM2.5, PM2.5–10.
- NO2 rise was driven by lower vehicle speeds with more frequent acceleration and deceleration, increasing engine load and limiting dispersion.
- PM reductions resulted from smoother traffic, reduced resuspension of road dust, and road surface characteristics.
- The change of layout of the three-arm intersection to a roundabout resulted in a change in the way traffic passes through the intersection, reducing speed and increasing travel time.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA Air Quality Status Report 2025. Available online: https://www.eea.europa.eu/en/analysis/publications/air-quality-status-report-2025 (accessed on 8 September 2025).
- Bañuelos-Gimeno, J.; Sobrino, N.; Arce-Ruiz, R. Initial Insights into Teleworking’s Effect on Air Quality in Madrid City. Environments 2024, 11, 204. [Google Scholar] [CrossRef]
- Matara, C.; Osano, S.; Yusuf, A.; Akech, E. An Assessment of the Contribution of Vehicular Traffic to Ambient Air Quality—A Case Study of Nairobi Expressway Corridor. Civ. Environ. Eng. 2024, 20, 54–67. [Google Scholar] [CrossRef]
- Matara, C.; Osano, S.; Yusuf, A.; Akech, E. Public perceptions on exposure to traffic-related air pollution along nairobi expressway corridor. Civ. Environ. Eng. 2025, 28, 393–408. [Google Scholar] [CrossRef]
- EEA. Decarbonising Road Transport: The Role of Vehicles, Fuels and Transport Demand; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Brimblecombe, P.; Chu, M.; Liu, C.H.; Fu, Y.; Wei, P.; Ning, Z. Roadside NO2/NOx and Primary NO2 from Individual Vehicles. Atmos. Environ. 2023, 295, 119562. [Google Scholar] [CrossRef]
- Krecl, P.; Harrison, R.M.; Johansson, C.; Targino, A.C.; Beddows, D.C.; Ellermann, T.; Lara, C.; Ketzel, M. Long-Term Trends in Nitrogen Oxides Concentrations and on-Road Vehicle Emission Factors in Copenhagen, London and Stockholm. Environ. Pollut. 2021, 290, 118105. [Google Scholar] [CrossRef]
- Hot, J.; Fériot, C.; Lenard, E.; Ringot, E. NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment. Environments 2024, 11, 166. [Google Scholar] [CrossRef]
- Holubcik, M.; Jandacka, J.; Nosek, R.; Baranski, J. Particulate Matter Production of Small Heat Source Depending on the Bark Content in Wood Pellets. Emiss. Control Sci. Technol. 2018, 4, 33–39. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Nicolanska, M.; Holubcik, M. Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire 2024, 7, 150. [Google Scholar] [CrossRef]
- Renna, S.; Lunghi, J.; Granella, F.; Malpede, M.; Di Simine, D. Impacts of Agriculture on PM10 Pollution and Human Health in the Lombardy Region in Italy. Front. Environ. Sci. 2024, 12, 1369678. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Cibula, R. Concentration and Inorganic Elemental Analysis of Particulate Matter in a Road Tunnel Environment (Žilina, Slovakia): Contribution of Non-Exhaust Sources. Front. Environ. Sci. 2022, 10, 952577. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D. Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia. Int. J. Environ. Res. Public Health 2021, 18, 10191. [Google Scholar] [CrossRef]
