Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Measurement of Major Anions in Rainwater Samples
2.3. Extraction of Rainwater Samples
2.4. Targeted and Non-Targeted Characterization of Organic Compounds
2.5. Statistical Analysis
2.6. Quality Assurance and Quality Control (QA/QC)
2.7. Hazard Classification Based on Persistence, Bioaccumulation, and Toxicity (PBT)
3. Results and Discussion
3.1. Anion Composition and Variability in Rainwater
3.2. Profiles of Organic Contaminants Detected in Rainwater
3.2.1. Organophosphate Pesticides
3.2.2. Triazine and Phenoxy Herbicides
3.2.3. Organochlorine Pesticides (OCPs)
3.2.4. Polycyclic Aromatic Hydrocarbons (PAHs)
3.3. Non-Targeted Identification and Environmental Hazard Assessment of Organic Compounds in Rainwater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Lopez-Aparicio, S.; Grythe, H.; Drabicki, A.; Chwastek, K.; Toboła, K.; Górska-Niemas, L.; Kierpiec, U.; Markelj, M.; Strużewska, J.; Kud, B.; et al. Environmental sustainability of urban expansion: Implications for transport emissions, air pollution, and city growth. Environ. Int. 2025, 196, 109310. [Google Scholar] [CrossRef]
- Pongpiachan, S.; Tipmanee, D.; Khumsup, C.; Hirunyatrakul, P.; Hashmi, M.Z.; Poshyachinda, S. Size-segregated analysis of PAHs in Urban air: Source apportionment and health risk assessment in an Urban canal-adjacent environment. PLoS ONE 2025, 20, e0320405. [Google Scholar]
- Hwang, H.M.; Fiala, M.J.; Wade, T.L.; Park, D. Review of pollutants in urban road dust: Part II. Organic contaminants from vehicles and road management. Int. J. Urban Sci. 2019, 23, 445–463. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, R. Urban areas and air pollution: Causes, concerns, and mitigation. In Geospatial Analytics for Environmental Pollution Modeling: Analysis, Control and Management; Springer Nature: Cham, Switzerland, 2023; pp. 163–185. [Google Scholar]
- Ott, L.M. Ozone Air Pollution and Stage-of-Change Status for Alternative Transportation Usage Among College Students. Doctoral Dissertation, Texas Woman’s University, Denton, TX, USA, 2023. Available online: https://www.proquest.com/docview/305235366 (accessed on 24 September 2025).
- Mao, S.; Liu, Z.; Zeng, J.; Wu, Q.; Ge, X. Unveiling the urban rainfall chemistry in summer frequent-rainy area: Variation and source identification of air pollutants based on two rainy seasons’ observation. J. Environ. Manag. 2025, 391, 126439. [Google Scholar] [CrossRef]
- Safi, Z.; Miyittah, M.; Offei, B.K.; Amenorpe, G. A systematic review of wet and dry deposition of reactive nitrogen, sulfur, and heavy metals: Ecosystem contamination and food chain disruption in Ghana. Environ. Sci. Atmos. 2025, 5, 756–784. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Xiao, X.; Li, Y.; Gao, X.; Wang, D.; Qu, R. Rainwater chemical evolution driven by extreme rainfall in megacity: Implication for the urban air pollution source identification. J. Clean. Prod. 2022, 372, 133732. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Mouli, P.C.; Mohan, S.V.; Reddy, S.J. Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition. Atmos. Environ. 2005, 39, 999–1008. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Qu, R. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Sci. Total Environ. 2023, 856, 159234. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Shi, Z.B.; Cai, Y.; He, K.; Ma, Y.; Duan, F.; Okuda, T.; Tanaka, S.; Chen, G. Five-year record of atmospheric precipitation chemistry in urban Beijing, China. Atmos. Chem. Phys. 2012, 12, 2025–2035. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, X.; Huang, C.; Yang, Y.; Yang, H.; Zhang, J.; Huang, T. High atmospheric wet nitrogen deposition and major sources in two cities of Yangtze River Delta: Combustion-related NH3 and non-fossil fuel NOx. Sci. Total Environ. 2022, 806, 150502. [Google Scholar] [CrossRef]
- He, J.; Balasubramanian, R. Semi-volatile organic compounds (SVOCs) in ambient air and rainwater in a tropical environment: Concentrations and temporal and seasonal trends. Chemosphere 2010, 78, 742–751. [Google Scholar] [CrossRef]
- Rianawati, E.L. Occurrence and Distribution of PAHs in Rainwater and Urban Runoff. Master Dissertation, National University of Singapore, Singapore, 2007. [Google Scholar]
- Fuchte, H. Pollution in Urban Environments: Levels and Profiles of Traffic and Other Organic Contaminants in Street Run-Off and Atmospheric Particles. Doctoral Dissertation, RWTH Aachen University, Aachen, Germany, 2022. [Google Scholar]
- Kilic, S.; Kilic, M. Determination of organic pollutants and pollution sources in sequentially collected rainwater samples in Isparta Province. Environ. Monit. Assess. 2025, 197, 463. [Google Scholar] [CrossRef]
- Asif, M.R.; Ye, B.; Ye, C. Acid sulfate soils: Formation, identification, environmental impacts, and sustainable remediation practices. Environ. Monit. Assess. 2025, 197, 484. [Google Scholar] [CrossRef]
- Liggio, J.; Makar, P.; Li, S.M.; Hayden, K.; Darlington, A.; Moussa, S.; Wren, S.; Staebler, R.; Wentzell, J.; Wheeler, M.; et al. Organic carbon dry deposition outpaces atmospheric processing with unaccounted implications for air quality and freshwater ecosystems. Sci. Adv. 2025, 11, eadr0259. [Google Scholar] [CrossRef]
- Duttagupta, S.; Mukherjee, A.; Bhattacharya, A.; Bhattacharya, J. Wide exposure of persistent organic pollutants (PoPs) in natural waters and sediments of the densely populated Western Bengal basin, India. Sci. Total Environ. 2020, 717, 137187. [Google Scholar] [CrossRef]
- Stamm, G.; Basapuram, G.; Duttagupta, S.; Dutta, A. Anion-mediated pathways in organophosphate degradation in the Oconee River watershed in Georgia. Emerg. Contam. 2025, 11, 100542. [Google Scholar] [CrossRef]
- Basapuram, G.; Duttagupta, S.; Dutta, A. Detection and screening of organic contaminants in A riverine system of Georgia using non-targeted analysis. Environments 2024, 11, 89. [Google Scholar] [CrossRef]
- Duttagupta, S.; Basapuram, G.; Cottrell, W.; Dutta, A. Landuse and land cover shape organic contaminants distribution in the Oconee River watershed in Georgia. npj Emerg. Contam. 2025, 1, 3. [Google Scholar] [CrossRef]
- Babayemi, J.O.; Ogundiran, M.B.; Osibanjo, O. Overview of environmental hazards and health effects of pollution in developing countries: A case study of Nigeria. Environ. Qual. Manag. 2016, 26, 51–71. [Google Scholar] [CrossRef]
- Pillay, K.; Duttagupta, S.; Basapuram, G.; Dutta, A. Draft genome sequence of Rossellomorea marisflavi DL-A, a malathion-degrading bacterium. Microbiol. Resour. Announc. 2025, 14, e00220-25. [Google Scholar] [CrossRef]
- Kolde, R.; Kolde, M.R. Package ‘pheatmap’. R Package 2015, 1, 790. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). Weather and Climate Resources. Available online: https://www.noaa.gov/tools-and-resources/weather-and-climate-resources (accessed on 30 July 2025).