- OECD. Non-Exhaust Particulate Emissions from Road Transport; OECD: Paris, France, 2020; ISBN 9789264452442. [Google Scholar]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Polukarova, M.; Gaggini, E.L.; Rødland, E.; Sokolova, E.; Bondelind, M.; Gustafsson, M.; Strömvall, A.M.; Andersson-Sköld, Y. Tyre Wear Particles and Metals in Highway Roadside Ditches: Occurrence and Potential Transport Pathways. Environ. Pollut. 2025, 372, 125971. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, M.A.; Marchitto, L.; Giuzio, R.; Casadei, S.; Rossi, T.; Lixi, S.; Faedo, D. Non-Exhaust Particulate Emissions from Road Transport Vehicles. Energies 2024, 17, 4079. [Google Scholar] [CrossRef]
- Grytting, V.S.; Kirkerød, E.; Skuland, T.; Refsnes, M.; Låg, M.; Sadiktsis, I.; Gustafsson, M.; Svensson, N.; Øvrevik, J. Pro-Inflammatory Effects of Road Wear Particles and Diesel Exhaust Particles in Bronchial Epithelial Cells and Macrophages. Environ. Res. 2025, 283, 122134. [Google Scholar] [CrossRef]
- Hänninen, O.; Lehtomäki, H.; Korhonen, A.; Kokkola, T.; Hartikainen, A.; Sippula, O.; Haverinen-Shaughnessy, U.; Leviäkangas, P.; Rumrich, I.K. Health Risks Related to Air Pollution by Transport Categories and Vehicle Types: Comparison by Mortality Indicators. Environ. Int. 2025, 202, 109657. [Google Scholar] [CrossRef]
- Mansilla, G.; Barja, B.; Godoi, M.A.; Cid-Agüero, P.; Gorena, T.; Cereceda-Balic, F. Chemical Characterization of Atmospheric Aerosols in Monte Fenton, Punta Arenas, Chilean Southern Patagonia. Atmosphere 2023, 14, 1084. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.X.; Su, H.; Liu, S.X.; Zhou, J.M.; Zhao, Z.Z.; Wang, Q.Y.; Prévôt, A.S.H.; Cao, J.J. Effects of Aerosol Water Content on the Formation of Secondary Inorganic Aerosol during a Winter Heavy PM2.5 Pollution Episode in Xi’an, China. Atmos. Environ. 2021, 252, 118304. [Google Scholar] [CrossRef]
- Fernandes, P.; Coelho, M.C. Can Turbo-Roundabouts and Restricted Crossing U-Turn Be Effective Solutions for Urban Three-Leg Intersections? Sustain. Cities Soc. 2023, 96, 104672. [Google Scholar] [CrossRef]
- Giuffrè, T.; Canale, A. Road Intersections Design and Environmental Performances A New Operational Analysis Allowed by Traffic Microsimulation. J. Multidiscip. Eng. Sci. Technol. 2016, 3, 6050–6059. [Google Scholar]
- Gastaldi, M.; Meneguzzer, C.; Rossi, R.; Lucia, L.D.; Gecchele, G. Evaluation of Air Pollution Impacts of a Signal Control to Roundabout Conversion Using Microsimulation. Transp. Res. Procedia 2014, 3, 1031–1040. [Google Scholar] [CrossRef]
- Šarić, A.; Sulejmanović, S.; Albinović, S.; Pozder, M.; Ljevo, Ž. The Role of Intersection Geometry in Urban Air Pollution Management. Sustainability 2023, 15, 5234. [Google Scholar] [CrossRef]
- Jandacka, D.; Cingel, A.; Brna, M.; Cingel, M. Environmental benefits of turbo roundabout: A case study of noise and air pollution modelling in the village of Košťany nad Turcom, Slovakia. Civ. Environ. Eng. 2024, 20, 1303–1319. [Google Scholar] [CrossRef]
- Lyu, P.; Wang, P.; Liu, Y.; Wang, Y. Review of the Studies on Emission Evaluation Approaches for Operating Vehicles. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 493–509. [Google Scholar] [CrossRef]
- Hass-Klau, C. An Illustrated Guide to Traffic Calming: The Future Way of Managing Traffic; Friends of the Earth: London, UK, 1990; p. 19. [Google Scholar]
- NZ Transport Agency Waka Kotahi. Pedestrian Network Guidance-3. Design–3.5. Intersections; NZ Transport Agency Waka Kotahi: Wellington, New Zealand, 2025. Available online: https://www.nzta.govt.nz/assets/Walking-Cycling-and-Public-Transport/docs/pedestrian-network-guidance/docs/3.5-intersections-feb-2025.pdf (accessed on 13 October 2025).