- Wu, Z.; Lin, T.; Hu, L.; Guo, T.; Guo, Z. Atmospheric legacy organochlorine pesticides and their recent exchange dynamics in the Northwest Pacific Ocean. Sci. Total Environ. 2020, 1, 138408. [Google Scholar] [CrossRef]
- Cabrerizo, A.; Muir, D.C.; De Silva, A.O.; Wang, X.; Lamoureux, S.F.; Lafrenière, M.J. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the high Arctic: Sorption and secondary sources. Environ. Sci. Technol. 2018, 52, 14187–14197. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency (ECHA). Understanding REACH. Registering, Evaluating, Authorising and Restricting Chemicals under REACH. Available online: https://echa.europa.eu/regulations/reach/understanding-reach (accessed on 30 July 2025).
- Matthies, M.; Solomon, K.; Vighi, M.; Gilman, A.; Tarazona, J.V. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environ. Sci. Process. Impacts 2016, 18, 1114–1128. [Google Scholar] [CrossRef] [PubMed]
- Pennington, M.R. Assessment of Contamination Associated with Tobacco Product Waste Within the Kendall-Frost Reserve. Masters Dissertation, San Diego State University, San Diego, CA, USA, 2022. [Google Scholar]
- Waaijers, S.L.; Kong, D.; Hendriks, H.S.; de Wit, C.A.; Cousins, I.T.; Westerink, R.H.; Leonards, P.E.; Kraak, M.H.; Admiraal, W.; de Voogt, P.; et al. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants. Rev. Environ. Contam. Toxicol. 2012, 222, 1–71. [Google Scholar]
- Bamal, D.; Duhan, A.; Pal, A.; Beniwal, R.K.; Kumawat, P.; Dhanda, S.; Goyat, A.; Hooda, V.S.; Yadav, R. Herbicide risks to non-target species and the environment: A review. Environ. Chem. Lett. 2024, 22, 2977–3032. [Google Scholar] [CrossRef]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Barber, L.B.; Burden, D.S.; Foreman, W.T.; Forshay, K.J.; Furlong, E.T.; Groves, J.F.; Hladik, M.L.; et al. Urban stormwater: An overlooked pathway of extensive mixed contaminants to surface and groundwaters in the United States. Environ. Sci. Technol. 2019, 53, 10070–10081. [Google Scholar] [CrossRef]
- Yang, Y.; Vance, M.; Tou, F.; Tiwari, A.; Liu, M.; Hochella, M.F. Nanoparticles in road dust from impervious urban surfaces: Distribution, identification, and environmental implications. Environ. Sci. Nano 2016, 3, 534–544. [Google Scholar] [CrossRef]
- Alkan, N.; Alkan, A.; Salih, B.; Yilmaz, C.; Üçüncü, O. Environmental distributions of phthalates in sediments affected by municipal wastewater in the South-eastern Black Sea. Chemosphere 2025, 377, 144364. [Google Scholar] [CrossRef]
- Qin, R.X.; Fu, C.Z.; Zhuo, L.; Zhang, S.Y.; Cai, F.S.; Wu, K.Y.; Yan, X.; Luo, W.K.; Li, M.; Shi, Y.G.; et al. Estimating wastewater emissions and environmental levels of typical organic contaminants based on regionalized modelling. Environ. Res. 2025, 270, 120965. [Google Scholar] [CrossRef]
- Salve, P.R.; Maurya, A.; Wate, S.R.; Devotta, S. Chemical composition of major ions in rainwater. Bull. Environ. Contam. Toxicol. 2008, 80, 242–246. [Google Scholar] [CrossRef]
- Cottrell, B.A.; Gonsior, M.; Isabelle, L.M.; Luo, W.; Perraud, V.; McIntire, T.M.; Pankow, J.F.; Schmitt-Kopplin, P.; Cooper, W.J.; Simpson, A.J. A regional study of the seasonal variation in the molecular composition of rainwater. Atmos. Environ. 2013, 77, 588–597. [Google Scholar] [CrossRef]
- Wang, H.; Han, G. Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos. Res. 2011, 99, 190–196. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Liu, C.; Jing, R.; Lu, Q. Spatial and Temporal Variations in Rainwater Chemistry in a Rapid Urbanization Area of Shenzhen, China. Atmosphere 2024, 15, 1536. [Google Scholar] [CrossRef]
- Keresztesi, Á.; Nita, I.A.; Boga, R.; Birsan, M.V.; Bodor, Z.; Szép, R. Spatial and long-term analysis of rainwater chemistry over the conterminous United States. Environ. Res. 2020, 188, 109872. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.A.; Santos, V.S.; Vizioli, B.C.; Ferreira, B.S.; Montagner, C.C. Pesticides in rainwater: A two-year occurrence study in an unexplored environmental compartment in regions with different land use in the State of São Paulo–Brazil. Chemosphere 2025, 372, 144093. [Google Scholar] [CrossRef]
- Zamora, C.; Kratzer, C.R.; Majewski, M.S.; Knifong, D.L. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River Basin, California. Water-Resour. Investig. Rep. 2003, 3, 4091. [Google Scholar]
- World Health Organization. Nitrate and Nitrite in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/nitrate-nitrite-background-document.pdf (accessed on 4 September 2025).
Date (mm/dd/yyyy) | 2/12/2025 | 2/15/2025 | 3/10/2025 | 3/31/2025 | 4/6/2025 | 4/7/2025 | Tap Water |
---|---|---|---|---|---|---|---|
Precipitation (inch) | 1.95 | 0.220 | 0.870 | 0.540 | 2.050 | 0.870 | |
Nitrate (mg/L) | 4.100 | 2.800 | 3.600 | 2.700 | 4.300 | 2.000 | 0.500 |
Sulfate (mg/L) | 25.000 | 17.000 | 21.000 | 20.000 | 26.000 | 18.000 | 11.000 |
Phosphate (mg/L) | 2.500 | 2.500 | 2.500 | 2.400 | 3.100 | 2.600 | 0.870 |
Malathion | 20.415 | 10.288 | 14.093 | 12.161 | 21.000 | 14.093 | 2.073 |
Chlorpyrifos | 13.610 | 6.859 | 9.395 | 8.107 | 14.000 | 9.395 | 2.185 |
Diazinon | 10.888 | 5.487 | 7.516 | 6.486 | 11.200 | 7.516 | 0.805 |
Atrazine | 40.829 | 20.576 | 28.185 | 24.322 | 42.000 | 28.185 | 7.820 |
MCPA (2-methyl-4-chlorophenoxyacetic acid) | 19.054 | 9.602 | 13.153 | 11.350 | 19.600 | 13.153 | 0.000 |
Glyphosate | 2041.463 | 1028.780 | 1409.268 | 1216.098 | 2100.000 | 1409.268 | 0.000 |
Heptachlor epoxide | 0.408 | 0.206 | 0.282 | 0.243 | 0.420 | 0.282 | 0.000 |
Dieldrin | 0.680 | 0.343 | 0.470 | 0.405 | 0.700 | 0.470 | 0.000 |
Lindane | 1.361 | 0.686 | 0.940 | 0.811 | 1.400 | 0.940 | 0.232 |
Endosulfan | 2.722 | 1.372 | 1.879 | 1.621 | 2.800 | 1.879 | 0.485 |
Naphthalene | 27.220 | 13.717 | 18.790 | 16.215 | 28.000 | 18.790 | 2.468 |
Acenaphthene | 16.332 | 8.230 | 11.274 | 9.729 | 16.800 | 11.274 | 3.576 |
Acenaphthylene | 13.610 | 6.859 | 9.395 | 8.107 | 14.000 | 9.395 | 0.000 |
Fluorene | 20.415 | 10.288 | 14.093 | 12.161 | 21.000 | 14.093 | 1.623 |
Phenanthrene | 27.220 | 13.717 | 18.790 | 16.215 | 28.000 | 18.790 | 4.591 |
Anthracene | 10.888 | 5.487 | 7.516 | 6.486 | 11.200 | 7.516 | 1.158 |
Fluoranthene | 34.024 | 17.146 | 23.488 | 20.268 | 35.000 | 23.488 | 5.564 |
Pyrene | 29.941 | 15.089 | 20.669 | 17.836 | 30.800 | 20.669 | 6.112 |
Benzo(a)anthracene | 16.332 | 8.230 | 11.274 | 9.729 | 16.800 | 11.274 | 1.983 |
Chrysene | 13.610 | 6.859 | 9.395 | 8.107 | 14.000 | 9.395 | 2.164 |
Benzo(b)fluoranthene | 9.527 | 4.801 | 6.577 | 5.675 | 9.800 | 6.577 | 1.590 |
Benzo(k)fluoranthene | 8.166 | 4.115 | 5.637 | 4.864 | 8.400 | 5.637 | 1.071 |
Benzo(a)pyrene | 5.444 | 2.743 | 3.758 | 3.243 | 5.600 | 3.758 | 0.752 |
Dibenzo(a,h)anthracene | 2.041 | 1.029 | 1.409 | 1.216 | 2.100 | 1.409 | 0.000 |
Compound | Class | PBT Ranking | Primary Source | Toxicity (LC50 µg/L) | 2/12/2025 | 2/15/2025 | 3/10/2025 | 3/31/2025 | 4/6/2025 | 4/7/2025 | Tap Water |
---|---|---|---|---|---|---|---|---|---|---|---|