- Coelho, M.C.; Farias, T.L.; Rouphail, N.M. Effect of Roundabout Operations on Pollutant Emissions. Transp. Res. D Transp. Environ. 2006, 11, 333–343. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Kovalova, D. Concentrations of Traffic Related Pollutants in the Vicinity of Different Types of Urban Crossroads. Commun.-Sci. Lett. Univ. Zilina 2019, 21, 49–58. [Google Scholar] [CrossRef]
- Jandacka, D.; Decky, M.; Hodasova, K.; Pisca, P.; Briliak, D. Influence of the Urban Intersection Reconstruction on the Reduction of Road Traffic Noise Pollution. Appl. Sci. 2022, 12, 8878. [Google Scholar] [CrossRef]
- Assimakopoulos, V.; Fameli, K.-M.; Šedivá, T.; Štefánik, D. The Seasonality of PM and NO2 Concentrations in Slovakia and a Comparison with Chemical-Transport Model. Atmosphere 2024, 15, 1203. [Google Scholar] [CrossRef]
- Vandeninden, B.; Devleesschauwer, B.; Otavova, M.; Vanpoucke, C.; Hooyberghs, H.; Faes, C.; Bouland, C.; De Clercq, E.M. Implications of Spatial and Seasonal Air Pollution Patterns, Socioeconomic Disparities, and 15-Minute Communities for Achieving WHO Air Quality Guidelines. Sci. Rep. 2025, 15, 13683. [Google Scholar] [CrossRef]
- Pio, C.A.; Cardoso, J.G.; Cerqueira, M.A.; Calvo, A.; Nunes, T.V.; Alves, C.A.; Custódio, D.; Almeida, S.M.; Almeida-Silva, M. Seasonal Variability of Aerosol Concentration and Size Distribution in Cape Verde Using a Continuous Aerosol Optical Spectrometer. Front. Environ. Sci. 2014, 2, 15. [Google Scholar] [CrossRef]
- DataKustik. GmbH Manual for CadnaA-Option APL-Calculation of Air Pollutants; DataKustik: Gilching, Germany, 2017. [Google Scholar]
- Janicke Consulting. AUSTAL2000 Program Documentation of Version 2.6; Janicke Consulting: Dunum, Germany, 2014. [Google Scholar]
- Federal Ministry for the Environment, Climate Action, Nature Conservation and Nuclear Safety. Technical Instructions on Air Quality Control–TA Luft; Federal Ministry for the Environment, Climate Action, Nature Conservation and Nuclear Safety: Bonn, Germany, 2002.
- Verein Deutscher Ingenieure e.V. Verein Deutscher Ingenieure Atmospheric Dispersion Models Particle Model VDI 3945 Blatt 3/Part 3; Verein Deutscher Ingenieure e.V.: Düsseldorf, Germany, 2020. [Google Scholar]
- Kumar, P.; Merzouki, R.; Ould Bouamama, B.; Haffaf, H. Microscopic Traffic Dynamics and Platoon Control Based on Bond Graph Modeling. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 2349–2354. [Google Scholar] [CrossRef]
- Kniz, A.; Kocianova, A. Analysis in the Field of Volume-Delay Function Research. Transp. Res. Procedia 2023, 74, 1022–1029. [Google Scholar] [CrossRef]
- Jakubec, M.; Cingel, M.; Lieskovská, E.; Drliciak, M. Integrating Neural Networks for Automated Video Analysis of Traffic Flow Routing and Composition at Intersections. Sustainability 2025, 17, 2150. [Google Scholar] [CrossRef]
- Kociánová, A.; Kníž, A.; Pisca, P. Comparative analysis of traffic speed data on two-lane rural road segments: Radar technology, google maps api, and license plate recognition. Civ. Environ. Eng. 2025, 28, 698–711. [Google Scholar] [CrossRef]
- Żak, M.; Melaniuk-Wolny, E.; Widziewicz, K. The Exposure of Pedestrians, Drivers and Road Transport Passengers to Nitrogen Dioxide. Atmos. Pollut. Res. 2017, 8, 781–790. [Google Scholar] [CrossRef]
- Lozhkina, O.V.; Lozhkin, V.N. Estimation of Nitrogen Oxides Emissions from Petrol and Diesel Passenger Cars by Means of On-Board Monitoring: Effect of Vehicle Speed, Vehicle Technology, Engine Type on Emission Rates. Transp. Res. D Transp. Environ. 2016, 47, 251–264. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, J.Y.; Yoo, B.O.; Song, J.H. Effects of Engine Load and Ternary Mixture on Combustion and Emissions from a Diesel Engine Using Later Injection Timing. Sustainability 2023, 15, 1391. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J.; Li, T.; Guan, P.; Liu, S.; Wei, H.; Zhou, L. Research on NOx Emissions Testing and Optimization Strategies for Diesel Engines Under Low-Load Cycles. Atmosphere 2025, 16, 190. [Google Scholar] [CrossRef]