Methidathion | Organophosphate Insecticide | PBT | Agricultural runoff | 1.8 | 22,483.41 | 214,679.62 | 22,277.85 | 214,691.95 | 46,584.16 | 17,799.62 | BDL |
Chlorpyrifos | Organophosphate Insecticide | PBT | Agricultural runoff | 0.09 | 87,525.68 | 865,002.26 | 87,320.11 | 865,014.58 | 180,675.29 | 71,716.40 | BDL |
Diazinon | Organophosphate Insecticide | PBT | Urban and agricultural runoff | 0.35 | 61,446.16 | 604,207.12 | 61,240.60 | 604,219.44 | 126,909.77 | 50,094.47 | BDL |
Parathion | Organophosphate Insecticide | PBT | Agricultural runoff | 0.18 | 34,728.39 | 337,029.36 | 34,522.82 | 337,041.69 | 71,828.40 | 27,943.36 | BDL |
Bromofos | Organophosphate Insecticide | PT | Agricultural runoff | 9.3 | 29,000.50 | 279,750.52 | 28,794.94 | 279,762.84 | 60,019.79 | 23,194.50 | BDL |
Atrazine | Triazine Herbicide | PT | Agricultural herbicide use | 6.9 | 20,092.29 | 190,668.39 | 19,886.72 | 190,680.71 | 41,654.62 | 15,808.91 | BDL |
Prometon | Triazine Herbicide | PT | Agricultural herbicide use | 16 | 26,458.44 | 254,329.85 | 26,252.87 | 254,342.17 | 54,779.07 | 21,086.93 | BDL |
Simazine | Triazine Herbicide | PT | Agricultural herbicide use | 2.2 | 41,620.24 | 405,947.91 | 41,414.68 | 405,960.23 | 86,036.65 | 33,657.25 | BDL |
MCPA | Phenoxy Herbicide | PT | Agricultural herbicide use | 8.9 | 20,207.59 | 191,821.38 | 20,002.02 | 191,833.70 | 41,892.32 | 15,904.50 | BDL |
Mecoprop | Phenoxy Herbicide | PT | Agricultural herbicide use | 15 | 25,491.30 | 244,658.49 | 25,285.73 | 244,670.81 | 52,785.22 | 20,285.10 | BDL |
Glyphosate | Phosphonate Herbicide | P | Agricultural herbicide use | 56 | 148,684.88 | 1,476,594.32 | 148,479.32 | 1,476,606.64 | 306,761.11 | 122,422.12 | BDL |
AMPA | Glyphosate Degradation Product | Unknown | Glyphosate degradation product | 151,912.27 | 1,508,868.21 | 151,706.71 | 1,508,880.54 | 313,414.70 | 125,097.88 | BDL | |
Heptachlor epoxide | Organochlorine Metabolite | vPvB | Legacy pesticide (banned) | 0.11 | 24,716.60 | 236,911.48 | 24,511.03 | 236,923.80 | 51,188.10 | 19,642.82 | BDL |
Dieldrin | Organochlorine Pesticide | vPvB | Legacy pesticide (banned) | 0.13 | 23,995.98 | 229,705.30 | 23,790.42 | 229,717.62 | 49,702.47 | 19,045.37 | BDL |
Lindane | Organochlorine Insecticide | vPvB | Legacy pesticide (banned) | 0.065 | 36,601.24 | 355,757.89 | 36,395.67 | 355,770.21 | 75,689.47 | 29,496.10 | BDL |
Endosulfan | Organochlorine Insecticide | vPvB | Legacy pesticide (banned) | 1.5 | 78,462.36 | 774,369.09 | 78,256.79 | 774,381.41 | 161,990.36 | 64,202.21 | 272.02 |