- Yli-Tuomi, T.; Aarnio, P.; Pirjola, L.; Mäkelä, T.; Hillamo, R.; Jantunen, M. Emissions of Fine Particles, NOx, and CO from on-Road Vehicles in Finland. Atmos. Environ. 2005, 39, 6696–6706. [Google Scholar] [CrossRef]
- Shridhar Bokare, P.; Kumar Maurya, A. Study of effect of speed, acceleration and deceleration of small petrol car on its tail pipe emission. Int. J. Traffic Transp. Eng. 2013, 3, 465–478. [Google Scholar] [CrossRef]
- Bagheri, E.; Masih-Tehrani, M.; Azadi, M.; Moosavian, A.; Sayegh, S.; Hakimollahi, M. Unveiling the Impact of Date-Specific Analytics on Vehicle Fuel Consumption and Emissions: A Case Study of Shiraz City. Heliyon 2024, 10, e36713. [Google Scholar] [CrossRef]
- Pečman, J.; Šarkan, B.; Ližbetinová, L.; Lupták, V.; Loman, M.; Bartuška, L. Impact of Acceleration Style on Vehicle Emissions and Perspectives for Improvement through Transportation Engineering Solutions. Arch. Motoryz. 2024, 104, 48–62. [Google Scholar] [CrossRef]
- Rhimi, B.; Padervand, M.; Jouini, H.; Ghasemi, S.; Bahnemann, D.W.; Wang, C. Recent Progress in NOx Photocatalytic Removal: Surface/Interface Engineering and Mechanistic Understanding. J. Environ. Chem. Eng. 2022, 10, 108566. [Google Scholar] [CrossRef]
- Alshetty, D.; Nagendra, S.M.S. Impact of Vehicular Movement on Road Dust Resuspension and Spatiotemporal Distribution of Particulate Matter during Construction Activities. Atmos. Pollut. Res. 2022, 13, 101256. [Google Scholar] [CrossRef]
- Bouh, H.A.; Bounakhla, M.; Benyaich, F.; Noack, Y.; Tahri, M.; Foudeil, S. Seasonal Variation of Mass Concentration and Chemical Composition of PM2.5 and PM10, Source Identification and Human Health Risk Assessment in Meknes City in Morocco. Aerosol. Sci. Eng. 2023, 7, 151–168. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Lawrence, J.; Martins, M.A.G.; Ferguson, S.T.; Wolfson, J.M.; Harrison, R.M.; Koutrakis, P. Quantifying Factors Affecting Contributions of Roadway Exhaust and Non-Exhaust Emissions to Ambient PM10–2.5 and PM2.5–0.2 Particles. Sci. Total Environ. 2022, 835, 155368. [Google Scholar] [CrossRef]
- Svensson, N.; Lundberg, J.; Janhäll, S.; Kulovuori, S.; Gustafsson, M. Effects of a Porous Asphalt Pavement on Dust Suspension and PM10 Concentration. Transp. Res. D Transp. Environ. 2023, 123, 103921. [Google Scholar] [CrossRef]
- Casotti Rienda, I.; Alves, C.A.; Nunes, T.; Soares, M.; Amato, F.; Sánchez de la Campa, A.; Kováts, N.; Hubai, K.; Teke, G. PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity. Atmosphere 2023, 14, 305. [Google Scholar] [CrossRef]
- Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-Suspension of Road Dust: Contribution, Assessment and Control through Dust Suppressants—A Review. Int. J. Environ. Sci. Technol. 2019, 16, 1717–1728. [Google Scholar] [CrossRef]
- Casotti Rienda, I.; Alves, C.A. Road Dust Resuspension: A Review. Atmos. Res. 2021, 261, 105740. [Google Scholar] [CrossRef]
- Yang, J.; Shi, L.; Lee, J.; Ryu, I. Spatiotemporal Prediction of Particulate Matter Concentration Based on Traffic and Meteorological Data. Transp. Res. D Transp. Environ. 2024, 127, 104070. [Google Scholar] [CrossRef]
- Bamola, S.; Goswami, G.; Dewan, S.; Goyal, I.; Agarwal, M.; Dhir, A.; Lakhani, A. Characterising Temporal Variability of PM2.5/PM10 Ratio and Its Correlation with Meteorological Variables at a Sub-Urban Site in the Taj City. Urban Clim. 2024, 53, 101763. [Google Scholar] [CrossRef]
- Ling, S.; Jin, S.; Wang, H.; Zhang, Z.; Feng, Y. Transportation Infrastructure Upgrading and Green Development Efficiency: Empirical Analysis with Double Machine Learning Method. J. Environ. Manag. 2024, 358, 120922. [Google Scholar] [CrossRef] [PubMed]
- Sekadakis, M.; Sousouni, M.I.; Garefalakis, T.; Oikonomou, M.G.; Ziakopoulos, A.; Yannis, G. Evaluating the Environmental and Safety Impacts of Eco-Driving in Urban and Highway Environments. Sustainability 2025, 17, 2762. [Google Scholar] [CrossRef]
- Khreis, H.; Sanchez, K.A.; Foster, M.; Burns, J.; Nieuwenhuijsen, M.J.; Jaikumar, R.; Ramani, T.; Zietsman, J. Urban Policy Interventions to Reduce Traffic-Related Emissions and Air Pollution: A Systematic Evidence Map. Environ. Int. 2023, 172, 107805. [Google Scholar] [CrossRef]
- Šimaitis, J.; Lupton, R.; Vagg, C.; Butnar, I.; Sacchi, R.; Allen, S. Battery Electric Vehicles Show the Lowest Carbon Footprints among Passenger Cars across 1.5–3.0 °C Energy Decarbonisation Pathways. Commun. Earth Environ. 2025, 6, 476. [Google Scholar] [CrossRef]
- Smit, R.; Ayala, A.; Kadijk, G.; Buekenhoudt, P. Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating. Sustainability 2025, 17, 5362. [Google Scholar] [CrossRef]
- Seo, J.H.; Shin, Y.; Song, I.-g.; Lim, J.; Ok, Y.S.; Weon, S. Atmospheric Microplastics: Challenges in Site- and Target-Specific Measurements. TrAC Trends Anal. Chem. 2024, 178, 117859. [Google Scholar] [CrossRef]
- Draper, E.L.; Whyatt, J.D.; Taylor, R.S.; Metcalfe, S.E. Estimating background concentrations of PM2.5 for urban air quality modelling in a data poor environment. Atmos. Environ. 2023, 314, 120107. [Google Scholar] [CrossRef]
Total | Entry A | Entry B | Entry C |
---|---|---|---|
Entry A | 0 (0%) | 346 (5%) | 267 (6%) |
Entry B | 290 (5%) | 0 (0%) | 132 (6%) |
Entry C | 175 (6%) | 109 (7%) | 0 (0%) |
Intersection Type | The Average Concentration of Air Pollutants ± Standard Deviation [µg/m3] | ||||||
NO | NO2 | NOx | PM10 | PM2.5–10 | PM2.5 | PM1 | |
Three-arm | 10.6 ± 9.7 | 17.9 ± 12.2 | 33.9 ± 24.8 | 30.4 ± 13.4 | 10.2 ± 11.2 | 20.3 ± 3.6 | 15.6 ± 2.3 |
Roundabout | 26.7 ± 20.9 | 43.5 ± 26.0 | 84.4 ± 53.0 | 21.3 ± 6.2 | 5.6 ± 3.6 | 15.7 ± 3.6 | 12.5 ± 2.5 |
Change in average value [%] * | 151.2 | 143.3 | 149.4 | −30.1 | −45.1 | −22.8 | −19.9 |
The average value of meteorological conditions ± standard deviation | Traffic volume [veh/24 h] | ||||||
Wind Velocity [m/s] | Wind Direction [deg] | Pressure [hPa] | Temperature [°C] | Humidity [%] | |||
Three-arm | 1.27 ± 0.63 | 157.4 ± 44.9 | 977.2 ± 1.5 | 19.8 ± 5.3 | 68.8 ± 20.0 | 13,910 | |
Roundabout | 1.40 ± 0.82 | 170.4 ± 68.5 | 968.8 ± 4.4 | 20.7 ± 4.7 | 63.7 ± 18.7 | 15,036 | |
Change in average value [%] * | 10.1 | 8.3 | −0.9 | 4.6 | −7.4 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandacka, D.; Drliciak, M.; Cingel, M.; Brna, M. Modeling and Measurements of Traffic-Related PM10, PM2.5, and NO2 Emissions Around the Roundabout and Three-Arm Intersection in the Urban Environment. Environments 2025, 12, 378. https://doi.org/10.3390/environments12100378
Jandacka D, Drliciak M, Cingel M, Brna M. Modeling and Measurements of Traffic-Related PM10, PM2.5, and NO2 Emissions Around the Roundabout and Three-Arm Intersection in the Urban Environment. Environments. 2025; 12(10):378. https://doi.org/10.3390/environments12100378
Chicago/Turabian StyleJandacka, Dusan, Marek Drliciak, Michal Cingel, and Matej Brna. 2025. "Modeling and Measurements of Traffic-Related PM10, PM2.5, and NO2 Emissions Around the Roundabout and Three-Arm Intersection in the Urban Environment" Environments 12, no. 10: 378. https://doi.org/10.3390/environments12100378
APA StyleJandacka, D., Drliciak, M., Cingel, M., & Brna, M. (2025). Modeling and Measurements of Traffic-Related PM10, PM2.5, and NO2 Emissions Around the Roundabout and Three-Arm Intersection in the Urban Environment. Environments, 12(10), 378. https://doi.org/10.3390/environments12100378