Naphthalene | PAH | PT | Fossil fuel and vehicular emissions | 2200 | 5149.41 | 41,239.64 | 4943.85 | 41,251.97 | 10,848.39 | 3420.11 | 14.49 |
Acenaphthene | PAH | PT | Combustion byproducts | 1300 | 38,816.01 | 377,905.57 | 38,610.44 | 377,917.89 | 80,255.44 | 31,332.32 | BDL |
Acenaphthylene | PAH | PT | Combustion byproducts | 2300 | 98,415.93 | 973,904.82 | 98,210.37 | 973,917.14 | 203,126.65 | 80,745.27 | BDL |
Fluorene | PAH | PT | Combustion byproducts | 1000 | 127,788.33 | 1,267,628.78 | 127,582.76 | 1,267,641.10 | 263,680.78 | 105,097.26 | BDL |
Phenanthrene | PAH | PT | Combustion byproducts | 300 | 33,186.31 | 321,608.63 | 32,980.75 | 321,620.95 | 68,649.26 | 26,664.87 | 112.98 |
Anthracene | PAH | PT | Combustion byproducts | 60 | 27,775.78 | 267,503.25 | 27,570.21 | 267,515.58 | 57,494.90 | 22,179.11 | 93.97 |
Fluoranthene | PAH | PT | Combustion byproducts | 270 | 73,133.22 | 721,077.71 | 72,927.66 | 721,090.03 | 151,003.81 | 59,783.95 | BDL |
Pyrene | PAH | PT | Combustion byproducts | 490 | 23,091.94 | 220,664.87 | 22,886.37 | 220,677.19 | 47,838.70 | 18,295.85 | BDL |
Benzo(a)anthracene | PAH | PBT | Combustion byproducts | 6.9 | 32,423.78 | 313,983.31 | 32,218.22 | 313,995.63 | 67,077.23 | 26,032.67 | BDL |
Chrysene | PAH | PBT | Combustion byproducts | 2.7 | 120,438.02 | 1,194,125.73 | 120,232.46 | 1,194,138.05 | 248,527.39 | 99,003.29 | BDL |
Benzo(b)fluoranthene | PAH | PBT | Combustion byproducts | 1.4 | 449,971.90 | 4,489,464.49 | 449,766.33 | 4,489,476.81 | 927,894.43 | 372,212.38 | BDL |
Benzo(k)fluoranthene | PAH | PBT | Combustion byproducts | 3 | 8017.61 | 69,921.60 | 7812.05 | 69,933.92 | 16,761.47 | 5798.06 | BDL |
Benzo(a)pyrene | PAH | PBT | Combustion byproducts | 0.14 | 101,464.92 | 1,004,394.73 | 101,259.36 | 1,004,407.05 | 209,412.45 | 83,273.12 | BDL |
Indeno(1,2,3-cd)pyrene | PAH | PBT | Combustion byproducts | 0.3 | 28,946.97 | 279,215.20 | 28,741.40 | 279,227.52 | 59,909.43 | 23,150.12 | BDL |
Dibenzo(a,h)anthracene | PAH | PBT | Combustion byproducts | 0.28 | 47,903.29 | 468,778.39 | 47,697.72 | 468,790.72 | 98,989.78 | 38,866.38 | BDL |
Benzo(g,h,i)perylene | PAH | PBT | Combustion byproducts | 1.9 | 17,841.04 | 168,155.86 | 17,635.47 | 168,168.18 | 37,013.44 | 13,942.44 | BDL |
DEHP (Di(2-ethylhexyl) phthalate) | Phthalate (Plasticizer) | vPvB | Plastic waste, industrial runoff | 0.4 | 193,939.70 | 1,929,142.52 | 193,734.14 | 1,929,154.84 | 400,058.45 | 159,941.87 | BDL |
DBP (Dibutyl phthalate) | Phthalate (Plasticizer) | vPvB | Plastic waste, industrial runoff | 1.2 | 192,978.88 | 1,919,534.27 | 192,773.31 | 1,919,546.60 | 398,077.61 | 159,145.27 | 674.30 |
Nonylphenol | Alkylphenol (Surfactant) | PBT | Surfactants and detergent runoff | 3.1 | 118,207.98 | 1,171,825.28 | 118,002.41 | 1,171,837.60 | 243,929.93 | 97,154.41 | BDL |
Nonylphenol ethoxylates | Alkylphenol Ethoxylate | PT | Surfactants and detergent runoff | 45 | 120,837.16 | 1,198,117.06 | 120,631.59 | 1,198,129.38 | 249,350.24 | 99,334.20 | BDL |
Bisphenol A (BPA) | Industrial Plastic Compound | PT | Plastic waste leaching | 10.2 | 123,466.33 | 1,224,408.84 | 123,260.77 | 1,224,421.16 | 254,770.55 | 101,513.99 | BDL |
Alkylphenols | Surfactant/Detergent Derivatives | PT | Surfactants and detergent runoff | 12 | 126,095.51 | 1,250,700.62 | 125,889.95 | 1,250,712.94 | 260,190.87 | 103,693.78 | BDL |
Triclosan | Antimicrobial Agent | PBT | Personal care products | 0.43 | 128,724.69 | 1,276,992.40 | 128,519.12 | 1,277,004.72 | 265,611.18 | 105,873.58 | BDL |
Diisononyl phthalate | Plasticizer | vPvB | Plastic waste, industrial runoff | 0.7 | 131,353.87 | 1,303,284.18 | 131,148.30 | 1,303,296.50 | 271,031.49 | 108,053.37 | BDL |
Benzyl butyl phthalate | Plasticizer | vPvB | Plastic waste, industrial runoff | 0.5 | 133,983.05 | 1,329,575.96 | 133,777.48 | 1,329,588.28 | 276,451.81 | 110,233.16 | 467.06 |
Diisodecyl phthalate | Plasticizer | vPvB | Plastic waste, industrial runoff | 0.6 | 136,612.22 | 1,355,867.74 | 136,406.66 | 1,355,880.06 | 281,872.12 | 112,412.95 | 476.29 |
Nicotine | Tobacco alkaloids | BT | Tobacco product waste | 4.9 | 140,118.91 | 1,390,934.65 | 139,913.35 | 1,390,946.97 | 289,101.51 | 115,320.27 | 4582.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamm, G.; Bhattacharjee, A.; Basapuram, G.; Dutta, A.; Duttagupta, S. Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution. Environments 2025, 12, 351. https://doi.org/10.3390/environments12100351
Stamm G, Bhattacharjee A, Basapuram G, Dutta A, Duttagupta S. Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution. Environments. 2025; 12(10):351. https://doi.org/10.3390/environments12100351
Chicago/Turabian StyleStamm, Grace, Arka Bhattacharjee, Gayatri Basapuram, Avishek Dutta, and Srimanti Duttagupta. 2025. "Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution" Environments 12, no. 10: 351. https://doi.org/10.3390/environments12100351
APA StyleStamm, G., Bhattacharjee, A., Basapuram, G., Dutta, A., & Duttagupta, S. (2025). Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution. Environments, 12(10), 351. https://doi.org/10.3390/environments12100351